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Abstract

The present paper deals with an eigenvalue problem which describes an everted neo-hookean spherical
shell which its outer surface is deformed in compression under hydrostatic pressure. Our approach is
based on mathematical modeling using a differential equation of order four and boundary conditions
including two differential equations of order two and three. We solve the above mentioned problem using
two different expansions of WKB method. We also investigate how to apply the numerical compound
matrix on the problem and show the application of Runge-Kutta-Fehlberg and Newton-Raphson
numerical algorithm. Finally, by comparing the data obtained from these two methods (numerical and
WKB), we not only learn about the turning point, we also find out that the reason of the difference
between the results of the two methods is this turning point.

Keywords: We compound matrix method, elasticity, incompressible, spherical, WKB method

1. Introduction

In 1999 Chen and Haughton developed a mathematical model for the everted spherical shell and using
WKB method solved it for Varga elastic material. In 2003, they used the numerical compound method to
solve the problem for Varga elastic material. In this paper, we try to solve the problem using the two

2 2
expansions S(r) = E %Si and R(r) = E
i=0™ i=0

equilibrium condition of the problem. We also analyze the problem using the numerical compound
method and by defining the compound variables, change a boundary value problem of order four to an

%Ri of WKB method and obtained the only non-zero
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initial value problem with initial condition. Using numerical methods such as Runge-Kutta-Fehlberg and
bisection method in Fortran 90, we solve this problem. Since we apply the numerical compound method
for an eversion problem, the Fortran would be somehow different from other programs used for solving
compound problems. After finding the eigenvalue of the problem, we use the numerical compound
method again to apply non-zero equilibrium condition.

2. Defining the Problem

The specifications of everted neo-hookean spherical shell are as follows: inner radius A, outer radius B,
radial coordinates R and interval [A, B]. This spherical shell is very thin with a hole in it and is everted
due to the hydrostatic pressure on its outer surface:

r=r(R),

Where r is radial coordinates of a point which is equal to radial coordinates R prior to pressure. After
deformation, Inner radius and outer radius are a; and a, respectively and is defined as follows:

a; = lJ-lB' a, = lJ-zAr (1)

Where i, and W, are the eigenvalue of the problem. 1, can be obtained using the following equation:

3 ’1+u 3
“2 = A131 -1 (2)

After developing a mathematical model, the problem is changed to a differential equation of order four
with the two following boundary conditions:

" 8r? mo o —c?(104n+n2)+2c(24n+n?)r3-2(-6+n+n?)r®) _»
f +(_c—r2)f + (r3(c-r3)%) f+

2(c3(10+n+n?)—c2(144n+n2)r3-3c(—24n+n2)ro+2n(1+n)r)

e S+
(—24n+n?)(10c3—14c2r34c n(1+n)r—n(1+n)r?) -0
(r*(c—r3)?) f=0
3)
mo A (—2¢2n@4n)+4c n(A+)r3+(2-3n(1+0))r®)
f+ rf + (—cr+r*)? f
2(—2+4n+n?)r3
() =0 r=ab @
'+ Ef’ + (—(_2+n+n2))f =0 r=a,b (5)
r rz 7 ) )
Where c is equals to:
c=a®+B3=0b3+43 (6)

The main stretches of the problem are defined as follows:
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/11=)._2, AZ=7\., 2.3 =A. (7)
R3 and A in equation (7) are as follows:
Ry =3/(c—13), L=~ (8)
R3

3. Applying WKB to Solve the Eigenvalue Problem

In WKB method the answer is shown as follows:
1w »
y(x) = exp [Ez o) Sn(x)], § >0.
n=0

Where & = 3(¢) and 6-»0. In order to apply WKB method on the everted neo-hookean spherical shell, we
define an asymptotic expansion for capital n as follows:

f=exp(n[S(r)dr), S(r)=So+5 +35,. ©)

Now, by substituting f and its derivatives of equation (8) in equation (3) and considering various
coefficients of n, we achieve a large class of differential equations in terms of S(r) which could be solved
by Mathematica software. Therefore, we can find four independent solutions for S which we show its ith
answer as S@ as follows:

S(T)(l) = SO(i) + %Sl ® + %52(0 ) (10)

From which we obtain S, $;® and 5, as follows:

