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Abstract 
In this paper we introduce an efficient algorithm based on state parameterization method to solve optimal 

control problems and Van Der Pol oscillator. In fact, state variable can be considered as linear 

combination of polynomials with unknown coefficients. Using this method, an optimal control problem 

breaks down into an optimization and will be solved via mathematical programming techniques. By this 

algorithm, the control and state variables can be approximated as a function of time. Finally, some 

numerical examples are presented to show the validity and efficiency of the proposed method.  

Keywords: Optimal control problems, State parameterization method, Mathematical programming 

techniques, Van Der Pol oscillator. 

 

1. Introduction 
Optimal control theory, an extension of the calculus of variations, is a mathematical optimization 
method for deriving control policies. The method is largely due to the work of Lev Pontryagin and his 
collaborators in the Soviet Union [1] and Richard Bellman in the United States [2]. In general, optimal 
control is divided into two major parts, namely deterministic and stochastic control. In deterministic 
setting, there are many text books for analytic solutions of optimal control problems such as [1-7]. Also, 
numerical methods for these problems have been provided in [8-13]. The stochastic optimal control 
problem has been studied in textbooks and studied by many researchers (for example see [3], [4], [8] 
and [9]). In general, an optimal control problem can be solved by one of the following methods [14]: 

1- Bellman's dynamic programming method which is based on the principle of optimality (Hamilton-
Jacobi-Bellman equation). 
2- Pontryagin's minimum principle and calculus of variations (Euler-Lagrange equations). 
3- Direct methods using parameterization or discretization (nonlinear mathematical programming). 

As analytical solutions for problems of optimal control are not always available, thus finding an 
approximate solution is at least the most logical way to solve them. The study of numerical methods has 
provided an attractive field for researchers of mathematical sciences which have risen to the 
appearance of different numerical computational methods and efficient algorithms to solve the optimal 
control problems [14, 15]. 
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In [16], the distributed optimal control problem governed by unsteady diffusion–convection–reaction equation 

without control constraints is studied. 

The authors in [17], considers a class of optimal control problems for general nonlinear time-delay systems with 

free terminal time. 
Phelps et al. focuses on a non-standard constrained nonlinear optimal control problem in which the 

objective functional involves integration over a space of stochastic parameters as well as integration over the time 

domain [18]. In [19], for one-dimensional stochastic linear fractional systems the optimal control is derived and in 

[20] truncated Bessel series approximation by using collocation scheme, for solving linear and nonlinear fractional 

optimal control problems (OCPs) indirectly. In particular, the control parameterization technique is used in [21, 22] 

and control parameterization enhancing technique is introduced in [22, 23]. Vlassenbroec presented a numerical 

technique for solving non-linear constrained optimal control problems [24]. Van Dooren and Vlassenbroech [25] 

have introduced a direct method for the controlled Duffing oscillator. El-Gindy, et. al. [26] has presented an 

alternative technique for solving the controlled Duffing oscillator problems, which is based on El-Gendi method 

[26]. In [27], a numerical technique is presented for solving the controlled Duffing oscillator; in which the control 

and state variables are approximated by Chebyshev series. State parameterization converts the problem to a non-

linear optimization problem and finds unknown polynomial coefficients of degree at most n in the form of  

x(t) = ∑ ait
i,n

i=0  for optimal solution [29, 30]. In [15], an algorithm for solving optimal control problems and the 

controlled Duffing oscillator is presented; in the algorithm the solution is based on state parameterization such 

that the state variable can be considered as a linear combination of Chebyshev polynomials with unknown 

coefficients and later, extended state parameterization to solve nonlinear optimal control problems and the 

controlled Duffing oscillator [31]. The authors in [32], presented a computational method based on state 

parametrization of state variable by using Boubaker polynomials for solving optimal control problems and the 

controlled Duffing oscillator. 

