

Contents list available at JMCS

Journal of Mathematics and Computer Science

JMCS

Journal of

Mathematics and Computer Science

Journal Homepage: www.tjmcs.com

Some Refinements of Jensen's Inequality on Product Spaces

Peter O. Olanipekun^{1,*}, Adesanmi A. Mogbademu^{1,+}

Article history: Received March 2015 Accepted July 2015 Available online July 2015

Abstract

In this paper, we give some refinements of the classical Jensen's inequality which generalizes some results already obtained in literatures.

Keywords: Convex function, Jensen's inequality, Fubini's theorem, L^p spaces.

1. Introduction

In [3] J. Rooin refined the classical Jensen's inequality as

$$\varphi\left(\int_{X} f d\mu\right) \le \int_{Y} \varphi\left(\int_{X} f(x)\omega(x,y)d\mu(x)\right) d\lambda(y) \le \int_{X} (\varphi \circ f)d\mu, \tag{1.1}$$

where (X, A, μ) and (Y, B, λ) are two probability measure spaces, $\omega: X \times Y \to [0, \infty)$ is a weight function on $X \times Y$, I is an interval of the real line, $f \in L^1(\mu)$, $f(x) \in I$ for all $x \in X$ and φ is a real-valued convex function on I.

Also, in [2], the authors proved a generalization of the classical Jensen's inequality by Riemann-Stieltjes integration for two convex functions defined on an interval of \mathbb{R} .

In this paper, we generalize the above papers to a very general case by considering a more general abstract space i.e the L^p spaces and two fuctions in this space.

2. Main Results

We refine the classical Jensen's inequality on the L^p spaces and show how our result generalizes those in literature.

Theorem 2.1. Let X be a measure space, with measure μ . Let $f \in L^p(\mu)$ and $g \in L^q(\mu)$. Suppose φ is any convex function and $\frac{1}{p} + \frac{1}{q} = 1$, where $1 and <math>1 < q < \infty$ then the following inequality holds

$$\varphi\left(\int_{X} f g dx\right) \le \left(\int_{X} \varphi \circ f^{p} dx\right)^{\frac{1}{p}} \left(\int_{X} \varphi \circ g^{q} dx\right)^{\frac{1}{q}}.$$
(2.1)

Proof:

Let

$$A = \left(\int_X \varphi \circ f^p dx\right)^{\frac{1}{p}}, \quad B = \left(\int_X \varphi \circ g^q dx\right)^{\frac{1}{q}}$$

The case when A = 0 is trivial. Also A > 0 and $B = \infty$ is trivial. So we consider the case $0 < A < \infty$, $0 < B < \infty$. We set

$$F = \frac{\varphi \circ f}{A}, \quad G = \frac{\varphi \circ g}{B}$$

Now,

$$\int_X F^p dx = \int_X \frac{\varphi \circ f^p dx}{\int_X \varphi \circ f^p dx} = \int_X \frac{\varphi \circ g^q dx}{\int_X \varphi \circ g^q dx} = \int_X G^q dx = 1.$$

Let $x \in X \ni 0 < F(x) < \infty$ and $0 < G(x) < \infty$ implies that $\exists s, t \in R \ni F(x) = e^{\frac{s}{p}}$, $G(x) = e^{\frac{t}{q}}$. This implies

$$e^{\frac{s}{p} + \frac{t}{q}} \le p^{-1}e^{s} + q^{-1}e^{t}$$

$$F(x)G(x) \le p^{-1}F^{p}(x) + q^{-1}G^{q}(x) \quad \forall x \in X$$
(2.2)

Integrating both sides of (2.2), to obtain

$$\int_X \frac{\varphi \circ f}{\left(\int_X \varphi \circ f^p dx\right)^{\frac{1}{p}}} \frac{\varphi \circ g}{\left(\int_X \varphi \circ g^q dx\right)^{\frac{1}{q}}} dx \leq 1.$$

This implies

$$\int_X \varphi \circ f \quad \varphi \circ g dx \leq \left(\int_X \varphi \circ f^p dx \right)^{\frac{1}{p}} \left(\int_X \varphi \circ g^q dx \right)^{\frac{1}{q}}.$$

