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Abstract 

A Farsi font recognition algorithm based on the fonts of some frequent text samples is proposed. Some 

features are extracted from the connected components of a text image. The feature vectors are clustered 

by using a Self-Organizing Map (SOM) clustering method. The clusters with more members determine 

the most frequent connected components (MFCCs). A number of members of these big clusters are 

extracted from the input image. This procedure is applied to both training and test images. Since the 

frequent samples in different Farsi texts are very similar, it can be guaranteed that a large number of 

samples of the detected MFCCs for a test image surely are in the extracted training samples set. The font 

type and font style of the extracted test samples are recognized by matching between them and the 

training samples. The most frequent recognized font of the extracted samples is considered as the font of 

the input text. To achieve a more accurate algorithm with lower complexity, the font size is determined in 

the second phase after the phase of the font type and style recognition. Using a lexicon reduction 

procedure reduces the complexities and processing time. The font size estimation is carried out based on 

the size of a particular MFCC in a text image. Experiments show that the proposed method outperforms 

other font recognition methods.  

 

Keywords: Farsi font recognition; Most-frequent connected components; SOM. 

 

1. Introduction 

Optical character recognition (OCR) is an important and applicable subject of the pattern recognition 

field. The OCR is used in wide range of applications. Vehicle license plate recognition, video based 

document processing, automatic postal code recognition, making editable version of historical books and 

many other applications utilize OCR. Existence of a large number of fonts with various characteristics 

makes the machine-printed text recognition tasks very difficult. Applying an OCR to a machine-printed 
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text with known font causes more accurate result than when the font of the input text is unknown [1]. 

Several works have been done in optical font recognition in various languages such as Latin [2-10], 

Chinese [6, 11-13], Arabic [14-16], and Farsi [17-20]. In all of these works, the font of the whole text in a 

document image was assumed to be uniform. Thus, like all other previous works, we propose an 

algorithm to recognize an unknown uniform font of a machine-printed document. 

Generally, three types of font recognition methods can be considered: Typographical feature-based 

methods, texture analysis-based approaches, and frequently used component-based methods.  

Typographical feature-based algorithms [3-5, 7] extract some features, like character skews, between-

characters and between-words space widths, and projections in upper, center and lower zones of the line 

from the printed texts. The main drawback of these approaches is that they require noise-free and high-

quality text images [18].  

Texture analysis was used in many researches [2,6,8,10,16-19] to recognize the font of a text block. 

Some methods such as Gabor filters are used in various texture based applications [21]. In the font 

recognition tasks, these approaches first normalize the spaces between text lines, words and characters to 

make a normalized text blocks. Texture features are extracted from the normalized text blocks. 

In [17], Gabor filter was used to extract the global texture features from Farsi text images. The rate of 

85% was achieved for the recognition of 7 font types and 4 font styles using a weighted Euclidean 

distance (WED) classifier. 

Khosravi and Kabir [18] proposed a Farsi font recognition system based on Sobel-Roberts features. 

These statistical features describe the texture of the texts. Ten font types were considered and a font 

recognition rate of 94.16% was obtained. 

Ziaratban and Bagheri [19] proposed DEG filters to describe curvedness of the components in printed 

texts. They showed that combining extracted texture features based on DEG filters and the Gabor based 

features improved the Farsi font recognition rate. 

The approaches in the third category, i.e. frequently used component based methods have been 

designed for content-independent font recognition applications. In these methods, the learning set consists 

of a number of frequently used components in all font classes. These approaches determine the text font 

based on the fonts of the detected samples of the components in a text.  

Abuhaiba in [14] and [15] proposed two methods based on most-frequent components for recognizing 

Arabic fonts. In [14], Arabic words of the training set for each font are segmented into symbols. Then, the 

templates are selected from the most frequent segmented symbols. An input word is segmented into its 

symbols and the symbols are checked to be matched with the templates. The fonts of the templates, for 

which the match score is greater than a preset threshold, are retained. The most-frequent font is 

considered as the font of the text. The error, the rejection and success rates of recognizing 36 font classes 

were obtained as 15%, 7.6% and 77.4%, respectively. In [15], the font recognition of Arabic texts is done 

using a decision tree built from the most-frequent words (MFWs). If the distance between a test word and 

a word in the leaf node is less than a predefined threshold, then the test word belongs to the set of most-

frequent Arabic words; otherwise, it is rejected. One hundred MFWs were used to recognize 36 Arabic 

font classes and a 90.8% success rate was obtained.  

Similar method was applied in [11] to recognize the Chinese fonts based on most-frequent Chinese 

characters. In this paper, we try to propose a font recognition method in the third category with more 

accuracy and lower complexity. The proposed algorithm includes four main innovations. 

