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Abstract 
In this paper, we present a numerical method for solving delay differential equations (DDEs). The method 

utilizes radial basis functions (RBFs). Error analysis is presented for this method. Finally, numerical 

examples are included to show the validity and efficiency of the new technique for solving DDEs.  
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1. Introduction 

Delay differential equations are type of differential equations where the time derivatives at the current 

time depend on the solution, and possibly its derivatives, at previous times. A class of such equations, 

which involve derivatives with delays as well as the solution itself, has been called neutral DDEs over the 

past century (see [1, 2]). Systems with time delay occur frequently in mechanical and electrical systems, 

population, industrial process, economic growth, neural networks, etc. Many researchers have tried 

various methods of optimizing linear time delay systems [3].  

The basic theory concerning the stable factors and works on fundamental theory, e.g., existence and 

uniqueness of solutions, was presented in [1, 2]. Since then, DDE have been extensively studied in recent 

decades and a great number of monographs have been published including significant works on  

dynamics of DDEs by Hale and Lunel [4], on stability by Niculescu [5], and so on. The interest in study 

of DDEs is caused by the fact that many processes have time-delays and have been models for better 

representations by systems of DDEs in science, engineering, economics, etc. Such systems, how-ever, are 

still not feasible to actively analyze and control precisely, thus, the study of systems of DDEs has actively 

been conducted over the recent decades (see [1, 2]). 

The orthogonal functions and polynomial series have been developed for solving various problems of 

dynamical systems such as system analysis, parameter identification, optimal control, etc [1, 6, 7]. The 

main idea of this technique is that it reduces these problems to those of solving a system of algebraic 
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equations and thus it greatly simplifies the problem. The approach is based on converting the differential 

equations into an integral equation through integration. The state and/or control involved in the equation 

are approximated by finite terms of orthogonal series and by using the operational matrix of integration 

the integral operations are eliminated. The form of the operational matrix of integration depends on the 

particular choice of the orthogonal functions like Walsh functions [4], Block-pulse functions [8], 

Laguerre series [9], Jacobi series [10], Fourier series [11], Bessel series [12], Taylor series [13], Shifted 

Legendre [14], Chebyshev polynomials [15] and Hermite polynomials [16]. In this study, we use wavelet 

functions to approximate both the control and state functions. It avoids the difficult integral equations 

created from variational methods reducing the problem to the solution of an algebraic system of 

equations, thus providing a computationally more efficient approach. Wavelet functions possess useful 

properties such as orthogonality, compact support and exact representation of polynomials to a certain 

degree such as Haar [17], Legendre [18] and Sine-cosine [19] wavelets. 

The outline of the paper is as follows. In Section 2, we review some basic formulations of RBFs. 

Numerical examples are given in Section 3. Finally, we conclude the article in Section 4. 

2. An outline of RBFs 

 In this section we simply introduce some elementary knowledge about radial basis functions for more 

details see [20, 21, 22, 23]. In 1990, Kansa [20] introduced a novel approach for solving partial 

differential equations (PDE) by collocation motivated by advances in function approximation using radial 

basis function (RBFs). In this approach, the solution is approximated using RBFs as a trial functions and 

collocation technique is used to compute the undetermined coefficients. In the following radial basis 

functions are defined in any number of dimensions [24, 25]. 

 

Definition 1. A function 𝜙:𝑅𝑑 → 𝑅 is called radial basis provided there exists a univariate function  

𝜓:  0,∞ → 𝑅 such that 𝜙 𝑥 = 𝜓(𝑟) where 𝑟 = | 𝑥 | and ||. || is some norm on 𝑅𝑑 , usually the 

Euclidean norm. Some well-known RBFs are listed in Table 1. 
      
                                 Table 1: Some well-known radial basis functions. 

