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Abstract
In this study, we present a new approximation method to give an explicit solution of a laminar flow using a Sisko model.

This is a problem of a generalized Newtonian fluid with slip boundary conditions. The proposed method is based on the
variational iteration method (VIM) combined with an approximation step. This method is validated where the exact solution is
available. In addition, in order to enrich the discussion, a numerical method is presented. The results illustrate that the VIM may
be more effective that the finite difference method for a dilatant fluid. However, the VIM will be inappropriate for pseudoplastic
fluid cases.
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Nomenclature

u velocity
p pressure
η viscosity
γ̇ rate shear

1. Introduction

The development of a new industrial fluid and the quality improvement of the existing products
require knowledge of their material properties. The study of this fluid types takes into account many
physical parameters that can essentially influence their behaviors. Examples of these effects, are magnetic,
thermal radiation, nanoparticles and magnetohydrodynamics [3, 6, 8, 13]. Specifically, we must be familiar
with the rheology of these products. Therefore, we will explore the behaviors of these fluids during a
velocity field or under an applied pressure. To ensure a reasonable approach, we will propose to study a
generalized Newtonian fluid. An example of these types is the non-Newtonian fluids that have a complex
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rheology [2, 4, 7]. These fluid types are a widespread phenomenon; it is of great relevance in big fields of
physics. Amongst these, the fluids that run a pioneering part in the performance of beauty, gastronomy
and care products. Here, we analyze the case of a Sisko model with slip boundary conditions in Couette
and Poiseuille flows. According to [9], we show that in the laminar flow case the problem is as follows:

∂u

∂y
+α

(∂u
∂y

)m
−βy = 0, (1.1a)

u(0) = b, (1.1b)

with u a velocity vector, for α =
a

µ∞ , β =
px

µ∞ , px is the gradient of the pressure. Usually, the boundary

condition is chosen for y = −h and y ∈ [−h,h]. For a simple reason, we have preferred (1.1b). The
parameter m is subject to fluid. It is called the flowing behavior index. If m < 1, it is the pseudoplastic
fluid. If m > 1, it represents the dilatant fluid. If m = 1, it may represent the Newtonian fluid. The
parameters that characterize Sisko model are: The coefficient a is the consistency coefficient and µ∞, that
is, the infinite shear rate viscosity [14].

η(γ̇) = µ∞ + a|γ̇|m−1, (1.2)

where η is the fluid viscosity, that is a function of rate shear γ̇. We note that Sisko model plays a significant
role in the modeling of fluids. If m = 1 or a = 0, we obtain Newtonian fluid. If µ∞ = 0 the relation (1.2)
recovers the generalized power law model. In addition, Weir and Bailey in [16], have been selected Sisko
model from twenty compared models. The choice of Sisko model is justified by the fact which many
research areas having been using it. Among those are, for example, the blood [1, 5] and the lubricating
greases [14]. The solution of the problem could be acquired numerically. But the full analytic solution
cannot be achieved unless for a few particular cases, m = 0.5, m = 1 (linear), m = 2 and m = 3 Ferrás
et al. [9]. In this paper, we propose a new approximation method to resolve a problem of laminar flow
of a generalized Newtonian fluid with slip boundary conditions using a Sisko model. This method is
based on the variational iteration method (VIM) combined with an approximation step. The aim of the
approximation is to relax the calculus of the integral. The efficiency of this method is shown in the cases
where the exact solution is accessible.

2. Problem solving

Using the VIM, we can obtain an explicit approximate solution. But in this problem, unfortunately, we
will show that most, if m is not an integer number, the processes of calculus by VIM are confronted with
a not obvious integration. To address this problem, we propose in the following subsections two stages
to solving the problem (1.1).

2.1. Variational iteration method step

The analysis of many physical questions leads to a nonlinear differential problem. Sometimes, we
could not have an exact solution. If we are able to do so, we have many difficult procedures of calculus
to handle. We can overcome these problems with the variational iteration method. This is a method
proposed by He [10] and developed by several authors. For more details, see, for example, Wazwaz [15]
and Martin [11]. Besides, the VIM gives an efficient procedure to determine an analytic solution for some
class of nonlinear problems. In addition, we note the simplicity of this method in taking into account the
boundary conditions. Hence, we will show that this technique can have an analytical approximation of
the solution by only a few simple steps of calculus. The general principle of the VIM is as follows. We
consider the equation:

Lu(x,y) +Nu(x,y) = g(x,y),
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with Lu(x,y) = uy design the linear part of equation, Nu(x,y) = α(uy)
m is the nonlinear part and

g(x,y) = βy is the free term. In this conditions of problem (1.1), the gradient of velocity ∇u = uy. For

this reason, we noted that u(x,y) = u(y). The partial derivative
∂

∂y
(·) is denoted by (·)y.