Unlike the existing font recognition methods, to reduce the complexity, the font recognition is 

partitioned into two separate phases. In the first phase, the type and style of the font are recognized, 

irrespective to the font size. Then, by using the information about the recognized font, the font size is 
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determined in the second phase. Moreover, instead of most frequent words (MFWs) used in [15], in our 

algorithm, Most-Frequent Connected Components (MFCCs) are used. The reason is that there are much 

more connected components than words in Farsi texts. The conventional approaches in the third category 

[11,15] have to perform time-consuming recognition or matching trials to extract appropriate samples 

from a text. In our algorithm, the matching processes are not performed between all CCs of a test image 

and all predetermined MFCCs in all font classes. In the proposed method, most frequent samples for both 

training and test sets are determined for each text image separately by using the SOM clustering method. 

Hence, we do not need performing the recognition phase for all CCs in the image to find samples of 

predetermined CCs in test images which is very time consuming process.   

In addition, a lexicon reduction method based on the aspect ratio of the samples in the training and test 

sets is used in the matching stage. In the matching stage, the font of the best matched training sample is 

considered as the font of the test sample. Using this lexicon reduction procedure reduces the complexities 

in the matching stage and decreases the processing time.  

The rest of the paper is organized as follows: the methodology of the proposed Farsi font recognition 

approach is discussed in section 2. In section 3, the experimental results are presented and analyzed. 

Finally, conclusions are drawn in section 4. 

 

2. Methodology 

The first main stage in the proposed method is determination of the most frequent CCs for an input text 

image. Then some samples for each MFCC are extracted. The font of the input text is recognized based 

on the recognized fonts of the extracted samples. In the following, various parts of the proposed method 

are discussed. 

Since Farsi is a cursive writing language, some characters may connect to each other and make bigger 

components. Therefore, Farsi texts usually contain CCs in a wide range of sizes.  

A scale parameter, hS, is defined to have a scale independent system. The value of hs is computed from 

the horizontal projections of text lines as follows:  

ℎ𝑠 =
1

𝑛𝐿
∑ 𝑑𝑖
𝑛𝐿
𝑖=1           (1) 

where di is the number of HPi cells with values greater than 0.15 max(HPi). HPi is the horizontal 

projection of the i-th row. The value of hs for the instance text image in Figure 1 is 86 pixels (hs=86). The 

font size and the scanning resolution of the text image in this figure are 20 points and 300 dpi, 

respectively.  

 

2.1  SOM-based CC clustering 

To determine most frequent CCs and extracting samples of the detected MFCCs, CCs of a text image 

are clustered. Various clustering methods [22-27] have been proposed and used. In our experiments, CCs 

are clustered by using the SOM method [28]. A self-organizing map (SOM) is an artificial neural 

network. Learning procedure of SOM is unsupervised. In other words, it can classify input samples 

without external helps. Hence, SOM can be useful for data clustering. 

Some features are extracted from CCs of a text image to be used for clustering. The goal of the 

clustering is that the samples of a CC locate in the same cluster. The number of members of each cluster 

determines the frequency of the CC in the text image. Hence, members of the bigger clusters are 

considered as the samples of most frequent CCs. Totally, 28 features are extracted for each CC image. 

The first three features are the height, width, and number of pixels of the CC. Other 25 features are the 
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number of pixels of 25 correlated sub-image of the normalized CC image. Normalized CC image is 

obtained by concatenating sufficient empty rows or columns to right or bottom of the CC image to have a 

square CC image. In the normalized CC image, the numbers of rows and columns are equal. 

Consecutive sub-images are 50% correlated. The size of the sub-images is 
ℎ

3
×

ℎ

3
, and h is the value of 

height and width of the normalized CC image. In Figure 2-a, a sample CC image including Farsi character 

 is shown. Figure 2-b shows the normalized CC image. Three sub-images of the normalized CC (Sin) ”س“

image are illustrated by red, blue, and green squares in figure2-c. 

Before feature extraction and clustering CCs, dots and small diacritics do not present significant changes in 

different fonts should be ignored for clustering and also for font matching. A CC is considered as dots or 

small diacritics if both following conditions are satisfied: 

hi < 0.35 hs           (2) 

npi < 3 hs           (3) 

where hi and npi are the height and the number of pixels of the i-th CC, respectively. 

 

 

Figure 1.  A sample Farsi text image 

 

 

 

  

(a) (b) (c) 

Figure 2.  (a) A sample CC image,  (b) normalized CC image,  (c) sub-images of the normalized CC image 

 

The sizes (heights and widths) of the detected most frequent CCs are stored in a new matrix S, of size 

NMFCC×2. NMFCC is the number of selected MFCCs after the dot elimination stage. S will be used in the 

font size estimation phase. S(j,1) and S(j,2) determine the height and width of the MFCCj, respectively 

and j is the priority of the remaining MFCCs. 