1 r2 r2
S(1)=—,S (2)=——,S (3)=—,S 4 — _ )
0 r’ 0 r’ 0 —c+r3’70 —Cc+r3

2 _ .3, .6 2 _ 3 6
Sl(l) __c—er +r 51(2) _ 2¢“ —4cr° + 3r
c2r —3crt +2r7”’ c2r —3cr* 4+ 2r7’
.3 _ r’(c+r3) @ _ 3r°
1 c2—3crd3 +2r6° 1 c2 —3cr3 4 2r¢

—6¢c® +80c°r3 — 183c*r®  —14c¢3r? + 369c¢?ri? — 262cr!S + 20r!8

Sz(l) = +
2cr(c— 2r3)3(c —r3)?2 2cr(c— 2r3)3(c—r3)?2 ’
o @ _ 6c® — 64c°r3 + 263c*r® — 642c3r? N 815c%r'? — 394cr!® + 12r18
2 2cr(c—2r3)3(c—r3)2 2cr(c—2r3)3(c—r3)2 '’
o ® 10c® — 64c¢5r3 + 133¢*r® — 162c3r?  379c¢?r!? — 394cr!® — 44118
2 =

2cr¥(c—2r3)3(c—r3) + 2cr¥*(c—2r3)3(c—1r3)
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—10c® + 64c°r3 — 149¢*r® + 114c3r° N —11c2r!? + 10cr!5 — 20r18
2crt(c—2r3)3(c—r13) 2crt(c—2r3)3(c—r3)

52(4) —

(11)

Given that there are four independent solutions for S(r) and considering the definition of f in (8), f has
four independent linear solutions and the general solution of f is defined as follows:

f =Xl kiexpitn [] SO w)dw), (12)

Now, we replace equation (12) and its derivatives in (4) and (5) boundary conditions, then write the
following matrix:

Shicik =0, =1 .4, (13)
c;; will be as follows:
[ F(l)(aﬂ F(Z)(aﬂ F(3)(a1) F(4)(a1) 1
G(l)(al) G(Z)(al) G(3)(a1) G(4)(a1)

Cij (14)

B EW(a)FM(ay) E@(a)FP(ay) E®(a)FP(a) E®(a)F®(ay)
[ED(2,)6W () EP(2,)6P(ay) EP(2,)6P(ay) E@(a,)6®(ay)]

Where E@ = EO(r) 5(i = 1,...,4)), EO  constant, GP(r) and FU)(r) functions for j = (1,..,4) are
defined as follows:

ED(r) = exp s (u)du), (15)

FOr) =-2+n+n%+ nr(SU)(r) (2 + an(f)(r)) + rS(f)(r)'), (16)

-6 cr*SO SO @) +3r8sD r)sO ()" n(—2r5+2r65(i)(r)+r(c—r3)2 4SD@E) +rs® ”(r)))
r'3(C—r3)2/3 + r3(c—r3)2/3

17)

When a, —a; = 0(1) and A; — 1 = 0(1), for capital value nE® and E®) with capital exponent and
small E®) and E™®. To obtain a non-trivial solution of (13) the following condition must be satisfied:
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det(Cij) = O, (18)
Then,

FD(@,) F® )|

=0, 19
GM@) G®@y) =
Now we expand L, in terms of n and thus we consider:
1 1
M =¢Co +;C1 +n_2C2' (20)

Now, using Mathematica software and considering various coefficients of n, p, can be obtained as
follows:

M, = 0.669096 +-0.020921 — = 7.711126, (21)

Table 1 shows the values obtained by applying WKB method using expansion of S(r) = ZizzonizSi for
various ns.

Table 1. Values obtained by applying WKB method using expansion of $(r) = ?zon—tsi

for various ns

mode | A;(wkb) 1, (Wkb) 1, (Wkb)

25 0.199658 0.657595 5.43305
50 0.253889 0.66643 4.27612
100 0.266193 0.66877 4.07879

150 0.268268 0.668893 4.04112
200 0.268933 0.669056 4.0373

300 0.269349 0.66908 4.03106
400 0.269465 0.6691 4.02933

Solving everted neo-hookean spherical shell problem using WKB method would be possible through
defining the asymptotic expansion below:

f() = R(r)exp(n [ S(r)dr), R(r) = Ry + Ry +=;R,. (22)

By substituting (22) and its relevant derivatives in problem with eigenvalue (3), we apply WKB method
and obtain S, Ry, R; and R, as follows:

,2
—c+r3’

T

L SO® = - (23)

