Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 18 (2018), 262–271

Research Article

Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

F_m -contractive and F_m -expanding mappings in M-metric spaces

Nabil Mlaiki

Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.

Abstract

Inspired by the work of Górnicki in his recent article [J. Górnicki, Fixed Point Theory Appl., 2017 (2017), 10 pages], where he introduced a new class of self mappings called F-expanding mappings, in this paper we introduce the concept of F_m -contractive and F_m -expanding mappings in M-metric spaces. Also, we prove the existence and uniqueness of fixed point for such mappings.

Keywords: M-metric spaces, F_m-contractive, F_m-expanding mappings.

2010 MSC: 54H25, 47H10.

©2018 All rights reserved.

1. Introduction

In [2], M-metric space was introduced, which is an extension of partial metric spaces, and it has many applications. In this paper, we introduce the notion of F_m -contractive and F_m -expanding mappings in M-metric space, where we prove that self mappings on a complete M-metric spaces that are F_m -contractive have a unique fixed point. Also, we show that surjective self mappings on a complete M-metric spaces that are F_m -expanding mappings in M-metric spaces have a unique fixed point.

This article is organized as follows. In this section we recall the concept of M-metric spaces. In Section 2, we present the concept of F_m -contraction along with a fixed point theorem which we are going to support it by an example. In the Section 3, we introduce the concept of F_m -expanding mappings. In Section 4 we show that the results of [7] and [3], are direct consequences of our results. In the last section, we present some open questions.

Notation 1.1 ([2]).

- 1. $m_{x,y} := \min\{m(x,x), m(y,y)\};$
- 2. $M_{x,y} := \max\{m(x,x), m(y,y)\}.$

Definition 1.2 ([2]). Let X be a nonempty set, if the function $m : X^2 \to \mathbb{R}^+$, for all $x, y, z \in X$, satisfies the following conditions:

(1) m(x,x) = m(y,y) = m(x,y) if and only if x = y;

Email address: nmlaiki@psu.edu.sa (Nabil Mlaiki)

doi: 10.22436/jmcs.018.03.02

Received: 2017-12-07 Revised: 2018-01-31 Accepted: 2018-02-03

- (2) $m_{x,y} \leq m(x,y)$;
- (3) m(x,y) = m(y,x);
- (4) $(m(x,y) m_{x,y}) \le (m(x,z) m_{x,z}) + (m(z,y) m_{z,y}),$

then the pair (X, m) is called an M-metric space.

Examle 1.3. Let $X := [0, \infty)$. Then

$$m(x,y) = \frac{x+y}{2} \text{ on } X$$

is an M-metric space.

Examle 1.4. Let $X = \{1, 2, 3\}$ and define

$$m(1,1) = 1, m(2,2) = 9, m(3,3) = 5,$$
 $m(1,2) = m(2,1) = 10,$ $m(1,3) = m(3,1) = 7,$ $m(3,2) = m(2,3) = 7.$

Note that (X, m) is an M-metric space that is not a partial metric space.

Notice that, we can construct a metric space from M-metric space.

Examle 1.5 ([2]). If m be an M-metric space, then the following functions

- 1. $m^{w}(x,y) = m(x,y) 2m_{x,y} + M_{x,y}$,
- 2. $\mathfrak{m}^s(x,y) = \mathfrak{m}(x,y) \mathfrak{m}_{x,y}$ when $x \neq y$ and $\mathfrak{m}^s(x,y) = 0$ if x = y

are ordinary metrics.

As mentioned in [2], each M-metric on set X generates a T_0 topology τ_m on X. The set

$$\{B_{\mathfrak{m}}(x, \epsilon) : x \in X, \epsilon > 0\}$$
 where $B_{\mathfrak{m}}(x, \epsilon) = \{y \in X \mid \mathfrak{m}(x, y) < \mathfrak{m}_{x,y} + \epsilon\}$ for all $x \in X$ and $\epsilon > 0$,

forms a base of τ_m .