That is

$$\int_{X} \varphi(fg) dx \leq \int_{X} \varphi \circ f \quad \varphi \circ g dx \leq \left(\int_{X} \varphi \circ f^{p} dx \right)^{\frac{1}{p}} \left(\int_{X} \varphi \circ g^{q} dx \right)^{\frac{1}{q}}.$$

$$\varphi\left(\int_{X} (fg) dx \right) \leq \int_{X} \varphi(fg) dx \leq \int_{X} \varphi \circ f \varphi \circ g dx \leq \left(\int_{X} \varphi \circ f^{p} dx \right)^{\frac{1}{p}} \left(\int_{X} \varphi \circ g^{q} dx \right)^{\frac{1}{q}}.$$

Remark 2.2. If φ is an identity function then Theorem 2.1 gives Theorem 3.5 in [4]. For simplicity, we state it as Corollary 2.3.

Corollary 2.3. Let X be a measurable space, with measure μ . Let f and g be measurable functions on X with range $[0, \infty]$. Suppose φ is any identity function and $\frac{1}{p} + \frac{1}{q} = 1$, where $1 < p, q < \infty$. Then the following inequality holds

$$\left(\int_{X} f g dx\right) \leq \left(\int_{X} f^{p} dx\right)^{\frac{1}{p}} \left(\int_{X} g^{q} dx\right)^{\frac{1}{q}}.$$

Theorem 2.4. Let (X, A, μ) and (Y, B, λ) be two measure spaces and $\omega: X \times Y \to [0, \infty)$ be a weight function on $X \times Y$ such that

$$\int_{X} \omega(x, y) d\mu(x) = 1 \quad \forall \quad y \in Y,$$

$$\int_{Y} \omega(x, y) d\lambda(y) = 1 \quad \forall \quad x \in X.$$

If I is a measurable space, $f, g \in L^p(\mu), f(x) \in I \quad \forall \quad x \in X \text{ and } \varphi \text{ is a convex function in } I$, then

$$\begin{split} \varphi\left(\int_{X}fgd\mu\right) &\leq \left[\int_{Y}\varphi\left(\int_{X}f^{p}(x)\omega(x,y)d\mu(x)\right)d\lambda(y)\right]^{\frac{1}{p}} \\ &\times \left[\int_{Y}\varphi\left(\int_{X}g^{q}(x)\omega(x,y)d\mu(x)\right)d\lambda(y)\right]^{\frac{1}{q}} \\ &\leq \left[\int_{X}\varphi\circ f^{p}d\mu\right]^{\frac{1}{p}} \left[\int_{X}\varphi\circ g^{q}d\mu\right]^{\frac{1}{q}}. \end{split}$$

Proof:

The functions ω and $(x, y) \to f(x)$ and so $(x, y) \to f^p(x)\omega(x, y)$ is product-measurable on $X \times Y$. The same thing goes for g(x). We prove the first inequality. Clearly,

$$\left(\int_{X} \int_{Y} |f(x)|^{p} \omega(x, y) d\lambda(y) d\mu(x)\right)^{\frac{1}{p}} = \left(\int_{X} |f(x)|^{p} \left(\int_{Y} \omega(x, y) d\lambda(y)\right) d\mu(x)\right)^{\frac{1}{p}}$$
$$= \left(\int_{X} |f(x)|^{p} d\mu(x)\right)^{\frac{1}{p}}$$

$$=||f||_{L^p(\mu)}\leq\infty.$$

Similarly for g(x), we have

$$\left(\int_{X} \int_{Y} |g(x)|^{q} \omega(x, y) d\lambda(y) d\mu(x)\right)^{\frac{1}{q}} = \left(\int_{X} |g(x)|^{q} \left(\int_{Y} \omega(x, y) d\lambda(y)\right) d\mu(x)\right)^{\frac{1}{q}}$$