1 1
S = - ,S(N® = - , SN = —

Using Mathematica software and substituting n® in equation (3) and substituting relation (23), four
distinct R, are obtained as follows:
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1/3 332/3 3
) A=) @) _ _r(e=r?) @) _ (c=r?) @ _ (c=r3)
Ro™" = Ve—2r3 Ro™ = c—2r Ro™™ = Ve—2r3 Ro™ = Ve—2r3 " (24)

At this stage, by substituting n2 in (3), R;® for (i = 1, ...,4) and using Mathematica software we will
have:

3 2 3
200 31/3007 9c _ c(c+ 7r°)
) re(c—r°)""" (g 8(c=2r3)2  6(cZ =33 + 219)
' 2Vc —2r3
N %IOg(—c +13) + logif—c + 2r%))
2Vc—2r3 '
o () _ TB1ct = 27¢%r3 + 44c?r® — 160cr” + 80r'2
b 48 c (c — 2r3)5/2(c —r3)3

8c(c — 2r¥)2(c — r3)(2log(—c + r3) + 3log(—c + 2r®)))
- 48 ¢ (c — 2r3)5/2(c —r3)2/3

)

1
R, 3) _

— 3)2/3(_ 4 3.3 _ 2.6 _ 9
_48cr3(c_2r3)5/2(c r3)?/3(=80c* + 311 ¢’r® — 228 c*r® - 80cr’ +

80r'? + 8 cr3(c— 2r3)?(18log(r) + 2log(—c + r3) — 3log(—c + 2r%))),

1

! 48c r3(c — 2r3)5/2 (

r3)(80c* —311c3r3 + 228 c?r® + 80 c r? — 80r!?

+8 cr3(c— 2r3)%(=2(9log(r) + log(—c + r®)) + 3log(—c + 2r3)). (25)

Now we write the obtained results of Ry® and R, as (22) expansion, so that in this expansion we
suppose R, P (r) as x for (i = 1, ...,4) and in next stages try to eliminate it to find integer of R® (r):

) . 1 . .
RO(r) = Ry® + ;Rl(o + R, (),

Since there are four distinct R(r) and considering the definition of f in (22), there are four independent
solutions for f which its general solutions will be as follows:

f =ZiikR@Mexpitn [, SPWdw), (G =1,..4), (26)

We substitute equation (26) and its derivatives in (4) and (5) boundary condition and write it as the matrix
below:

2?:1 Cjj kj =0, G=1,.......,4). (27)

¢;j is defined as follows:
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[ a®@;) aP(ay) a® (@) o®(ay) |
. ICHEREICH @) vW@p) |
) [E(l)(az)a(l)(az) E@(a)aP(ay) E®(a)a®(ay) E(4)(az)a(4)(az)J
EM(a)yP(a) E@ @)y P (@) E®(a)y®(ay) EW(a)y®(ay)

Where E® = EO(r)(i =1, ...,4), constant EG) and y®(r) and a¥’(r) functions for j = (1,..,4) is
defined as follows:

(28)

EU) = exp (n faalz S/ (u)du), (29)
a(l)(r)=a1(1)+;a2(])+n—2a3(’), (30)

Now at this stage, by substituting R (r) for (i = 1,...,4) in (4) and (5) boundary conditions, we obtain
v (r) and yU) (r) respectively. We know for capital value E and E® with capital exponent and small
E® and E®. In order to obtain nontrivial solution for equation (27) the following condition must be
satisfied:

det(Ci]‘) =0 ) (32)
Therefore, we have:

a® (az2) a® (az2)
Y(l) (az2) Y(3) (az)

The matrix equation below can be substituted by matrix equation (27):

=0, (33)

u(l)(az) a(3)(a2) k] 0
[y(l)(az) v®(ay) [k3]_[o]' (34)

In order to eliminate Rz(i) (r) for (i = 1, ...,4) of matrix (34) elements, we write this equation as follows:

0l(ﬁ(\az) G(ﬁ(\az)] [k1R(1)(az) 10
e ool =12 ®)

Where
[19@) 1O (@)} = (6P (a), v® (a)}/ RO (),

{0‘(1/)(\32) »Y(ﬁ_(zz)} = {a(l)(az) ,Y(l)(az)}/R(l)(T),

(36)
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Matrix (35) will have a solution if determinant of the coefficient matrix is zero:

aM(@y) a®(ay)|

_ = (37)
YW (az) v®(ay)
Now given equation (20), C,, C; and C, will be as follows:
Co = 0.66614233, C; =1.37704, C, = —23.2898. (38)
By substituting (38) in (20) we have the equation bellow:
M, = 066614233 + - 1.37704 — — — 23.2898. (39)