A 6×6 clusters topology is considered for the SOM. The topology and the number of members of 

clusters for the text in Figure 3 are shown in Figure 4. 
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After CC clustering, samples of most frequent CCs are the members of the bigger clusters. Bigger 

clusters are the clusters containing larger number of members. A number of MFCC samples are extracted 

from the text image. In Table 1, six detected MFCCs of the instant text and the number of samples in the 

text are given. Twelve extracted samples for each MFCC are shown in this table. The fonts of these 

extracted samples are determined by matching with the training samples. The font of the text is 

determined based on the recognized fonts of the MFCC samples. The overall diagram of the proposed 

font recognition method is illustrated in Figure 5. 

 

 

Figure 3.  The sample Farsi text image after removing dots and small diacritics 

 

 

Figure 4.  Clusters topology of the SOM and the number of members of clusters for the text in Figure 3 
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Figure 5.  The flowchart of the proposed Farsi font recognition algorithm 

 

Table 1.  Ten extracted samples for each of the four mfccs of the text image in Figure 3 
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2.2  Font recognition 

To determine the font of each sample extracted from a test image, the best matched sample from the 

learning set have to be find. The font of the best matched learning sample is considered as the font of the 

test sample. The learning set samples are the samples extracted from the text images in the training set. 

As mentioned before, to have a higher recognition rate, the estimation of the font size is carried out in a 

separate phase, after the determination of the font type and font style (in the first phase). Thus, the sizes 

of the extracted CCs are not important in the first module. Consequently, the extracted CCs are 

normalized and the results are sent to the feature extraction stage. But the sizes of MFCCs will be used 

for the font size estimation and are very important in the second module. Therefore, as shown in Figure 5, 

before the size normalization and after the MFCCs determination, the sizes of MFCCs are stored in S to 

be used in the font size estimation module.  

Furthermore, in the matching stage of the first module, an extracted test CC is checked to be matched 

with only the samples in the learning set, for which the aspect ratios are close to the aspect ratio of the 

test CC. Consequently, in the learning set, before the CC size normalization, the aspect ratios of the 

training samples are calculated and stored in vector R. It is shown in the flowchart of the algorithm in 

Figure 5. In the size normalization stage, the resizing factor RFi, for CCi is calculated as follows: 

𝑅𝐹𝑖 =
𝑞

𝑚𝑎𝑥{ℎ𝑖, 𝑤𝑖}
 (4) 

Some empty rows or columns are added to the bottom or to the right side of each resized CC to obtain 

a normalized qxq pixels image (The value of q will be set in the following). Any feature extraction 

approaches such as the methods based on wavelet coefficients, Zernike moments, invariant moments, and 

structural feature extraction methods can be used to extract suitable features from the normalized images. 

In our approach, a wavelet transform-based feature extraction method is used. Since in the wavelet 

transformation, the image is down-sampled in each stage by a factor of 2, q is better to be equal to 2n. In 

our experiments, like in [22], the normalized 64x64 pixels images are suitable for feature extraction. 

Therefore, the value of q is set to 64. By applying three stages of Haar wavelet transform to a normalized 

image, 64 wavelet features are extracted. For more details, please refer to [2]. A minimum Euclidean 

distance classifier is used to perform the matching process between the feature vectors of the test and the 

learning sample.  

Totally, 34 different classes are considered irrespective to the font sizes. The font of a text image is the 

most frequent font of the extracted test MFCC samples. The most frequent font is determined by voting 

among the recognized fonts of the extracted MFCC samples of a test image. To perform the voting 

procedure, an empty vector, Count, containing 34 cells is considered. For each extracted test samples, the 

value of the cell in the Count vector corresponding to the recognized font type and font style of the 

matched CC is incremented. 

Count(fj) = Count(fj) + 1 (5) 

where fj is the index corresponding to the recognized font type and font style of the j-th extracted test 

sample. After determining the fonts of all extracted samples of a test image, the font (font type and font 

style) of the text image is obtained by: 

𝐹𝑜𝑛𝑡 = argmax
𝑐
(𝐶𝑜𝑢𝑛𝑡(𝑐))  , c=1, …, 34 (6) 

where Font indicates the font type and font style of the text. The confidence values of the matched 

samples are used to determine the font of a text for which more than one cell of Count have the maximum 
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value. m is the maximum value of Count and Count (K) = m where K is a set of two or more font indexes. 

The confidence value is calculated as follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) =
1

∑ 𝑑𝑖,𝑗
𝑚
𝑗=1

          , i  K (7) 

where di,j is the Euclidean distance between the feature vectors of the  j-th MFCC sample extracted from 

test image and its corresponding best matched learning sample. The text font is recognized based on the 

maximum confidence value. 