Name of RBF                                               Definition  

Multiquadratics (MQ)                                  𝜙 𝑟 =  𝑟2 + 𝑐2  

Inverse multiquadratics (IMQ)               𝜙 𝑟 =  1 ( 𝑟2 + 𝑐2)   

Thin plate splines(TPS)                         𝜙 𝑟 = (−1)𝑘+1𝑟2𝑘 log 𝑟 , 𝑘 ∈ 𝑁 
Gaussians (GA)                                     𝜙 𝑟 = −exp −𝑐𝑟   
Inverse quartics (IQ)                                𝜙 𝑟 = 1 (𝑟2 + 𝑐2)  

2.1. Interpolation by RBFs 

 

The process of interpolation using a radial basis function is as follow. 

Let {𝑥1 , 𝑥2 , … , 𝑥𝑁} be a given set of distinct nodal points in 𝐷 ⊂  𝑅𝑑 . The approximation of a function 

𝑓(𝑥), using radial basis function  𝜓 𝑟 = 𝜙(  𝑥  ), may be written as a linear combination of the form 

[24, 25]: 

 𝑆𝑓  𝑥 =  𝜆𝑖𝜙   𝑥 − 𝑥𝑖   

𝑥𝑖𝜖𝑋

+ 𝑝 𝑥 , 𝑥𝜖𝑅𝑑 ,                                                         (1) 

for 𝑆𝑓 to interpolate 𝑓 the real number 𝜆𝑖  and polynomial 𝑝 must be chosen to satisfy the system 

 

 𝑆𝑓  𝑥𝑖 = 𝑓 𝑥𝑖 , 𝑥𝑖𝜖𝑋,

 𝜆𝑖𝑞(
𝑥𝑖𝜖𝑋

𝑥𝑖) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞𝜖 𝜋𝑚−1
𝑑 ,

  

where 𝜋𝑚−1
𝑑  denotes all polynomial on 𝑅𝑑  of total degree at most 𝑚 − 1 (see [26]). 
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3. Numerical Examples 

  In this section, we give some computational results of numerical experiments with methods 

based on the preceding section. 

 

 Example 1. As a practical example, we consider Evens and Raslan [27] the following 

pantograph delay equation: 

𝑢′ 𝑡 =
1

2
exp 

𝑡

2
 𝑢  

𝑡

2
 +

1

2
𝑢 𝑡 , 0 ≤ 𝑡 ≤ 1, 

𝑢 0 = 1, 
where the exact solution of above equation is 𝑢 𝑡 = exp 𝑡  (see [28]). With the presented 

method, the graph of error is plotted in Fig. 1. 

 
Figure 1: The graph error for Example 1 

 

 Example 2. Consider the following second order linear DDE  

𝑢′′  𝑡 =
3

4
𝑢 𝑡 + 𝑢  

𝑡

2
 +  −𝑡2 + 2 , 0 ≤ 𝑡 ≤ 1, 

𝑢 0 = 0, 𝑢′ 0 = 0, 
 

where the exact solution of above equation is 𝑢 𝑡 = 𝑡2
 (see [28]). With the presented method, 

the graph of error is plotted in Fig. 2. 
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Figure 2: The graph error for Example 2 

 

 Example 3. Consider the following second order linear DDE 

𝑢′′′  𝑡 = 𝑢 𝑡 + 𝑢′  
𝑡

2
 + 𝑢′′  

𝑡

2
 +

1

2
𝑢′′′  

𝑡

4
  

−𝑡4 −
𝑡3

2
−

4

3
𝑡2 + 21𝑡, 0 ≤ 𝑡 ≤ 1, 

𝑢 0 = 𝑢′ 0 = 𝑢′′  0 = 0, 
where the exact solution of above equation is 𝑢 𝑡 = 𝑡4

 (see [28]). With the presented method, 

the graph of error is plotted in Fig. 3. 

 
Figure 3: The graph error for Example 3 

 

5. Conclusions 
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In this paper, we developed an efficient and computationally attractive method to solve delay 

differential equations. The method is based on the use of the radial basis functions. Some 

examples are given to verify the reliability and efficiency of the proposed method. 
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