This paper is organized into following sections of which this introduction is the first. In Section 2, we introduce 
problem statement. Section 3 is about state parameterization. State parameterization method is described in 
Section 4. Section 5 derives the proposed design method, in fact restarted state parameterization method is 
described. In section 6 we present some numerical examples to illustrate the efficiency and reliability of the 
presented method. Also, The solution of Van Der Pol oscillator with the presented algorithm are presented in 
section 7. Finally, the paper is concluded with conclusion. 

  
2. Optimal control problems 

In describing a control model, the kind of information available to the controller at each instant of time 

plays an important role. In describing a control model two cases exist; either the controller has no information 

during the system operation, known as open loop, or the controller knows the state of the system at each instant 

of time t, known as feedback. In optimal control problem, we have to determine one of these presented controls. 

The control function u is assumed to be piecewise from a class of admissible controls U. Each choice of control 

u(t) ∈ ℝm yields a process x(t) ∈ ℝn which is the unique solution of  

(1) ẋ(t) = f(t, x(t), u(t)),       

which is called the equation of motion, on a fixed interval [t0, t1] with initial condition 

(2) x(t0) = x0 

 Along with this controlled process, a cost functional of the form:  

(3) 𝒥 = ϕ(x(t0), t0, x(t1), t1) + ∫ L(t, x(t), u(t))dt,
t1

t0

 

Is defined. Here, L is the running cost, and ϕ is the terminal cost. This cost functional depends on the initial 

position (t0, x0)  and the choice of control u(. ). The optimization problem is therefore to minimize 𝒥, for 
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each (x0, u), over all controls  u(t) ∈ U. The optimization problem with performance index as defined in Equation 

(3) is called a Bolza problem. There are two other equivalent optimization problems, which are called Lagrange and 

Mayer problems [3]. 

3. State parameterization 

The optimal control problems can be converted into a mathematical programming problem by using the 

parameterization techniques. One such technique is known as state parameterization. The idea of state 

parameterization is to approximate only the system state variable by a sequence of given functions with unknown 

parameters, which can be employed using different basis functions: 

(4) x(t) = ∑ aiΦi(t),

n

i=0

 

 and then the control variable are obtained from the state equations. The state parameterization can be employed 

using different basis functions. Let Q ⊂ C1([t0, t1]) consisting of all functions passing through (t0, x0). As, the 

performance index J(x(. )) may be considered as a function of x(. ). Then the optimal control problem may be 

interpreted as minimization of J on the set Q. Let Qn be a sub set of Q consisting of all polynomials of degree at 

most n as Equation (4). Now consider the minimization of J on Qn with {ak}k=0
n   as unknowns. This is an 

optimization problem in (n + 1) -dimensional space and J(xn(. )) may be considered as J(a0, a1, … , an). 

4. Restarted State Parameterization Method 

In this section, Restarted State Parameterization Method by using polynomials bases is introduced. This method is 
a numerical method for solving optimal control problems. In fact, we can accurately represent state and control 
functions with only a few parameters. First, from Equation (1), the expression for u(t) as a function of t, x(t) and 
ẋ(t) is determined, i.e. [32]: 

(5) u(t) = g(t, x(t), ẋ(t)), 

First, state variable is approximated as follow: 

x1(t, a0, a1, a2) = ∑ ait
i

2

i=0
 

The control variables are determined from the system state equations (5) as a function of the unknown 
parameters of the state variables: 

u1(t, a0, a1, a2) = g (t, ∑ ait
i

2

i=0
, ∑ iait

i−1
2

i=1
), 

By substituting these approximations of the above state and control variables into the performance index (3) 
obtained: 

J(a0, a1, a2) = ϕ(a0, a1, a2) + ∫ L(t, x1(t, a0, a1, a2), u1(t, a0, a1, a2))dt,
t1

t0

 

The initial condition is replaced by equality constraint as follow, which is a linear constrain: 
x(t0) = x0 ⟹ x1(t0, a0, a1, a2) = x0 