3.1. The Equilibrium Condition

The shell is composed of a homogeneous, isotopic and hyper elastic material, and the strain-energy
function is in relation with deformation gradient due to principle stretches and is written:

w = w(4q,45,13).
Now stretch tensors may be written:
G; =0,—D, i=1,23
Where p is pressure and w; = 2—;”{ The strain-energy function of the everted neo-hookean spherical shell
is:
w=p(4 %+ 2% + 5% = 3). (40)

Now we check the only equilibrium condition:

d 2
3011 +;(011 - 022) =0. (41)

We assume that the spherical shell remains empty after deformation, then a > 0. Also, if the stretch on
inner and outer surface is zero, it can be written:

Now the equilibrium mentioned in equation (41) may be written:
— 6227 %1
o, =2f —Ldr, (42)
Where b = r(A) = a® + B3 — A3. The principle stretches are defined as follows:
or

}\‘1 = —T'(R) = 5_

=l =g = (43)

Based on the incompressibility condition we have:
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}\‘1}\‘2}\.3 = 1,
By assuming A, = A3 = A we can obtain the following result for A,:
=172 (44)

Therefore based on (40) and (44) the energy function of the problem may be written:

By assuming p = 1 we can obtain the equation bellow:
— dw
XWX = )\.H = 2(022 - (511). (45)

At this stage, using Mathematica software, equation (42) may be written:

M W, (M) ko (A2
o)== j (1ix3) _ZL (x(1+x3))
2B B* A* 2A

+ ,
a 2at 2@ —-A3+B3)¥3 (a3 -A3+B3)/3

r

}L _ (a3_A3+B3)1/3
b = (a3+B3—3)1/3’ .

A = n

(46)

By drawing the graph of equilibrium condition and its collision with the graph resulted from applying
WKB method, the desired solutions for 2 arbitrary n are shown in figure (1):

0.9 4

M

0.8 4

0.7 4

0.6

Figure 1. collision of bifurcation graph and the equilibrium condition graph of everted
spherical shell for two arbitrary n, n = 24 and n = 100.

In figure 1, we find the solution for n = 24 and n = 100 by drawing the graph of equation (39) and (46)
in the neighborhood of point A; = 0.2. Now in table 2, using the equilibrium condition on (46) we
explain the eigenvalues obtained from WKB method via R(r) expansion. It should be noted that all the
calculations in this method have been carried out by means of Mathematica software.
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Table 2- numbers obtained by means of WKB and using R(r) = Y2, i.Ri expansion for equation (2) of

nl

order four

mode | A;(wkb) | W (wkb) | ,(wkb)
25 | 0.164156 0.68396 7.98636
50 0.21247 0.684367 5.15105
100 | 0.245256 | 0.677584 4.44583
150 | 0.255752 | 0.674288 4.25625
200 | 0.260942 | 0.672445 4.16776
300 | 0.266103 | 0.670474 4.08297
400 | 0268674 | 0.669439 | 4.041186

3.2. The Turning Point

According to Fu and Lin (2000) [10], turning point is the root of R, denominator in WKB method by
means of R(r) :ZlZ:O%Ri expansion. They believe that turning point could also be achieved by

So® = 5,™. In this paper, after finding the turning point, the solution is obtained within a certain
interval.

— — —— — ——

Figure 2. turning point of $,® and §,®

Now by studying the root of denominator R, the following statement is obtained:
By studying the obtained S, and S, = S,, we reach the same conclusion.

-1 _ r? ->I'—3C
r  —c+r3 T A2

(47)

Now for a constant n, we calculate p, and by substituting it in the constant C defined in equation (6), we
have:

C=a®+B3=b3+ A3 =y +B3 =y, +1, (48)
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At this stage, by substituting (48) in (47) we may obtain the turning point. Therefore, using expansions
S(r) and R(r) of WKB method, we calculate the turning point for n = 30 and name them r; and r,
respectively.

7, = 0.863811, 1z = 0.871332.
4. Applying Numerical Compound Matrix in Solving the Eigenvalue Problem

In numerical compound method, we first define a matrix solution with certain initial conditions and
then obtain the eignevallues as the root of matrix cofactors. Compound matrix variables are the matrix
solution cofactors and in this method, cofactors are calculated directly.

