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Abstract
In this paper, we give some refinements of the classical Jensen's inequality which generalizes some results

already obtained in literatures.
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1. Introduction

In [3] J. Rooin refined the classical Jensen's inequality as

<p< jx fdu>s j <p< fX f(x)w(x,y)du(x))dl(y) < fx (¢ > fdp, (L.1)

where (X, 4, 1) and (Y, B, A) are two probability measure spaces, w: X X Y — [0, o) is a weight function
on X x Y, I is an interval of the real line, f € L' (), f(x) € I for all x € X and ¢ is a real-valued convex
function on I.

Also, in [2], the authors proved a generalization of the classical Jensen's inequality by Riemann-Stieltjes
integration for two convex functions defined on an interval of R.

In this paper, we generalize the above papers to a very general case by considering a more general abstract
space i.e the LP spaces and two fuctions in this space.
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2. Main Results

We refine the classical Jensen's inequality on the LP spaces and show how our result generalizes those in
literature.

Theorem 2.1. Let X be a measure space, with measure u. Let f € LP(u) and g € L9(w). Suppose ¢ is any
convex function and % + % =1,where 1 <p <ooand 1 < g < oo then the following inequality holds

1 1
p q
w(Lfgdx)S(Ltpw"ﬂx) <L<poqux> . (2.1)

Proof:

Let

1 1
(. ([

The case when A = 0 is trivial. Also A > 0 and B=oo is trivial. So we consider the case 0 < A < 0, 0 <
B < oo, We set

Now,
o fPdx o g9dx
X fofP°fpdx fofP°qux X
S t
Letx EX30< F(x)<ooand 0 < G(x) < ooimplies that 3 s,t €R 3 F(x) = e?, G(x) = ed. This
implies

st
eP d <pleS+qlet

F(X)G(x) <p FP(x) + q71G9(x) Vx€X (2.2)

Integrating both sides of (2.2), to obtain

dx < 1.

f peof Pog
1 1
X(fX Q ofpdx)E (fX Qo qux)ﬁ

This implies
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1 1

fxfpof <p°gdxs<L<p°fpdx)5<fx<p°qux>a-

1 1

fxfp(fy)dxsfxwf <p°gde(L<p°f"dx>5<fxfp°qux>a-
(p(fx(fg)dx>SL(p(fg)deLgoof(pogde(Lgaofpdx>%<£((poqux)%.

That is

Remark 2.2. If ¢ is an identity function then Theorem 2.1 gives Theorem 3.5 in [4]. For simplicity, we
state it as Corollary 2.3.

Corollary 2.3. Let X be a measurable space, with measure u. Let f and g be measurable functions on X
with range [0, co]. Suppose ¢ is any identity function and %+% =1, where 1 < p,q < . Then the
following inequality holds

1

(Lt = (e ([

Theorem 2.4. Let (X,A,u) and (Y,B,A) be two measure spaces and w:X XY — [0, ) be a weight
function on X x Y such that

[oanaum=1 v yer,
X

fa)(x,y)dl(y) =1 V x€eX
Y

If I is a measurable space, f,g € LP(u), f(x) €I V x € X and ¢ is a convex function in I, then

(1)

X

1
[0 ( [ o, y)du(x)) cu(y)]p
Y X

1
f " ( f P y)du(X)> dA(y)]q
Y X

fxqo °fpdu]% wa °quu]%-
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Proof:

The functions w and (x,y) — f(x) and so (x,y) = fP(x)w(x,y) is product-measurable on X x Y. The
same thing goes for g(x). We prove the first inequality. Clearly,

=

1 1
( [ |f(x)|Pw(x,y>dz(y)du<x>)p=( [1reor < | w(x,y)dMy)) du(x))p
XJY X Y

1

= ( f If(X)I”d#(x)>p
X

= 1fllep ) < oo

Similarly forg(x), we have

1

1
( f f |g(x)|"w(x.y)d1(y)du(x))q=< f |g(x)|q< f w(x.;v)dA(y)) du(x))q
XJY X Y

1

- ( | |g<x)|qdu<x)>q
X

= [1gllLp ) < .

By Fubini's theorem we know that (x,y) — fP(x)w(x,y) on X X Y belongs to LP (u X 1). By the same
argument, (x,y) = g4(x)w(x,y) belongs to LP (u x 1). Next, we define F:Y - Rand G:Y — R by

1
p
)

F(y) = ( f PO y)du(x))
X

q
G = ( f g"(x)w(x.y)du(x)) .
X

Now,

5 i
[ j <p( j f”(X)w(x.y)du(X)>d/1(y)] [ f <p( j gq(x)w(x,y)du(x)>d/1(y)]
Y X Y X
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5 q
- [ f (<pon)(y)dA(;v)] [ f (<pqu)<y)dA<y)] .
Y Y

Using Theorem 2.1 we obtain

: ;
[ | (goom(y)dA(y)] [ | (wocqxwdz(y)] z<p( [ For@o | G(y)dacy))
Y Y Y y

S

=y ( fy ( f e y)du(X)>

1
( gq(x)w(x.y)du(x))q dMy))

'8|>—\

2[ ( Fp(y)dl(y)> 0 Gq(y)d/l(y)>]

"c:lr—n
QR

| =

1

< f ( j P ()00 ) du()dAD) ) (,,( @ y)du(x)dMy)))]

[ ( | £ ( J o y)dMy))du(x)) ’
)

5 i

[ ( f P du) <o( fx g"(x)du(X)>]
> d )
> <o( fx fg u(x))

0 g%x)( 0, y)dMy))ducx))]q

| =

Remark 2.5. Theorem 2.4 refines the result obtained by Hewitt and Stromberg on page 202 of [1] and also
generalizes [3].
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