2.3  Font size estimation 

In our algorithm, the font size of the text image is estimated when the font type and font style is 

determined. The font size is estimated based on the size of a particular MFCC. This MFCC is “ا” which is 

called Alef. The first MFCC in Table 1 is Alef. Since Alef is the most-frequent CC (after neglecting dots) 

in Farsi texts, we can be sure that the size of this CC exists in S which includes the sizes of MFCCs of the 

test image. 

In our algorithm, the sizes (heights and widths) of Alef in all font types, font styles and font sizes are 

obtained and stored in a table called ZALL (Table 2). After recognizing the type and style of the font of a 

text image, the heights and widths of Alef in all font sizes of the recognized font type and style are 

extracted from the table ZALL and stored in matrix Z.  Z is a Nfs×2 matrix and Nfs is the number of different 

font sizes. The k-th row of Z contains the height and width of Alef in the k-th font size of the recognized 

font type and style. The font size determination procedure for the instance text image in Figure 3 is 

illustrated in Figure 6. The font index of the example text (Figure 3) is equal to 23. Hence, Z includes the 

23rd column of ZALL. The transpose matrix of S which includes the sizes of the MFCCs of the instance text 

image is given in Figure 6. 

 

𝑫𝒊𝒔𝒕(𝑗, 𝑘) = √(𝒁(𝑘, 1) − 𝑺(𝑗, 1))2 + (𝒁(𝑘, 2) − 𝑺(𝑗, 2))2      , k=1,2,3,…,Nfs    , j=1,2,3,…,NMFCC        (8) 

𝑫(𝑘) = min
𝑗
(𝑫𝒊𝒔𝒕(𝑗, 𝑘))               (9) 

𝐹𝑜𝑛𝑡𝑆𝑖𝑧𝑒 = 𝑎𝑟𝑔
𝑘

{min(𝑫(𝑘))}             (10) 

 

The Euclidean distances between the rows of S and Z rows are calculated and stored in matrix Dist. 

Vector D includes the least value of each row of the Dist matrix and indicates the minimum distance of 

the Z rows from the rows of S matrix. In Figure6, the minimum value of D is in the fifth cell. It shows 

that the fifth row of Z has the minimum distance from the first row of S. It means that the first MFCC of 

the instance text image is Alef and the fifth font size (which is equal to 20 points in our experiment) is 

determined as the font size of the text. 

 

3. Experimental Results 

3.1 Datasets 

Two datasets were used to evaluate performances of various methods: our dataset, DB1, and the dataset 

introduced and used in [18], DB2. Totally, 374 font classes including 11 Farsi font types, 4 font styles, 

and 11 font sizes were considered in DB1. Font types consisted of ‘Andalus’, ‘Arial’, ‘Jadid’, ‘Koodak’, 

‘Lotus’, ‘Nasim’, ‘Nazanin’, ‘Sina’, ‘Tahoma’, ‘Titr’ and ‘Zar’. Font styles were ‘Normal’ (Regular), 

‘Italic’, ‘Bold’ and ‘Bold Italic’. An instant text in all font types and styles is shown in Figure 7. Five font 

types (‘Jadid’, ‘Koodak’, ‘Nasim’, ‘Sina’ and ‘Titr’) do not have Bold and Bold-Italic styles. Font sizes 
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included 9, 12, 14, 16, 20, 24, 28, 32, 36, 40 and 48 points. Thus, totally 34x11=374 font classes were 

considered. All texts were printed with an hp LaserJet 1320 printer. 978 out of 1700 pages were scanned 

with an hp scanjet 5590 scanner and used for training.  

Table.  2.  The table ZALL that includes the heights and widths of the MFCC “ا” (Alef) in all font types, font styles 

and font sizes. Columns and rows correspond to 34 font indexes and 11 font sizes, respectively. 

Height 
The index corresponding to the recognized font type and font style 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

F
o
n

t 
si

ze
s 

9 23 23 23 23 23 23 24 24 23 23 29 29 29 29 23 23 24 24 22 22 23 23 21 21 24 24 28 28 27 27 28 28 29 29 
12 31 31 31 31 31 30 31 31 31 31 38 38 38 38 31 31 32 32 29 29 30 30 28 28 32 32 37 37 36 36 37 37 38 38 