Thus, the optimal control problem (1)-(3) converted into a quadratic function of the unknown 
parameters  a0, a1, a2. In fact, the new problem can be stated as: 

min
(a0,a1,a2)∈ℝ3

J(a0, a1, a2) 

s. t.   x1(t0, a0, a1, a2) = x0 
Now, the control and state variables can be approximated as a function of time. In the next step, x2(t) is 
approximated as below for given m:   
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x2(t, a3, a4, … , am) = x1(t) + ∑ ait
i

m

i=3
 

and we obtain J as a function of a3, a4, … , am  by using equation (3) and refer to it as Ĵ. If a∗ be the value which 

minimizes Ĵ, then Ĵ(a∗) is the solution of optimal control problem in Equations (1)-(3). Also we can calculate state 

and control variables from a∗ approximately. 

By continuing this procedure we obtain a favorable accuracy, for example in the (n + 1)th step, the approximate 

solution is given by: 

xn+1(t) = xn(t) + ∑ ajt
j

i+m

j=i
, 

and then u(t) can be obtained from equation (5). Now we obtain J as a function of ai, ai+1, … , ai+m by calculating 

𝒥 = ϕ(x(t0), t0, x(t1), t1) + ∫ L(t, x(t), u(t))dt,
t1

t0
 and refer to it as Ĵ. The new problem can be stated as: 

min
(ai,ai+1,…,ai+m)∈ℝm

J(ai, ai+1, … , ai+m), 

s. t.   xn+1(t0, ai, ai+1, … , ai+m) = x0, 

let a∗be the value which minimizesĴ, then Ĵ(a∗) is the solution of optimal control problem in equations (1)-(3). Also 

we can calculate state and control variables from a∗ approximately. 

  The above results lead to the following algorithm which obtains the optimal performance index J(. ).                      

Presented algorithm: 

Input: Optimal control problem (1)-(3). 
Output: The approximate optimal trajectory, approximate optimal control and approximate performance index J. 
Choose small positive number ℰ and small natural number m. 
(Step 1) 

Let x1(t) = ∑ ait
i2

i=0  and α1 = min
(a0,a1,a2)∈ℝ3

J(a0, a1, a2) subject to x1(t0, a0, a1, a2) = x0.  

 (Step 2) 

For i=1, 2, … let xi+1(t) = xi(t) + ∑ ajt
ji+m

j=i  and compute: 

αi = min
(ai,ai+1,…,ai+m)∈ℝm

J(ai, ai+1, … , ai+m), 

s. t.   xn+1(t0, ai, ai+1, … , ai+m) = x0, 
If |αi+1 − αi| < 𝐸 stop. 
End (for). 

As a well-known powerful tool, for convergence of the parameterization techniques we have the following 

theorem [33]: 

Theorem 1 (Weierstrass Approximation Theorem). Let f ∈ C([a, b], ℝ). Then there is a sequence of polynomials 

Pn(t) that converges uniformly to f(x) on [a, b]. 

Note: Theoretical treatment of the convergence of the parameterization technique is based on Weierstrass 
Approximation Theorem and has been considered in [11, 24-32]. 
 
Theorem 2 Ifαn = min

Qn

J, for n = 1, 2, 3, …, then lim
n→∞

αn = α  where αn = min
Q

J. 

Proof. See [30-32]. 

 

 



   B. Kafash and A. Delavarkhalafi / J. Math. Computer Sci.    14 (2015) 151 - 161 
 

155 
 

5. Numerical Results 

To illustrate the efficiency of the algorithms, we consider the following examples. 

 

Example1. Consider the following test problem: 

Minimize: 

(6) 
∫ (

1

2
u2(t) + x2(t)) dt,

1

0

 

Subject to: 

(7) ẋ(t) =
1

2
x(t) + u(t),      x(0) = 1. 

With the optimal solution: 

x∗(t) =
2e3t + e3

2e3t 2⁄ (2 + e3)
, u∗(t) =

2e3t − e3

2e3t 2⁄ (2 + e3)
 

 Also, the exact solution for the performance index is: 

J =
e6+e3−2

e6+4e3+4
= 0.8641644978. 