Definition 1.6. Let (X, m) be an M-metric space. Then

1) a sequence $\{x_n\}$ in X converges to a point x if and only if

$$\lim_{n\to\infty}(\mathfrak{m}(x_n,x)-\mathfrak{m}_{x_n,x})=0;$$

2) a sequence $\{x_n\}$ in X is said to be m-Cauchy sequence if and only if

$$\lim_{n,m\to\infty}(\mathfrak{m}(x_n,x_m)-\mathfrak{m}_{x_n,x_m}) \text{ and } \lim_{n\to\infty}(M_{x_n,x_m}-\mathfrak{m}_{x_n,x_m})$$

exist and finite;

3) an M-metric space is said to be complete if every m-Cauchy sequence $\{x_n\}$ converges to a point x such that

$$\lim_{n\to\infty}(m(x_n,x)-m_{x_n,x})=0 \text{ and } \lim_{n\to\infty}(M_{x_n,x}-m_{x_n,x})=0.$$

Next, we state the following lemmas.

Lemma 1.7 ([2]). Assume that $x_n \to x$ and $y_n \to y$ as $n \to \infty$ in an M-metric space (X, m). Then

$$\lim_{n\to\infty} (m(x_n, y_n) - m_{x_n, y_n}) = m(x, y) - m_{x, y}.$$

Lemma 1.8 ([2]). Assume that $x_n \to x$ in an M-metric space (X, m). Then

$$\lim_{n\to\infty}(\mathfrak{m}(x_n,y)-\mathfrak{m}_{x_n,y})=\mathfrak{m}(x,y)-\mathfrak{m}_{x,y}.$$

2. F_m -contraction in M-metric spaces

First, we give the definition of the following family of functions.

Definition 2.1. Let \mathbb{F} be the family of all functions $F_{r}(0,\infty) \to \mathbb{R}$ such that:

- (F_1) F is strictly increasing;
- (F₂) for each sequence $\{\alpha_n\}$ in $(0, \infty)$ the following holds,

$$\lim_{n\to\infty} \alpha_n = 0$$
 if and only if $\lim_{n\to\infty} F(\alpha_n) = -\infty$;

(F₃) there exists $k \in (0,1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

The following is an example of some functions that satisfy the conditions (F_1) , (F_2) , and (F_3) of Definition 2.1.

Examle 2.2.

- 1. $F:(0,\infty)\to\mathbb{R}$ defined by $F(x)=\ln(x)$;
- 2. $F:(0,\infty)\to\mathbb{R}$ defined by $F(x)=\ln(x)+x$;
- 3. $F:(0,\infty)\to\mathbb{R}$ defined by $F(x)=-\frac{1}{\sqrt{x}}$;
- 4. $F:(0,\infty)\to\mathbb{R}$ defined by $F(x)=\ln(x^2+x)$.

It is not difficult to see that these three functions satisfy the conditions (F_1) , (F_2) , and (F_3) of Definition 2.1.

Now, we give the definition of an F_m-contraction.

Definition 2.3. Let (X, \mathfrak{m}) be a complete M-metric space. A self mapping T on X is said to be an $F_{\mathfrak{m}}$ -contraction on X if there exist $F \in \mathbb{F}$ and t > 0 such that for all $x, y \in X$ the following holds:

$$m(Tx, Ty) > 0 \Rightarrow t + F(m(Tx, Ty)) \leqslant F(m(x, y)).$$

We start by proving the following lemma about F_m-contractive self mapping on M-metric spaces.

Lemma 2.4. Let (X, \mathfrak{m}) be an M-metric space, and T be an $F_{\mathfrak{m}}$ -contractive self mapping on X. Consider the sequence $\{x_n\}_{n\geqslant 0}$ defined by $x_{n+1}=Tx_n$. If $x_n\to \mathfrak{u}$ as $n\to \infty$, then $Tx_n\to T\mathfrak{u}$ as $n\to \infty$.

Proof. First, note that if $m(Tx_n, Tu) = 0$, then $m_{Tx_n, Tu} = 0$ and that is due to the fact that $m_{Tx_n, Tu} \le m(Tx_n, Tu)$, which implies that

$$\mathfrak{m}(Tx_n,T\mathfrak{u})-\mathfrak{m}_{Tx_n,T\mathfrak{u}}\to 0 \text{ as } n\to \infty \text{ and hence } Tx_n\to T\mathfrak{u} \text{ as } n\to \infty.$$