14 36 36 36 36 36 36 37 36 36 36 45 45 44 44 36 36 38 38 34 34 35 35 32 32 37 37 43 43 42 42 43 43 45 45 
16 41 41 41 41 41 41 42 42 41 41 51 51 51 51 41 41 43 43 39 39 40 40 37 37 42 42 49 49 48 48 49 49 51 51 
20 51 51 52 52 51 51 52 52 52 52 64 64 64 64 51 51 54 54 48 48 50 50 46 46 53 53 62 62 60 60 61 61 64 64 
24 61 61 62 62 61 61 63 63 62 62 77 77 76 76 61 61 65 65 58 58 60 60 56 56 63 63 74 74 72 72 74 74 77 77 
28 72 72 72 72 71 71 73 73 72 72 89 89 89 89 71 71 75 75 68 68 70 70 65 65 74 74 87 87 84 84 86 86 89 89 
32 82 82 83 83 82 81 84 83 83 83 102 102 102 102 82 82 86 86 77 77 80 80 74 74 84 84 99 99 96 96 98 98 102 102 

36 92 92 93 93 92 91 94 94 93 93 115 115 114 114 92 92 97 97 87 87 90 90 83 83 95 95 111 111 108 108 111 111 115 115 
40 102 102 103 103 102 102 105 104 103 103 128 128 127 127 102 102 108 108 97 97 100 100 93 93 106 106 124 124 120 120 123 123 128 128 
48 123 123 124 124 122 122 126 125 124 124 153 153 153 153 122 122 129 129 116 116 120 120 111 111 127 127 148 148 144 144 147 147 153 153 

 

 

 

Width 
The index corresponding to the recognized font type and font style 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

F
o

n
t 

si
ze

s 

9 9 9 10 9 4 8 4 9 4 10 3 13 5 15 3 9 4 10 2 8 4 9 3 8 6 11 8 12 8 14 14 8 8 16 
12 12 12 13 12 5 11 6 12 5 13 4 17 7 20 4 11 5 13 3 10 5 12 4 10 8 15 10 16 10 19 19 11 10 22 
14 15 14 15 14 5 13 7 13 6 15 5 20 8 23 4 13 6 16 4 12 5 14 4 12 9 17 12 19 12 22 22 13 12 25 
16 17 16 17 16 6 14 8 15 7 18 5 23 9 26 5 15 7 18 4 13 6 16 5 14 10 20 13 21 13 25 25 15 13 29 
20 21 19 21 20 8 18 10 19 8 22 7 29 11 33 6 19 9 22 5 17 8 21 6 17 13 25 17 27 17 31 31 18 17 36 
24 25 23 25 24 9 22 11 23 10 26 8 34 13 40 7 23 11 27 6 20 9 25 7 21 15 30 20 32 20 37 37 22 20 43 
28 29 27 30 28 11 25 13 27 12 31 9 40 16 46 8 27 12 31 7 24 11 29 8 24 18 35 23 37 23 44 43 26 23 51 
32 33 31 34 32 12 29 15 31 13 35 11 46 18 53 9 30 14 36 8 27 12 33 10 28 20 39 27 43 27 50 49 29 27 58 
36 37 35 38 36 14 32 17 35 15 40 12 51 20 60 11 34 16 40 9 30 14 37 11 31 23 44 30 48 30 56 56 33 30 65 
40 42 39 42 40 15 36 19 38 17 44 13 57 22 66 12 38 18 45 10 34 15 41 12 35 25 49 33 53 33 62 62 37 33 72 
48 50 47 51 48 18 43 23 46 20 53 16 68 27 79 14 46 21 54 12 40 18 49 15 42 30 59 40 64 40 75 74 44 40 87 

 

 
 

 
           ST        

      Height 45 34 28 58    

      Width 6 26 20 20    

Font 

sizes  Z Height Width  Dist      D  

9   21 3   24.19 26.42 18.38 40.72   18.38 

12   28 4   17.12 22.80 16.00 34.00   16.00 

14   32 4   13.15 22.09 16.49 30.53   13.15 

16   37 5   8.06 21.21 17.49 25.81   8.06 

20   46 6   1.00 23.32 22.80 18.44   1.00 

24   56 7   11.05 29.07 30.87 13.15   11.05 

28   65 8   20.10 35.85 38.90 13.89   13.89 

32   74 10   29.27 43.08 47.07 18.87   18.87 

36   83 11   38.33 51.24 55.73 26.57   26.57 

40   93 12   48.37 60.64 65.49 35.90   35.90 

48   111 15   66.61 77.78 83.15 53.24   53.24 

Figure 6.  Font size estimation of the instance text image in Figure 3 

 

The remaining pages were used for the test. Test pages were scanned with an hp scanjet 7400 scanner. The 

pages were scanned with 300 dpi resolution. The contents of text pages in the training and test sets are completely 

different. In the learning set, the most-frequent CCs of each training text image were determined and samples of 

each MFCC were extracted. Totally, 167843 MFCC samples were extracted from 978 training images of DB1. 