By using step (1) of the presented algorithm we consider this approximation of x1(t) to start with: 

(8) 
x1(t, a0, a1, a2) = ∑ ait

i
2

i=0
, 

from equation (7), we have: 

(9) 
u1(t, a0, a1, a2) = −

1

2
a2t2 + (2a2 −

1

2
a1) t + a1 −

1

2
a0, 

then substituting equations (8)  and (9) into equation (6) gives: 

(10) J(a0, a1, a2) =
9

8
a0

2 +
5

8
a0a1 +

1

4
a0a2 +

5

8
a1

2 +
17

16
a1a2 +

77

120
a2

2 , 

Now minimize of J(a0, a1, a2) subject to x1(t0, a0, a1, a2) = x0 leads to a∗ = (1, −
412

365
,

54

73
). In fact, a∗ is the value 

which minimize J, then J(a∗) = 0.8647260274 is the solution of the optimal control problem (6)-(7) and 
substituting a∗into (8) and (9), we can calculate  state and control variables approximately as: 

x1(t) =
54

73
t2 −

412

365
t + 1, 

and 

u1(t) = −
27

73
t2 +

746

365
t −

1189

730
, 

The obtained solution and the analytical solution for the state and control variables and their errors are plotted in 
Figure 1 and Figure 2. Also, the optimal cost functional, J, obtained by the presented algorithm, is shown in Table 1. 
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Fig 1. Graphs of approximate solutions of x(t) and its error for Example 1. 

 
Fig 2. Graphs of approximate solutions of u(t) and its error for Example 1. 

 

 
m=2 m=3 m=4 

J Error J Error J Error 

Step1 0.8647260274 5.7E-4 0.8647260274 5.7E-4 0.8647260274 5.7E-4 

Step2 

0.8645465237 3.9E-4 0.8644940760 3.3E-4 0.8643729445 2.1E-4 

0.8645390704 3.8E-4 0.8644557137 3.0E-4 0.8643573922 2.0E-4 

0.8645390446 3.7E-4 0.8644550472 2.9E-4 0.8643546452 1.9E-4 

Table 1: The optimal cost functional J for Example 1 by using presented algorithm 

Example2. Consider the following test problem: 
Minimize: 

(11) ∫ (
1

2
u2(t) +

1

2
x(t)u(t) +

5

8
x2(t)) dt,

1

0

 

Subject to: 

(12) ẋ(t) =
1

2
x(t) + u(t),      x(0) = 1. 
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With the optimal solution: 

x∗(t) =
cosh (1 − t)

cosh (1)
, u∗(t) = −

(tanh(1 − t) + 0.5)cosh (1 − t)

cosh (1)
 

 Also, the exact solution for the performance index is: 

J =
e6+e3−2

e6+4e3+4
= 0.8641644978. 

By using step (1) of the presented algorithm we consider this approximation of x1(t) to start with: 

(13) 
x1(t, a0, a1, a2) = ∑ ait

i
2

i=0
, 

from equation (12), we have: 

(14) 
u1(t, a0, a1, a2) = −

1

2
a2t2 + (2a2 −

1

2
a1) t + a1 −

1

2
a0, 

then substituting equations (13)  and (14) into equation (11) gives: 

(15) J(a0, a1, a2) =
1

2
a0

2 +
1

2
a0a1 +

1

3
a0a2 +

2

3
a1

2 +
5

4
a1a2 +

23

30
a2

2 , 

Now minimize of J(a0, a1, a2) subject to x1(t0, a0, a1, a2) = x0 leads to a∗ = (1, −
252

347
,

130

347
). In fact, a∗ is the value 

which minimize J, then J(a∗) = 0.3808837656 is the solution of the optimal control problem (11)-(12) and 
substituting a∗into (13) and (14), we can calculate  state and control variables approximately as: 

x1(t) =
130

347
t2 −

252

347
t + 1, 

and 

u1(t) = −
65

347
t2 +

386

347
t −

851

694
, 

The obtained solution and the analytical solution are plotted in Figure 3 and Figure 4. Also, the optimal cost 
functional, J, obtained by the presented algorithm, is shown in Table 2. 