So we may assume that $\mathfrak{m}(Tx_n,Tu)>0$, by the F_m -contractive property of T we deduce that $\mathfrak{m}(Tx_n,Tu)<\mathfrak{m}(x_n,u)$. Now, if $\mathfrak{m}(u,u)\leqslant \mathfrak{m}(x_n,x_n)$ and by the F_m -contractive property it is easy see that $\mathfrak{m}(x_n,x_n)\to 0$, which implies that $\mathfrak{m}(u,u)=0$ and since $\mathfrak{m}(Tu,Tu)<\mathfrak{m}(u,u)=0$ we deduce that $\mathfrak{m}(Tu,Tu)=\mathfrak{m}(u,u)=0$, and $\mathfrak{m}(x_n,u)\to 0$, on the other we have $\mathfrak{m}(Tx_n,Tu)\leqslant \mathfrak{m}(x_n,u)\to 0$. Hence, $\mathfrak{m}(Tx_n,Tu)-\mathfrak{m}_{Tu,Tx_n}\to 0$ and thus $Tx_n\to Tu$.

If $m(u,u)\geqslant m(x_n,x_n)$ and once again by the F_m -contractive property it is easy to see that $m(x_n,x_n)\to 0$, which implies that $m_{X_n,u}\to 0$. Hence, $m(x_n,u)\to 0$ and since $m(Tx_n,Tu)< m(x_n,u)\to 0$ we deduce that $m(Tx_n,Tu)-m_{Tu,Tx_n}\to 0$ and thus $Tx_n\to Tu$ as desired.

Theorem 2.5. Let (X, \mathfrak{m}) be a complete M-metric space and let $T: X \to X$ be an $F_{\mathfrak{m}}$ -contraction. Then T has a unique fixed point \mathfrak{u} in X, and for every $x_0 \in X$ the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to \mathfrak{u} .

Proof. First of all, we claim that if T has a fixed point then it is unique. To see this, assume that there exist $u, v \in X$ such that $Tu = u \neq v = Tv$. If m(Tu, Tv) = 0, and without loss of generality suppose that

 $m_{u,v} = m(u,u)$, then

$$m(Tu, Tv) = 0 = m(u, u).$$

Now, if m(v, v) = 0, then u = v. So, assume that m(v, v) > 0, this implies that

$$F(m(\nu,\nu)) = F(m(T\nu,T\nu)) \leqslant F(m(\nu,\nu)) - t < F(m(\nu,\nu)),$$

which leads to a contradiction. Therefore, $m(\nu,\nu)=0$ and thus $u=\nu$. So, now we may assume that $m(u,\nu)>0$. Hence, by using the fact that T is an F_m -contraction, we deduce that

$$0 < t \leqslant F(m(u,v)) - F(m(Tu,Tv)) = 0,$$

which leads to a contradiction. Therefore, if T has a fixed point then it is unique.

Next, we show that T has a fixed point. So, let $x_0 \in X$ and define a sequence $\{x_n\}$ as follows

$$x_1 = Tx_0, x_2 = Tx_1 = T^2x_0, \dots, x_{n+1} = Tx_n, \dots$$

If there exists a natural number i such that $x_{i+1} = x_i$, then we are done and x_i is the fixed point of T in X. Secondly, assume that $m(x_n, x_n) = 0$ for some n, we want to show that in this case

$$m(x_m, x_m) = 0$$
 for all $m > n$.

So, assume that $m(x_n, x_n) = 0$ and $m(x_{n+1}, x_{n+1}) \neq 0$ by the F_m -contractive property of T we obtain

$$\mathsf{F}(\mathsf{m}(\mathsf{x}_{n+1},\mathsf{x}_{n+1})) = \mathsf{F}(\mathsf{m}(\mathsf{T}\mathsf{x}_n,\mathsf{T}\mathsf{x}_n)) \leqslant \mathsf{F}(\mathsf{m}(\mathsf{x}_n,\mathsf{x}_n)) - \mathsf{t} \leqslant \mathsf{F}(\mathsf{m}(\mathsf{x}_n,\mathsf{x}_n)),$$

but F is an increasing function. Therefore,

$$0 = m(x_n, x_n) \ge m(x_{n+1}, x_{n+1}).$$

Hence, by induction on n, we get

if
$$m(x_n, x_n) = 0$$
 then $m(x_m, x_m) = 0$ for all $m > n$.