DB2 is the dataset which was gathered by Khosravi and Kabir and used in [18]. This dataset consists of 20,000 

images of Farsi text lines: 15000 text blocks for the training and 5000 blocks for the test. The scanning resolution 

was set to 100 dpi. Ten font types, a font style and a font size were considered in this dataset. Font types are: 

‘Mitra’, ‘Traffic’, ‘Yaghut, ‘Homa’, ‘Lotus’, ‘Times New Roman’, ‘Nazanin’, ‘Tahoma’, ‘Titr’ and ‘Zar’. 

Totally, 134218 MFCC samples were extracted from 15000 training images of DB2.  
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3.2 Parameter tuning 

MFCCs are sorted based on their frequency so that the index of the most frequent CC is 1. Experiments 

showed that by using more than 5 MFCCs, the accuracy may decrease. The reason is that for the MFCCs with 

higher index values, the frequency value decreases. Furthermore, by increasing the index of MFCCs, their 

varieties increase significantly. Hence, there may not be similar samples in the learning set. In our approach, to 

have a faster font recognition system, we used 4 MFCCs. 

The number of matchings and the algorithm complexity are proportional to the number of samples. 

Experiments showed that in big text pages, only ten samples for each MFCCs were sufficient to reach the 

accuracy rate of 100%. Hence, only ten samples for each MFCC were used (NTS  was set to 10). 

To have more reliable font voting procedure, a maximum allowable distance, Dmax, is considered. A 

successful matching occurs when the minimum distance between samples in the test and learning sets is lower 

than Dmax. Otherwise, the matching is not successful and the test sample is rejected and not allowed to 

participate in the font voting procedure.  

Our algorithm is in the third category of font recognition approaches which are based on frequently used 

components. This type of algorithms such as MFW-based method is very time-consuming. We try to reduce the 

complexity of our method by using a lexicon reduction procedure. The lexicon reduction is performed by 

defining and using the aspect ratios parameter for extracted samples. 
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Figure 7.  All the 34 font classes. The numbers under the sample texts are the font class indexes. 

In the matching stage, to reduce the number of redundant matching trials, an extracted test CC is checked to be 

matched with only the CCs in the learning set, for which the aspect ratios are close to the aspect ratio of the test 

CC. A learning sample is placed in the reduced lexicon for the matching if the following condition is satisfied: 

𝑟𝑖
′(1 − ∆𝑟) ≤ 𝑟𝑘 ≤ 𝑟𝑖

′(1 + ∆𝑟)  (11) 

where  ri΄ and rk  are the aspect ratios of the i-th extracted test sample and that of the k-th learning sample, 

respectively. Δr is a non-negative constant. Very large value of Δr is not suitable for lexicon reduction; because 

most of the learning samples are allowed to be used the matching stage and hence, the complexity will not 

reduce. 

Small value of Δr causes small learning subset and decreases the number of matchings; however the sample 

rejection rate increases. Figure 8 shows the rejection, recognition and error rates of the extracted samples versus 

different values of Dmax and Δr over DB1 and DB2 datasets. Small values of Dmax and Δr will increase the 

sample rejection rate. For small Dmax values, the training samples should be more similar to the extracted test 
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samples. For very large values of Δr and Dmax, a large number of learning samples are selected for matching. In 

these cases, some samples with low matching scores enter into the voting procedure and may cause incorrect font 

recognition results. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Sample rejection, correct matching and error rates versus different values of Dmax and Δr. The left and right plots 

in each row deal with the results of the experiment on DB1 and DB2, respectively. 

For very large values of Dmax and very small Δr values, there are not enough learning samples to be 

accurately matched with an extracted sample, but the matching is not rejected because of large Dmax value. 

Therefore, in these cases, the error rate increases considerably. 

 The variations of font recognition rate versus Dmax and Δr are shown in Figure 9. From this figure, the values 

of Δr and Dmax were set to 0.1 and 10, respectively. 

Table 3 shows the lexicon reduction rate versus different values of Δr. The lexicon reduction rate is equal to 

the total number of the training samples in the learning set divided by the number of samples in the selected 

training subset with respect to the value of Δr. Since in our experiments, the value of Δr was set to 0.1, the 

number of matchings was obtained at least about 26 times lower than that when the whole learning set was used 

for matching process (Table 3). 
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3.3  Experimental results analysis 

Two methods in the second font recognition category (Gabor filter-based and Sobel-Roberts-based [18] 

algorithms) and an approach in the third category (MFW-based [15]) were implemented for evaluating. In the 

implemented MFW-based algorithm, 100 most-frequent Farsi words were considered. In the Gabor filter-based 

method, 32 Gabor filters in 16 directions and two values of λ were used. Values of λ were set to 3 and 5. The 

value of σ in Gabor filters was set to 0.56λ. The size of Gabor filters was 17x17 pixels. For Sobel-Roberts-based 

method, the features were extracted and 4 MLP neural networks were used with AdaBoost M2 training method 

[23] just like in [18]. 