The n+ 1-th approximate solution of (1.1) is generally given by

un+1(y) = un(y) +

∫y
0
λ(ξ)

(
Lũ(ξ) +Nũ(ξ) − g(ξ)

)
dξ,

with λ(ξ) is a Lagrangian multiplier and ũ(ξ) is considered as a restricted variation function, such δũ(ξ) =
0. Then

δun+1(y) = δun(y) +

∫y
0
λ(ξ)

(
δuny(ξ) +αδuny(ξ)

m − g(ξ)
)
dξ. (2.1)

Using integration by parts on (2.1), we show in this case that the Lagrangian multiplier λ(ξ) = −1.
To begin the calculus of the solution, we put

u0(y) = u(0) = b.

The iteration formula becomes:

un+1(y) = un(y) −

∫y
0

(
uny(ξ) + (uny(ξ))

m −βξ
)
dξ.

Then, for n > 1, we obtain the following reduced iteration formula

un+1(y) = b+
β

2
y2 −α

∫y
0
unyξ

mdξ.

The solution of the problem (1.1) is given by u(y) = lim
n→∞un(y). Therefore, u0y(y) = 0 then

u1(y) = b+
β

2
y2.

The second order approximation of solution

u2(y) = b+
β

2
y2 −

αβm

m+ 1
ym+1.

Similarly, we obtain

u3(y) = b+
β

2
y2 − Im(y). (2.2)

With
Im(y) = α

∫y
0

(
βmξm(1 −αβm−1ξm−1)

)m
dξ. (2.3)

We are going to propose the third order approximation of solution u3 as an explicit approximate solution
in the continuation of this paper.

2.2. Approximation step
By means of binomial formula, the exact integral Im in (2.3) can easily be calculated (polynomial

function), in which case m is an integer. Otherwise, we can evaluate this integral with a higher order
approximation using the generalized binomial formula. We obtain the infinite sum:

(1 −αβm−1ξm−1)m =

∞∑
k=0

(
k

m

)
αk(βy)k(m−1). (2.4)
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Based on (2.4), we propose the following approximation:

(1 −αβm−1ym−1)m =1 −mαβm−1ym−1 +
α2β2m−2m(m− 1)

2
y2m−2

−
α3β3m−3m(m− 1)(m− 2)

6
y3m−3.

(2.5)

As regards to the physical problem, frequently, we have y ∈ [−h,h] and x ∈ [0,L] with generally h � L.
In addition to this, it is often reasonable to consider the analyzed equation in its a dimensionless form.
Then, we can obtain a reasonable precision if we take h as relatively lower to 1.

By integrating the expression (2.5), we have

Im(y) =
αβm

m+ 1
ym+1 −

α2β2m−1

2
y2m +

α3β3m−2m(m− 1)
2(3m− 1)

y3m−1

−
α4β4m−3m(m− 1)(m− 2)

12(2m− 1)
y4m−2,

(2.6)

if m 6= 1
3

,
1
2

.

3. Numerical method

We propose to find a numerical solution to problem (1.1) with a finite difference method. We have
two main objectives:
First, to present a numerical method in the cases where the proposed method failed to give a precise so-
lution. Second, to validate the results obtained in this study, particularly in the case where the expression
of exact solution is not accessible. To do this, we begin to define a set of N grid points yj in the domain

[0,h], we choose a step size ∆y =
h

N
. The partial derivatives

∂u

∂y
is approximated by central difference

quotients. We obtain the following two steps numerical algorithm:

• Find Xk solution of Xk +α
(
Xk

)m
−βyk = 0.

• Find the velocity uk+1 = uk−1 + 2∆yXk.

We note that first step consists of finding the approximation of partial derivative X =
∂u

∂y
, where we

have used the Newton-Raphson to do so. The second consists in the approach of the fluid velocity u.
We have written a Matlab code to implement this algorithm using the Matlab function ”fsolve” for the
Newton-Raphson method.

4. Numerical examples

As noted above, the parameter m depending on the nature of the fluid. Following the values of m, we
could distinguish:

Example 4.1 (m = 2 (Dilatant fluid)). We substitute m = 2 in the expression (2.6), we obtain

I2(y) =
αβ2

3
y3 −

α2β3

2
y4 +

α3β4

5
y5.

By using (2.2), the third approximated solution is given by

u3(x,y) = b+
β

2
y2 −

αβ2

3
y3 +

α2β3

2
y4 −

α3β4

5
y5.
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The exact solution can be calculated (see the Appendix). Otherwise, to obtain an objective comparison
between the exact solution uex and the proposed one u3 with three parameters α, β and b, we have
developed uex in Taylor series

uex(x,y) = b+
β

2
y2 −

αβ2

3
y3 +

α2β3

2
y4 −α3β4y5 +

7α4β5

3
y6 + · · · .