Also, note that it is not difficult to see that if m > n, then we have $m_{x_n,x_m} = m(x_m,x_m)$, to see this, assume that $m_{x_n,x_m} = m(x_n,x_n)$. Hence, if $m(x_n,x_n) = 0$, then by the above claim we obtain $m(x_m,x_m) = 0$, and if $m(x_n,x_n) > 0$, then $m(x_m,x_m) > 0$, thus

$$F(m(x_{m}, x_{m})) = F(m(Tx_{m-1}, Tx_{m-1}))$$

$$\leq F(m(x_{m-1}, x_{m-1})) - t$$

$$\vdots$$

$$\leq F(m(x_{n}, x_{n})) - (m - n)t$$

$$< F(m(x_{n}, x_{n}))$$

but F is an increasing function. Therefore, if m > n, we have $m_{x_n,x_m} = m(x_m,x_m)$.

Now, suppose that $m(x_{n+1},x_n)=0$ for some n, this implies that $m_{x_n,x_{n+1}}=0$. We know that $m_{x_n,x_{n+1}}=m(x_{n+1},x_{n+1})=0$. Thus, by the above argument we have $m(x_{n+2},x_{n+2})=0$. Thus, now we have two cases, either $m(x_{n+1},x_{n+2})=0$ and in this case it is easy to see that $x_{n+1}=x_{n+2}$ and that is x_{n+1} is the fixed point, or $m(x_{n+1},x_{n+2})>0$, again by the F_m -contractive property of T we have

$$F(m(x_{n+1}, x_{n+2})) = F(m(Tx_n, Tx_{n+1})) \leqslant F(m(x_n, x_{n+1})) - t < F(m(x_n, x_{n+1})) = F(0),$$

but the fact that F is an increasing function leads us to a contradiction.

Hence, now we can assume that $m(x_n, x_{n+1}) > 0$ for all n. Let $B_n = m(x_n, x_{n+1})$, hence

$$F(B_n) \leqslant F(B_{n-1}) - t \leqslant F(B_{n-2}) - 2t \leqslant \cdots \leqslant F(B_0) - nt.$$

Thus, $F(B_n) \to -\infty$ as $n \to \infty$. Hence, by (F_2) we get

$$\lim_{n\to\infty}B_n=0$$

and by (F_3) there exists $k \in (0,1)$ such that

$$\lim_{n\to\infty}B_n^kF(B_n)=0.$$

Thereby,

$$B_n^k \mathsf{F}(B_n) - B_n^k \mathsf{F}(B_0) \leqslant B_n^k [\mathsf{F}(B_0) - nt] - B_n^k \mathsf{F}(B_0) = -B_n^k nt \leqslant 0.$$

Hence,

$$\lim_{n\to\infty} nB_n^k = 0.$$

Therefore, there exists a natural number n_0 such that $nB_n^k \le 1$ for all $n > n_0$. Thus, we deduce that

$$B_n \leqslant \frac{1}{n^{\frac{1}{k}}}$$
 for all $n > n_0$.

Now, let n, m be integers such that $m > n > n_0$. First, notice the following fact about the triangle inequality of the M-metric spaces,

$$(m(x,y) - m_{x,y}) \le (m(x,z) - m_{x,z}) + (m(z,y) - m_{z,y}) \le m(x,z) + m(z,y).$$

Thus, it is not difficult to see that

$$m(x_n, x_m) - m_{x_n, x_m} \leq B_n + B_{n+1} + B_{n+2} + \dots + B_m < \sum_{i=n}^{\infty} B_i \leq \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}.$$

Since the series $\sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}$ is a convergent series, we deduce that $m(x_n, x_m) - m_{x_n, x_m}$ converges as $n, m \to \infty$. Now, if $M_{x_n, x_m} = 0$, then $m_{x_n, x_m} = 0$, which implies that $M_{x_n, x_m} - m_{x_n, x_m} = 0$. So, we may assume that $M_{x_n, x_m} > 0$, this implies that $m(x_n, x_n) > 0$.