We suppose the eigenvalue problem below:
L(@) = 9™ =10 —a,0P — azp’ - as9, (49)

Which in boundary condition becomes:

{(p(3)—a1<p(2) — e —ap =0, r=ab (50)
P® =B = Prp =0, r=ab

We rewrite equation (49) of order four and its boundary condition as follows:

Ax) = )
dg 33 az al
o =AM, o =[p.0,0"¢"] (51)
az a a; 1
ceov=0, cr=(5 5 T o) (52)

The general solution of equation (51) under initial condition may be written

@ =ap;+ Lo,

Where ¢; and ¢, are two independent linear solutions, obtained from the homogenous system which
satisfies the initial condition below:

p1=[0 0 1 0]"p,=[0 0 0 1],

The first step of the numerical compound matrix is based on the matrix solution cofactors which may be
written:

[ 1 @2 ]
?1 )

= [fm T
D1 P2
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The cofactors of matrix solution may be as shown as follows:

_|§01 P2 _|§01 <P2| _|<P1 <P2|

=0 o 01" 2T o 01 3 T e "l

y4 = (plrv (pzvr ) y5 = (plm (pzm ] y6 = (pl/// (pz/// .
P11 P2 ?1 () ®1 ¥2

We know that y = [y4,..,y6]" is ¢ compound of order two. Now by differentiating the cofactors of
matrix solution, we may write problem (49) using the numerical compound matrix method [12] as
follows:

Y2
[ y3tVa ]
azy; tazy;ta;yz+ys
Y5
—a4y1 + azy4 ta1Y54¥e J
—a4y; —azyst a1 Ys

y =f(ry) = , a <r<b (53)

Now to obtain the initial condition of (53) compound problem, we substitute ¢4 and ¢, in (50) boundary
condition and considering the compound variables obtained in matrix (53), the initial condition of
compound problem may be written 6x1:

y1(a)
_Bl V1 (a)
(g Bl — az)yq(a)
— , 54
y(a) Bz y1(a) (54)
(03 — oy Bz Jy1(@)
(B, — 03B Jy1(a) |
We know ¢ = a@; + B¢,. By substituting ¢ in (50) we have:
[401(3)—0(1%(2) — e —azpr 9P —a19,P — ay0,' - aa‘l’z] [C1] =0 (55)
1% = o1 — Bogs 9,P = B1oy — By 2
Equation (55) will have non-trivial solution, if the determinant of the coefficient matrix is zero:
<P1(3)—051fp1(2) - asz1' — az@q <P2(3)—051<P2(2) - azfpz' —azPz| _ 0 (56)
019 = Biro1 = Brg1 9P — Bro2" — Bo;
Therefore, the target condition is realized as follows:
((12[32—(13[31)}’1 (b) + (0!1[32_0‘3)}’2 (b) + B,yz(b)+(a,B; — 02)ys(b)
+B,y5(b) +ys(b) = 0. (57)

At this stage, we solve the initial value (57) using Fortran programming language. Here we apply Runge-
Kutta-Fehlberg numerical method [12] and define k;(i = 1, 2, ...,6) as six-elements vectors and finally
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estimate y; i.e. compound variables in point r = b. After that by substituting the obtained y; in target
condition, the eigenvalue p is achieved. Therefore, using Newton or bisection method [12] we obtain .

Table 3. numbers obtained using numerical compound method for various n for equation
of order four

mode | A;(compound) | Y, (compound) | W, (compound)

25 0.4451957 0.7034549 2.425999

50 3.544032 6.848799 3.061043
100 0.3021996 0.6749331 3.592747
150 0.2856226 0.6719459 3.801494
200 0.2761169 0.6702654 3.932344
300 0.2660719 0.6685150 4.080656
400 0.2615474 0.6677353 4.151138

5. Results

In WKB method, the solution is described as a linear combination of exponential power series of small
parameter §:

y(x) = exp E; SnSn(x)], 6>0.

Where & = 6(¢) and 6-»0. In the present paper, we applied WKB method on the problem of everted neo-
hookean spherical shell using expansions S(r) = 12=0%Si and R(r) = 212:0%&- and by comparing the
data obtained by applying these two expansions and WKB method, particularly for small n, concluded
that they didn’t match due to a turning point in interval [1,0]. By applying the numerical compound
matrix method on the above mentioned problem and comparing the data obtained from this method and

WKB method, we conclude that the turning point causes data mismatch.
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