 

Fig 3. Graphs of approximate solutions of 𝑥(𝑡) and its error for Example 2. 
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Fig 4. Graphs of approximate solutions of 𝑢(𝑡) and its error for Example 2. 

 
m=2 m=3 m=4 

J Error J Error J Error 
Step1 0.3808837656 8.7E-5 0.3808837656 8.7E-5 0.3808837656 8.7E-5 

Step2 
0.3808377649 4.1E-5 0.3808229011 2.6E-5 0.3808148489 1.8E-5 
0.3808330111 3.6E-5 0.3808197723 2.3E-5 0.3808137562 1.7E-5 

Table 2: The optimal cost functional J for Example 1 by using presented algorithm 

6. Van der Pol oscillator 

In this section, we consider the Van der Pol oscillator problem. The system state equations are: 

(16) 
ẋ1(t) = x2(t), 
 

(17) 
u(t) = ẋ2(t) + x1(t) + (x1

2(t) − 1)x2(t), 

The cost function to be minimized, starting from the initial states x1(0) = 1 and x2(0) = 0, is: 

(18) 
J =

1

2
∫ (u2 + x1

2 + x2
2)dt

5

0

 

in addition, the system is subject to the following terminal state constraints: 

(19) 

x1(5) = −1, 

x2(5) = 0,  

In the following, we performance the solution of the problem by using presented algorithm. So we consider this 

approximation of x1(t) to start with:  

x1(t, a0, … , a4) = ∑ ait
i

4

i=0
 

by using equation (16) we have x2(t, a0, … , a4) and then u(t, a0, … , a4) is obtained from equation (17). Now we 

obtain J as a function of (a0, … , a4) by using equation (18) and denote it by J(a0, … , a4) and solve above 

optimization problem. In fact, The new problem is to minimization problem subject to the equality constraint: 
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min
(a0,…,a4)∈ℝ5

J(a0, … , a4), 

s. t. 
x1(0, a0, … , a4) = 0, 
x2(0, a0, … , a4) = 0, 
x1(5, a0, … , a4) = −1, 
x2(5, a0, … , a4) = 0, 

The dynamic optimal control problem is approximated by a quadratic programming problem. The optimal value of 
the vector a∗ can be obtained from the standard quadratic programming method as: 

(a0, a1, a2, a3, a4) = (1,0, -0.2166400646, 0.02265602582, 0.0009343974175) 
In fact, a∗ is the value which minimizes J and J(a∗) = 2.43380762 is the solution of optimal control problem (19)-
(19). By using a∗,  we can calculate state approximately as: 

x1(t) = 9.34397 × 10−4t4 + 2.265603 × 10−2t3 − 0.216640t + 1, 
The solution obtained is plotted in Figure 3. In fact, state and control variables x1(t), x2(t) and u(t) are plotted for 
n = 1 and n = 2 in Figure 5.  

 

Fig 5. Solution of the Van der Pol oscillator problem. 

The approximate solution for the performance index as given in [20] is J = 2.1439039 the optimal cost functionalJ, 

obtained by presented algorithm, is shown in Table 3. 

Table 3. The optimal cost functional 𝐽 for the Van der Pol oscillator problem. 

iteration Present method error 

1 2.153139564 0.9E-2 

2 2.144127466 0.2E-3 

3 2.143904324 2.1E-6 

CONCLUSION 

In this paper, a simple computational algorithm for minimizing performance index was obtained by using state 
parameterization method, which can easily be applied to complex problems as well. One of the advantages of this 
method is using a computational algorithm with a fast convergence. This algorithm can be used to approximate the 
control and state variables as a function of time. The suggested algorithm was then applied to Van der Pol 
oscillator problem problem. The results obtained demonstrate the reliability and efficiency of the proposed 
algorithm. 
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