Now, let $\eta_n = m(x_n, x_n)$, hence

$$F(\eta_n) \leqslant F(\eta_{n-1}) - t \leqslant F(\eta_{n-2}) - 2t \leqslant \cdots \leqslant F(\eta_0) - nt.$$

Thus, $F(\eta_n) \to -\infty$ as $n \to \infty$. Hence, by (F_2) we get

$$\lim_{n\to\infty}\eta_n=0$$

and by (F_3) there exists $k \in (0,1)$ such that

$$\lim_{n\to\infty}\eta_n^k F(\eta_n) = 0.$$

Thereby,

$$\eta_n^k \mathsf{F}(\eta_n) - \eta_n^k \mathsf{F}(\eta_0) \leqslant \eta_n^k [\mathsf{F}(\eta_0) - nt] - \eta_n^k \mathsf{F}(\eta_0) = -\eta_n^k nt \leqslant 0.$$

Hence,

$$\lim_{n\to\infty} n\eta_n^k = 0.$$

Therefore, there exists a natural number n_0 such that $n\eta_n^k \le 1$ for all $n > n_0$. Thus, we deduce that

$$\eta_n \leqslant \frac{1}{n^{\frac{1}{k}}} \text{ for all } n > n_0.$$

Therefore, we obtain

$$m(x_n,x_n)-m(x_m,x_m)\leqslant \eta_n+\eta_{n+1}+\eta_{n+2}+\cdots+\eta_m<\sum_{i=n}^\infty \eta_i\leqslant \sum_{i=n}^\infty \frac{1}{i^{\frac{1}{k}}}.$$

Since the series $\sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}$ is a convergent series, we deduce that $m(x_n, x_n) - m(x_m, x_m)$ converges as $n, m \to \infty$ and that is

$$M_{x_n,x_m} - m_{x_n,x_m}$$
 converges as desired.

Therefore, $\{x_n\}$ is an m-Cauchy sequence, and using the fact that (X, m) is an m-complete M-metric space, we deduce that $\{x_n\}$ converges to some $u \in X$.

Since $m(x_n,x_{n+1})>0$ and by F_m -contractive property of T, one can easily deduce that $m(x_n,Tx_n)\to 0$ and m(Tu,Tu)< m(u,u). Now, using the fact that $m_{x_n,Tx_n}\to 0$ and by Lemmas 1.7 and 1.8, we deduce that $m(u,Tu)=m_{u,Tu}=m(Tu,Tu)$. Now, by Lemmas 1.7, 1.8, 2.4, and $x_n=Tx_{n-1}\to u$, we deduce that

$$0 = \lim_{n \to \infty} (m(x_n, Tx_n) - m_{x_n, Tx_n}) = \lim_{n \to \infty} (m(x_n, x_{n-1}) - m_{x_n, Tx_n}) = m(u, u) - m_{u, Tu}.$$

Therefore, $\mathfrak{m}(\mathfrak{u},\mathfrak{u})=\mathfrak{m}_{\mathfrak{u},\mathsf{T}\mathfrak{u}}$. Hence, $\mathfrak{m}(\mathfrak{u},\mathfrak{u})=\mathfrak{m}_{\mathfrak{u},\mathsf{T}\mathfrak{u}}=\mathfrak{m}(\mathsf{T}\mathfrak{u},\mathsf{T}\mathfrak{u})$ and that is $\mathsf{T}\mathfrak{u}=\mathfrak{u}$ as required.

Next, we present the following example.

Examle 2.6. Let $X := [1, \infty)$ and

$$m(x,y) = \frac{x+y}{2}$$
 for all X.

First, note that (X, m) is a complete M-metric space. Now, consider the function

$$F:(0,\infty)\to\mathbb{R}$$
 defined by $F(x)=\ln(x)$.

Notice that $F \in \mathbb{F}$.

Next, let $T: X \to X$ such that $Tx = \frac{x+1}{2}$. Since $x \in [1, \infty)$, which implies that x + y > 2 for all $x, y \in X$. Hence,

$$m(x,y) - m(Tx,Ty) = \frac{x+y}{2} - \frac{x+y+2}{4} = \frac{x+y-2}{4} > 0.$$

Also, we have m(x,y) > 0 for all $x,y \in X$ and given the fact that F is an increasing function, we deduce that T is an F_m -contraction. Therefore, by Theorem 2.5, T has a unique fixed point in X, in this case the fixed point is 1.

3. F_m-expanding in M-metric spaces

First, we give the definition of F_m-expanding self mapping on M-metric spaces.