In the experiment, 722 text pages of DB1 were used for test. These text pages included 200 words per page on 

average. Test set in DB2 consisted of 5000 images of text lines. Results are given in Table 4. The best font 

recognition rate on both datasets was obtained by using the proposed algorithm. The second row of Table 4 

shows the recognition rates of font type and font style irrespective to font size. Comparison of results in first and 

second rows of Table 4 shows that the font recognition rates for other approaches except the proposed method 

reduces significantly when a large number of different font sizes are considered. It demonstrates that most of 

errors in other approaches except the proposed method occurred in recognizing font sizes. 

This reduction in recognition rate did not occur in the proposed method, because we recognize the font type 

and style irrespective to font size in the first module and then the font size is estimated in the second module. In 

the second row of Table 4, the accuracy of texture-based approaches is lower than that of MFW-based and 

MFCC-based methods. Most of errors in texture-based approaches occurred in classifying very similar fonts. 

 

  
(a) (b) 

Figure 9. The variations of font recognition rate versus Dmax and Δr  (a) DB1 and (b) DB2 

 

Table 3. Lexicon reduction rate versus different values of Δr 

Δr 0.001 0.0033 0.01 0.033 0.1 0.33 1 

lexicon reduction  rate in DB1 815.94 471.48 216.82 77.03 26.88 9.73 3.56 

lexicon reduction  rate in DB2 1032.4 589.65 253.06 85.13 29.37 10.49 3.82 

In several cases, three similar fonts (‘Lotus’, ‘Nazanin’, and ‘Zar’) in DB1 and four similar fonts (‘Mitra’, 

‘Lotus’, ‘Nazanin’, and ‘Zar’) in DB2 were misclassified by using texture-based methods. The reason is that for 

these similar fonts, the textures of the normalized blocks are very similar to each other. If the texts of various 

blocks are identical, the corresponding textures have slight differences and can be recognized. But in the 

experiments, the texts of documents in the test and training sets were not the same. Therefore, discrimination 

between the texture features of the document images with different contents in similar fonts was very difficult. 

In the proposed algorithm the font recognition is based on the fonts of the text components which occur 

frequently. These frequent components usually exist in documents even with different contents. The accuracy of 

the proposed algorithm was greater than that of the MFW-based method.  One reason is that the number of 

samples of the frequent CCs in a document image is much more than the number of MFW samples and the 

decision based on more samples is more reliable. Another reason is that the MFW-based method must separate 

374 font classes in a single matching phase, while the proposed algorithm, first determines the font type and font 
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style of a document among 34 font classes. Then, in the second module, the font size is estimated. Lower total 

number of font classes in the matching stage of the proposed method rather than the MFW-based algorithm 

causes more discrimination power and accuracy.  

Although, the resolution of the images in DB2 is lower than that in DB1, the font recognition rates of the 

Gabor filter-based and Sobel-Roberts-based approaches on DB2 are higher than that on DB1 (first row of 

Table 4). The reason is that the number of font classes in DB2 (10 font classes) is much smaller than that in DB1 

(374 font classes). 

The accuracies of these texture-based methods on DB2 are lower than those in the second row of Table 4 on 

DB1. One reason is the lower qualities and resolutions of document images in DB2 versus those in DB1. 

Moreover, the number of words per text image in DB2 is lower than that in DB1.  

The performances of the proposed algorithm and the MFW-based method on DB2 were lower than texture-

based methods. Because text blocks in DB2 are very small and the number of text components in the text blocks 

of DB2 is much lower than those of DB1. Furthermore, since the quality and scanning resolution of the images of 

DB2 much lower than those of DB1, the sample matching accuracy reduced. Some errors of the proposed method 

on DB2 are illustrated in Figure 10. As this figure shows, errors occurred in texts including broken samples of 

one long word Figure 10 (a-c), the text samples including numerals or English characters Figure 10 (d,e), and 

also low quality text blocks Figure 10 (f). 

The processing times for various approaches are reported in Table 5. The most time-consuming approach is the 

MFW-based method; because in this method, all words of a text image are checked to be matched with all 

predetermined MFWs in all font classes. In our experiments, for implementing the MFW-based approach, the 

average number of required matching trials for recognizing the font of a sample text page of the DB1 dataset 

(including 300 Farsi words) was: 

300 (number of words in the sample test image) × 100 (number of predetermined MFWs) × 20 (number of 

training samples for each MFW) × 374 (number of font classes) = 224,400,000. 