Then we obtain

|uex(y) − u3(y)| =
4α3β4

5
|y|5 6 Cαβh

5.

Theoretically, the VIM solution converges to the exact solution. In this study, we have combined an ana-
lytic computing process with an approximate formula (2.4), in order to prevent the complicated integral
problems.

Table 1: The point-to-point comparison between the errors of VIM and the numerical method for m = 2.
y VIM Numerical method
0 0 0
0.1 4× 10−7 7× 10−5

0.2 1× 10−5 5× 10−4

0.3 8× 10−5 1.8× 10−3

0.4 0.0003 0.0041
0.5 0.0008 0.0077
0.6 0.0019 0.0128
0.7 0.0038 0.0194
0.8 0.0067 0.0279
0.9 0.0111 0.0382
1.0 0.0173 0.0506

Example 4.2 ( m = 1.5 (Dilatant fluid and non-integer index)). If m =
3
2

, using (2.2) and (2.6), we obtain

I1.5(y) =
β1.5

2.5
y2.5 −

αβ2

2
y3 +

3α2β2.5

28
y3.5 +

3α3β3

96
y4 +

9α4β3.5

2640
y4.5.

Thus,

u3(x,y) = b+
β

2
y2 +

β1.5

2.5
y2.5 −

αβ2

2
y3 +

3α2β2.5

28
y3.5 +

3α3β3

96
y4 +

9α4β3.5

2640
y4.5.

Example 4.3 (m = 0.5 (Pseudoplastic fluid case)). If m =
1
2

and using (2.2) and (2.6) we obtain

I0.5(y) =
αβ0.5

1.5
y1.5 −

α2

2
y−

α3

4
β−0.5y0.5.

Thus

u3(y) = b+
β

2
y2 +

αβ0.5
1.5

y1.5 −
α2

2
y−

α3

4
β−0.5y0.5. (4.1)

As in the case for m = 2, we could obtain the full analytical solution developed in Appendix for m =
1
2

:

uex(y) =
1
12
β(α2 + 4βy)1.5 −

α

2
y+ b−

α3

12
β.
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The development of uex in Taylor series is given by

uex(y) ≈ b−
α3β

12
+
α3

12β
+
βy2

2α
−
β2y3

3α3 +
β3y4

2α5 .

To compare the VIM solution and the exact solution, with neglecting the higher-order terms, thus we
obtain the following expression:

(uex(y) − u3(y)) = −
α3β

12
+
α3

12β
+
α3

4
β−0.5y0.5 +

α2

2
y−

αβ0.5
1.5

y1.5 + (
β

2α
−
β

2
)y2. (4.2)

The expression (4.2) shows that the difference between the exact solution and the VIM one leads to a not

negligible quantity, we conclude that result is imprecise for m =
1
2

.

4.1. Comparison of the results

In order to test the efficiency of the VIM, we have proposed some numerical essays. We discuss the
results obtained by applying both methods. For those purposes, the selected physical parameters appear
in dimensionless form. We chose h = 1, the step size ∆y = 0.05, b = 1, α = 1, 0.1 and β = 0.5, 0.05.

As the results in Figure 1, the calculation of the velocity by the numerical method and VIM is in good
agreement with the exact solution with a behavior index m = 2 and parameters α = 0.1 and β = 0.05. In
turn, the VIM proves more efficiency compared to the proposed numerical method if α = 1 and β = 0.5
(see Figure 2 and Table 1).

In Figure 3 the numerical method starts off approximating the VIM solution reasonably well. With the

behavior index m =
3
2

and parameters α = 1 and β = 0.05. That is a sensitive case as the exact solution is
not known.

Figure 4 shows the harmony between the numerical and exact solution. That is a case when the VIM

is failed to give a reasonable result. The behavior index is chosen m =
1
2

and parameters α = 1 and
β = 0.05.

Figure 1: Precise results are shown in this figure using the VIM and the numerical method. Noting that the three values of the
velocity are confused.
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Figure 2: This figure shows that VIM is more precise compared the proposed numerical method.

Figure 3: Curves of velocity calculated by VIM in blue line (solid line) and numerical method (red or dashed line). (Dilatant
fluid and non-integer index m = 1.5).