Definition 3.1. Let (X, m) be an M-metric spaces. We say that a self mapping T on X is F_m -expanding if there exists $F \in \mathbb{F}$ and t > 0 such that for all $x, y \in X$ the following holds:

$$m(x,y) > 0 \Rightarrow F(m(Tx,Ty) \geqslant F(m(x,y)) + t.$$

Next, we present the following useful lemma.

Lemma 3.2 ([3]). *If a self mapping* T *on* X *is surjective, then there exists a self mapping* $T^*: X \to X$, *such that the map* $(T \circ T^*)$ *is the identity map on* X.

Theorem 3.3. Let (X, m) be a complete M-metric space and let $T: X \to X$ be a surjective F_m -expanding map. Then T has a unique fixed point in X.

Proof. Since T is surjective, by Lemma 3.2, we know that there exists a self mapping $T^*: X \to X$, such that the map $(T \circ T^*)$ is the identity map on X. Now, consider $x, y \in X$ such that $m(T^*x, T^*y) > 0$ and let $z = T^*x$ and $w = T^*y$. Hence,

First, notice the following fact,

$$Tz = T(T^*x) = x$$
 and $Tw = T(T^*y) = y$.

Now, by applying the F_m-expanding property of T we get

$$F(m(Tz, Tw) \geqslant F(m(z, w)) + t.$$

Therefore,

$$F(m(x,y) \geqslant F(m(T^*x,T^*y)) + t.$$

Hence, T^* is a an F_m -contraction self mapping on X. Thus, by Theorem 2.5, T^* has a unique fixed point say $u \in X$. Using the fact that $Tu = T(T^*u) = u$ we deduce that Tu = u, that is u is a fixed point of T. Now, assume that there exist $u \neq v \in X$ such that Tu = u and Tv = v, where u is also the unique fixed point of T^* . Let $x \in X$ such that $v = T^*x$. Thus,

$$x=T(T^*x)=T\nu=\nu, \text{ but } \nu=T^*x \text{ which implies that } \nu=T^*\nu.$$

Hence, ν is a fixed point of T*, and since T* has a unique fixed point we deduce that $u = \nu$ as desired. \square

Remark 3.4. We want to bring to reader's attention that if T is not surjective, the result in Theorem 3.3 is false. For example, Let $X = (0, \infty)$ and $m : X^2 \to \mathbb{R}^+$ defined by $m(x, y) = \frac{x+y}{2}$, note that (X, m) is an M-metric space. Now, consider the map $T : X \to X$ defined by Tx = 5x + 4. Note that T satisfies the condition

$$m(Tx, Ty) \geqslant 2m(x, y)$$
 for all $x, y \in X$.

Therefore, it satisfies all the hypothesis of Theorem 3.3, except that T is not surjective in X, and T does not have a fixed point in X.

We finish this section by an example of an F_m-expanding mapping in a complete M-metric space.

Examle 3.5. Let $X := [1, \infty)$ and

$$m(x,y) = \frac{x+y}{2}$$
 for all X.

First, note that (X, m) is a complete M-metric space. Now, consider the function

$$F:(0,\infty)\to\mathbb{R}$$
 defined by $F(x)=\ln(x)$.

Notice that $F \in \mathbb{F}$. Next, let $T: X \to X$ such that $Tx = x^3 + x - 1$. Since $x \in [1, \infty)$, which implies that $x^2 + y^3 > 2$ for all $x, y \in X$. Hence,

$$m(Tx,Ty)-m(x,y)=\frac{x^3+x-1+y^3+y-1}{2}-\frac{x+y}{2}=\frac{x^3+y^3-2}{2}>0.$$

Since we have m(x,y) > 0 for all $x,y \in X$ and F is an increasing function, we deduce that T is an F_m -expanding self mapping on X. It is not difficult to see that T is also a surjective map. Therefore, by Theorem 3.3, T has a unique fixed point in X, in this case the fixed point is 1.

4. Consequences

First, we remind the definition of partial metric space which was introduced by Matthews in [5], and it is a very useful extension of metric spaces. However, Shahzad in [4], cleared some issues about partial metric spaces, which was a big misunderstanding for many authors.