In the proposed algorithm, the number of required matching trials was: 

4 (number of MFCCs in a test image) × 10 (NTS : number of required samples for each MFCC in a test page) × 

167843 (total number of training samples in the learning set) ×  (from Table 3, the complexity reduction rate 

for Δr=0.1 is about 26. That means each CC in a test image is checked to be matched with only of all training 

samples, on average) = 258,220 which is more than 860 times lower than that of the MFW-based algorithm.  

Reducing the number of font classes in the matching phase by splitting the font recognition into two modules 

and also reducing the search space by using the aspect ratios are the two main reasons which increased the speed 

of the font recognition of the proposed method versus the MFW-based approach. 

Sobel-Roberts-based algorithm was the fastest method; because in this method, the size of both Sobel and 

Roberts filters is 33. While in the Gabor filter-based algorithm, 32 Gabor filters are used. Furthermore, the sizes 

of Gabor filters are larger than the sizes of Sobel and Roberts filters.  

 

Table 4.  Font recognition rate (%)  

 # of font classes Gabor filter-based MFW-based [15] Sobel-Roberts-based [18] Proposed MFCC-based 

DB1 374 81.72 85.32 83.24 100 

DB1 34 93.21 97.37 95.29 100 

DB2 10 91.08 74.68 94.16 96.90 
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Table 5. Processing time (second per text image)  

 Gabor filter-based MFW-based [15] Sobel-Roberts-based [18] Proposed MFCC-based 

DB1 7.093 35.737 0.331 0.917 

DB2 0.468 3.182 0.023 0.184 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  (b)  (c)  (d)  (e)  (f) 

Figure 10. Some misclassified samples by using the proposed method on DB2 

3.4  Noise robustness analysis 

In the literature, only some researchers tested their approaches against noisy document images [6,8,12]. To 

generate noisy text images, they artificially added noise with different SNR (signal to noise ratio) values to the 

test document images. Like them, Gaussian noises with different values of SNR were added to test images. The 

results of font recognition on noisy text images of DB1 and DB2 are shown in Figure 11(a) and (b), respectively. 

From this figure, of the proposed method is accurate enough when the SNR value is not lower than 20 dB. The 

matching stage is the most sensitive part of the proposed method against noise. The accuracy of the Sobel-

Roberts-based method reduces by increasing noise. The reason is that both Sobel and Roberts filters are high-pass 

filters. Gabor based method is not very noise sensitive; because Gabor filters smooth text images at least in one 

direction. The smoothing amount is proportional to the width of the Gaussian part of the filter, σ. 

 

  
(a) (b) 

Figure 11.  Font recognition accuracy for noisy text images on (a) DB1 and (b) DB2 
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Figure 12. Noise sensitivity in texture-based methods: (1st column) a noise-free and a noisy text blocks, (2nd, 3rd, and 4th 

columns) corresponding Sobel phase image, Roberts phase image, and Gabor filtered image, respectively. 

 

In this approach, noises are smoothed. Figure 12 shows the effect of noise in Sobel, Roberts, and Gabor filters. 

The second and third columns in Figure 12 are the phase images of the filtered image by applying Sobel and 

Roberts filters, respectively. As shown in Figure 12, Sobel and Roberts filters are highly affected by noise. 

Unlike these filters, the Gabor filter is not very sensitive to noise.  

Since word recognition stage is highly sensitive to noise, in the MFW-based algorithm, the accuracy of words 

sample extraction stage reduces significantly by increasing noise. Consequently, the font recognition rate of the 

MFW-based method decreased. 

4. Conclusion 

In this paper, a Farsi font recognition algorithm based on most frequent connected components was proposed. In 

the proposed method, since the number of CCs is much higher than the number of words in Farsi texts, samples 

of MFCCs are used instead of samples of MFWs. Furthermore, words are constructed by one or more CCs. 

Hence, the variety of words is much higher than the variety of CCs. The proposed method has much lower 

complexity than the other approaches in the third font recognition category. A reason is that in the proposed 

method, MFCCs are not predetermined. They are obtained for each text image by using the SOM clustering 

algorithm. Hence, performing a time consuming recognition phase for detecting samples of the frequent CCs in a 

text image is not required. In addition, by using an aspect ratio-based lexicon reduction procedure, total number 

of matchings required for MFCC samples font recognition decreased significantly. Font of an input text image is 

the most frequent recognized font of the extracted MFCC samples.  

Estimating the font size in a separate phase after recognizing the font type and font style reduced the number of 

candidate font classes (and consequently, the classification complexity) in the matching stage and made the 

recognition more accurate and fast. The font size was estimated based on the size of a particular MFCC (Alef) in 

the test images. The proposed method outperformed other font recognition approaches.  
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