$$= \left(\int_{X} |g(x)|^{q} d\mu(x)\right)^{\frac{1}{q}}$$

$$= ||g||_{L^{p}(\mu)} \le \infty.$$

By Fubini's theorem we know that $(x, y) \to f^p(x)\omega(x, y)$ on $X \times Y$ belongs to $L^p(\mu \times \lambda)$. By the same argument, $(x, y) \to g^q(x)\omega(x, y)$ belongs to $L^p(\mu \times \lambda)$. Next, we define $F: Y \to R$ and $G: Y \to R$ by

$$F(y) = \left(\int_X f^p(x)\omega(x,y)d\mu(x)\right)^{\frac{1}{p}},$$

$$G(y) = \left(\int_X g^q(x)\omega(x,y)d\mu(x)\right)^{\frac{1}{q}}.$$

Now,

$$\left[\int_{Y}\varphi\left(\int_{X}f^{p}(x)\omega(x,y)d\mu(x)\right)d\lambda(y)\right]^{\frac{1}{p}}\left[\int_{Y}\varphi\left(\int_{X}g^{q}(x)\omega(x,y)d\mu(x)\right)d\lambda(y)\right]^{\frac{1}{q}}$$

$$= \left[\int_{Y} (\varphi \circ F^{p})(y) d\lambda(y) \right]^{\frac{1}{p}} \left[\int_{Y} (\varphi \circ G^{q})(y) d\lambda(y) \right]^{\frac{1}{q}}.$$

Using Theorem 2.1 we obtain

$$\begin{split} \left[\int_{Y} (\varphi \circ F^{p})(y) d\lambda(y) \right]^{\frac{1}{p}} \left[\int_{Y} (\varphi \circ G^{q})(y) d\lambda(y) \right]^{\frac{1}{q}} &\geq \varphi \left(\int_{Y} F(y) d\lambda(y) \int_{Y} G(y) d\lambda(y) \right) \\ &= \varphi \left(\int_{Y} \left(\int_{X} f^{p}(x) \omega(x, y) d\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} g^{q}(x) \omega(x, y) d\mu(x) \right)^{\frac{1}{q}} d\lambda(y) \right) \\ &\geq \left[\varphi \left(\int_{Y} F^{p}(y) d\lambda(y) \right) \right]^{\frac{1}{p}} \left[\varphi \left(\int_{Y} G^{q}(y) d\lambda(y) \right) \right]^{\frac{1}{q}} \\ &= \left[\varphi \left(\int_{Y} \left(\int_{X} f^{p}(x) \omega(x, y) d\mu(x) d\lambda(y) \right) \right) \right]^{\frac{1}{p}} \left[\varphi \left(\int_{Y} \left(\int_{X} g^{q}(x) \omega(x, y) d\mu(x) d\lambda(y) \right) \right) \right]^{\frac{1}{q}} \\ &= \left[\varphi \left(\int_{X} f^{p}(x) \left(\int_{Y} \omega(x, y) d\lambda(y) \right) d\mu(x) \right) \right]^{\frac{1}{p}} \left[\varphi \left(\int_{X} g^{q}(x) d\mu(x) \right) \right]^{\frac{1}{q}} \\ &= \left[\varphi \left(\int_{X} f^{p}(x) d\mu(x) \right) \right]^{\frac{1}{p}} \left[\varphi \left(\int_{X} g^{q}(x) d\mu(x) \right) \right]^{\frac{1}{q}} \\ &\geq \varphi \left(\int_{X} f g d\mu(x) \right). \end{split}$$

Remark 2.5. Theorem 2.4 refines the result obtained by Hewitt and Stromberg on page 202 of [1] and also generalizes [3].

References

- [1] E. Hewitt, K. Stromberg, "Real and Abstract Analysis", Springer-Verlag, New York, (1965)
- [2] P. O. Olanipekun, A. A. Mogbademu, "A note on generalization of classical Jensen's inequality", J.Math.Computer Sci. **13**(2014), 68-70.

- [3] J. ROOIN, "A refinement of Jensen's inequality", J. Inequal. Pure and Appl. Math., 6(2) Art. 38, (2005).
- [4] W. RUDIN, "Real and Complex Analysis", 3rd ed., McGraw-Hill, New York, (1974).