Definition 4.1. Let X be a nonempty set and $p: X \times X \longrightarrow [0, +\infty)$. We say that (X, p) is a partial metric spaces if the following conditions are satisfied for all $x, y, z \in X$,

- 1. x = y if and only if p(x,y) = p(x,x) = p(y,y);
- 2. $p(x,x) \leq p(x,y)$;
- 3. p(x,y) = p(y,x);
- 4. $p(x,z) \le p(x,y) + p(y,z) p(y,y)$.

Next, we give a brief description of the topology of partial metric spaces.

- 1. A sequence $\{x_n\}_{n=0}^{\infty}$ of elements in X is called p-Cauchy if $\lim_{n,m\to\infty}p(x_n,x_m)$ exists and finite.
- 2. A partial metric space (X,p) is called complete if for each p-Cauchy sequence $\{x_n\}_{n=0}^{\infty}$ there exists $z \in X$ such that

$$p(z,z) = \lim_{n \to \infty} p(z,x_n) = \lim_{n,m \to \infty} p(x_n,x_m).$$

3. A sequence x_n in a partial metric space (X, p) is called 0-Cauchy if

$$\lim_{n,m\to\infty}p(x_n,x_m)=0.$$

4. We say that (X, p) is 0-complete if every 0-Cauchy in X converges to a point $x \in X$ such that p(x, x) = 0.

Since M-metric spaces is a generalization of partial metric spaces, and that is every M-metric is a partial metric but the converse not always true, for instance the M-metric presented in Example 3.5 is not a partial metric space. More examples can be found in [1].

Definition 4.2. Let (X,p) be a complete partial metric space. A self mapping T on X is said to be an F_p -contraction on X if there exist $F \in \mathbb{F}$ and t > 0 such that for all $x, y \in X$ the following holds:

$$p(Tx, Ty) > 0 \Rightarrow t + F(p(Tx, Ty)) \leqslant F(p(x, y)).$$

Definition 4.3. Let (X,p) be an partial metric space. We say that a self mapping T on X is F_p -expanding if there exists $F \in \mathbb{F}$ and t > 0 such that for all $x, y \in X$ the following holds:

$$p(x,y) > 0 \Rightarrow F(p(Tx,Ty) \geqslant F(p(x,y)) + t.$$

Remark 4.4. Notice that,

if a map T is F_p -contractive on X, then T is F_m -contractive on X.

Also,

if a map T is F_p -expanding on X, then T is F_m -expanding on X.

Therefore, the following are consequences of our results in the previous two sections.

Corollary 4.5. Let (X, p) be a complete partial metric space and let $T: X \to X$ be an F_p -contraction. Then T has a unique fixed point u in X, and for every $x_0 \in X$ the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to u.

Corollary 4.6. Let (X, m) be a complete partial metric space and let $T: X \to X$ be a surjective F_p -expanding map. Then T has a unique fixed point in X.

Similarly, it is not difficult to see most the results of [7] and [3] are direct consequences of our results.

5. Conclusion

In closing, we want to present some open questions.

Question 5.1. Let (X, m) be an M-metric space, $F \in \mathbb{F}$, t > 0, and T be a self mapping on X, such that for every $x, y \in X$ we have

$$\mathfrak{m}(\mathsf{T}x,\mathsf{T}y)>0\Rightarrow t+\mathsf{F}(\mathfrak{m}(\mathsf{T}x,\mathsf{T}y)\leqslant \mathsf{F}(\mathsf{max}\{\mathfrak{m}(x,y),\mathfrak{m}(x,\mathsf{T}x),\mathfrak{m}(y,\mathsf{T}y),\frac{\mathfrak{m}(x,\mathsf{T}y)+\mathfrak{m}(y,\mathsf{T}x)}{2}\}).$$

Does T have a unique fixed point on X?

In [6], M_s -metric spaces were introduced.

Notation 5.2.