Figure 4: Curve of velocity calculated by the numerical method in blue solid line compared to exact velocity in red stars
(Pseudoelastic fluid with index m = 0.5).
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4.2. Discussions
Discussions: To solve the problem (1.1), we note that the VIM is an effective method. By using

the approximation (2.4), we have overcome the integral difficulty. For a dilatant fluid (m > 1), the
approximate solution seems to show the best precision often in the case m = 2, when the calculated
solution is compared to the exact solution. Should this not be the case, we have to use the numerical
technique to confirm the efficiency of the VIM solution. However, in the pseudoplastic (m < 1) case, the
proposed VIM method does not reach the same result. As one can see in the expression (4.2), the term on
the right obviously not negligible. In Addition, It is clear that in the expression of the VIM solution (4.1)
the exponent of y decrease. So, if we go further into the calculus to attain more precision, it leads to the
appearance of singular terms with a nonpositive exponent. That can affect the convergence quality. We
conclude in this case of pseudofluid, that this method is obviously not efficient. It means that we have to
apply the numerical method presented in the Section 3 in order to find the solution for this fluid type.

5. Conclusion

An approximation method for laminar flow of a generalized Newtonian fluid with slip boundary
conditions using a Sisko model has been presented in this paper. Exceptionally, for few particular values
of m, the analytic solution of the equation (1.1) is explored. Generally, it is not easy to calculate the
solution, such as the existence of the nonlinear term related to this exponentm. Through a novel approach
based on the VIM and combined with an approximate step, we have obtained an explicit approximated
solution with rapid convergence in the dilatant fluid case, without using restrictive assumptions. This
method has not proved effective in pseudofluid case. In order to enrich this analysis, we have proposed
to find a numerical solution to the problem (1.1) with the finite difference method. We have targeted two
objectives: first, to present a numerical method in the cases where the proposed method is failing to give
a precise solution; and second, to validate the results obtained in this paper. We have concluded that:
For a dilatant fluid, the numerical results show that the VIM had the best numerical performance both in
accuracy and in speed, especially compared to the proposed numerical method. However, the VIM fails
to get a result for a pseudoplastic fluid. For this latter, the numerical method is the most appropriate
method to use. In future attempts, we recommend to find the analytical solutions to the pseudofluid case
and extend the acquired result of other fluid types with more complex forms.

Appendix A: Analytical solutions

We will discuss in this appendix the existence of an analytic solution for the problem (1.1). Following
the method used by Polyanin and Zaitsev in [12], we can propose an exact solution for any behavior index
m, but these solutions are given only in parametric form. We believe that the full analytic form is only
possible for specific cases we will treat separately.

We consider the (1.1a)
uy +α

(
uy

)m
−βy = 0.

The general form is given by

y = f(uy) =
1
β
uy +

α

β

(
uy

)m.

Putting t = uy, we obtain

y = f(t) =
1
β
t+

α

β
tm

du

dt
=
du

dy

dy

dt
= tf ′(t) =

1
β
t+

mα

β
tm.

Thus
u =

∫
tf ′(t)dt =

1
2β
t2 +

mα

β(m+ 1)
tm+1 +C.
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One can obtain

y =
1
β
t+

α

β
tm, (5.1a)

u =
1

2β
t2 +

mα

β(m+ 1)
tm+1 +C. (5.1b)

The treatable cases are m ∈ {0, 0.5, 1, 2, 3} because one can easily give an explicit expression of t to respect
y (t = f−1(y)) using (5.1a) . Submitting that expression of t in (5.1b), we can obtain an expression analytic
of the velocity u. We note that the cases m = 0 and m = 1 are obvious.

Case m = 2: Solving the equation αt2 + t− βy = 0, we obtain t =
−1±

√
1 + 4αβy
2α

. For a physical ad-

missibility reason (
du

dt
> 0) and adding the boundary condition (1.1b), we can propose the following

solution:

uex(y) =
1

12α2β
(1 + 4αβy)

3
2 −

1
2α
y+ b−

1
12α2β

.

Case m = 0.5: This case is similar to last. But we solve Z2 +αZ−βy = 0, with Z2 = t. Then

uex(y) =
1

12β
(α2 + 4βy)

3
2 −

α

2
y+ b−

α3

12β
.

Case m = 3: The solution of equation αt3 + t−βy = 0, is given by it classical form

t =
(
q+ [q2 + r3]1/2)1/3

+
(
q− [q2 + r3]1/2)1/3,

where q = βy
2α and r = 1

3α . Respecting the physical admissibility of the problem we can propose an
analytic solution. For simplicity we treat the problem with β = 2/3 and α = 1/3. Then q = y, r = 1
and

t =
(
y+ [y2 + 1]1/2)1/3

+
(
y− [y2 + 1]1/2)1/3.

Thus

u(y) =
1
3
{
(
y+[y2 +1]1/2)1/3

+
(
y−[y2 +1]1/2)1/3

}2 +
3
8
{
(
y+[y2 +1]1/2)1/3

+
(
y−[y2 +1]1/2)1/3

}4 +b.
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