- 1. $m_{s_{x,y,z}} := \min\{m_s(x,x,x), m_s(y,y,y), m_s(z,z,z)\};$
- 2. $M_{s_{x,y,z}} := \max\{m_s(x,x,x), m_s(y,y,y), m_s(z,z,z)\}.$

Definition 5.3 ([6]). An M_s -metric space on a nonempty set X is a function $\mathfrak{m}_s: X^3 \to R^+$ if for all $x,y,z,t \in X$ we have

- 1. $m_s(x, x, x) = m_s(y, y, y) = m_s(z, z, z) = m_s(x, y, z)$ if and only if x = y = z;
- 2. $m_{s_{x,y,z}} \leq m_s(x,y,z);$
- 3. $m_s(x, x, y) = m_s(y, y, x)$;
- $4. \ (m_s(x,y,z) m_{s_{x,y,z}}) \leqslant (m_s(x,x,t) m_{s_{x,x,t}}) + (m_s(y,y,t) m_{s_{y,y,t}}) + (m_s(z,z,t) m_{s_{z,z,t}}),$

then the pair (X, m_s) is called an M_s -metric space.

Examle 5.4. Let $X = \{1,2,3\}$ and define the M_s -metric space m_s on X by $m_s(1,2,3) = 6$, $m_s(1,1,2) = m_s(2,2,1) = m_s(1,1,1) = 8$, $m_s(1,1,3) = m_s(3,3,1) = m_s(3,3,2) = m_s(2,2,3) = 7$, $m_s(2,2,2) = 9$, and $m_s(3,3,3) = 5$. It is not difficult to see that (X, m_s) is an M_s -metric space.

Definition 5.5 ([6]). Let (X, m_s) be a M_s -metric space. Then

1) a sequence $\{x_n\}$ in X converges to a point x if and only if

$$\lim_{n\to\infty} (m_s(x_n, x_n, x) - m_{sx_n, x_n, x}) = 0;$$

2) a sequence $\{x_n\}$ in X is said to be m_s -Cauchy sequence if and only if

$$\lim_{n,m\to\infty}(m_s(x_n,x_n,x_m)-m_{sx_n,x_n,x_m}) \text{ and } \lim_{n\to\infty}(M_{sx_n,x_n,x_m}-m_{sx_n,x_n,x_m})$$

exist and finite;

3) an M_s -metric space is said to be complete if every \mathfrak{m}_s -Cauchy sequence $\{x_n\}$ converges to a point x such that

$$\lim_{n \to \infty} (m_s(x_n, x_n, x) - m_{sx_n, x_n, x}) = 0 \text{ and } \lim_{n \to \infty} (M_{sx_n, x_n, x} - m_{sx_n, x_n, x}) = 0.$$

Question 5.6. Let (X, m) be an M_s -metric space, k > 1, and T be a surjective self mapping on X, such that for every $x, y, z \in X$ we have

$$m_s(Tx, Ty, Tz) \geqslant km_s(x, y, z).$$

Does T have a unique fixed point on X?

Question 5.7. Let (X, m) be an M_s -metric space, $F \in \mathbb{F}$, t > 0, and T be a self mapping on X, such that for every $x, y \in X$ we have

$$\mathfrak{m}_s(x, \mathsf{T} x, y) > 0 \Rightarrow \mathsf{F}(\mathfrak{m}_s(\mathsf{T} x, \mathsf{T}^2 x, \mathsf{T} y)) \geqslant \mathsf{F}(\mathfrak{m}_s(x, \mathsf{T} x, y)) + \mathsf{t}.$$

Does T have a unique fixed point on X?

Acknowledgment

The author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

References

- [1] K. Abodayeh, N. Mlaiki, T. Abdeljawad, W. Shatanawi, Relations between partial metric spaces and M-metric spaces, Caristi Kirk's Theorem in M-metric type spaces, J. Math. Anal., 7 (2016), 1–12. 4
- [2] M. Asadi, E. Karapınar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 9 pages. 1, 1.1, 1.2, 1.5, 1, 1.7, 1.8
- [3] J. Górnicki, Fixed points theorems for F-expanding mappings, Fixed Point Theory Appl., 2017 (2017), 10 pages. 1, 3.2,
- [4] R. H. Haghi, S. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, Topology Appl., 160 (2013), 450–454. 4
- [5] S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. 4
- [6] N. Mlaiki, N. Souayah, K. Abodayeh, T. Abdeljawad, Contraction principles in M_s-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 575–582. 5, 5.3, 5.5
- [7] D. Wardowski, *Fixed points of a new type of contractive mappings in complete metric spaces*, Fixed Point Theory Appl., **2012** (2012), 6 pages. 1, 4