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Abstract 
With the rapid increase in the amount of online text information, it became more important to have 

tools that would help users distinguish the important content. Automatic text summarization attempts to 

address this problem by taking an input text and extracting the most important content of it. However, the 

determination of the salience of information in the text depends on different factors and remains as a key 

problem of automatic text summarization. In the literature, there are some studies that use lexical chains 

as an indicator of lexical cohesion in the text and as an intermediate representation for text 

summarization. Also, some studies make use of genetic algorithms in order to examine some manually 

generated summaries and learn the patterns in the text which lead to the summaries by identifying 

relevant features which are most correlated with human generated summaries. In this study, we combine 

these two approaches of summarization. Firstly, some of preprocessing operations like normalizer, 

tokenizer, stop word remover, stemmer, and POS tagger are done on the text. After that for each sentence 

we have only semantic words that are independent. Then, by set of position, thematic, and coherence 

features we score sentences. The final score of each sentence will be the integration of those features.  

Each feature has its own weight and should be identified to have well summary. For this reason first 

system goes throw learning phase to determine ache feature weight by genetic algorithm. The next phase 

is testing phase. In this phase system receives new documents and uses Persian WordNet and lexical 

chains to extract deep level of knowledge about the text. This knowledge is combined with other higher 

level analysis results. Finally, sentences are scored, sorted, and selected and summary is made. 

We evaluated our proposed system by two methods. 1) Precision/recall, 2) TabEval (a new evaluation 

tool for Persian text summarizers). We compared our system with two other Persian summarizers 

(FarsiSum, Ijaz). Results showed that our system had higher performance rather than others (i.e. higher 

precision/recall average and the best average score of TabEval). 

 

Keywords:Summarization, Text Summarizer, Mono-Document Summarization, Extractive Summarization, 

Persian Text Summarization. 
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1. Introduction 

Nowadays there is a vast amount of textual information on the web. It is too difficult for users to 
read and locate their needs in such a bulky information repository. Therefore, a summarization 
system would be helpful to allow users (1) to find the resources they need more rapidly and (2) to 
access the most important parts of the texts. A summary is defined to be a “brief restatement within 
the document (usually at the end) of its salient findings and conclusions” that ”is intended to 
complete the orientation of a reader who has studied the preceding text” *1+. It contains the most 
important information about the document.   

In other words, text summarization is the process of extracting the most important parts of 
information from source document(s) to produce a compact version for a particular user or task. 

Automatic text summarization can be used in various areas of applications such as intelligent tutoring 
systems, telecommunication industry, information extraction and text mining, question answering, 
news broadcasting and word processing tools. 

The most fundamental distinction that can be made between summarization types is the one 
between extracts and abstracts. An extract is a summary consisting entirely of material copied from 
the input. On the other hand, an abstract is a summary at least some of whose material is not 
present in the input [2]. Extracts are generally produced by shallow approaches, where the sentences 
of the text are analyzed to a syntactic level. These approaches extract salient parts of the source text 
and present them. On the other hand, abstracts are produced by deeper approaches. These 
approaches analyze the source text to a sentential semantics level. In order to retrieve important 
information from the text, approaches like template filling [10], term rewriting [11] and concept 
hierarchy [12] are used. After the analysis phase, these approaches go through a synthesis phase, 
which usually involves natural language generation. 

Most of the studies in this area are based on extraction. While abstraction deals heavily with natural 
language processing, extraction can be viewed as selecting the most important parts of the original 
document and concatenating them to form the summary. 
 

In this paper, we introduce TabSum, an automatic summarization system developed for extractive 
summarizing mono-documents in the Persian language. The fundamental components of this system 
are normalizer, tokenizer, stop word remover, stemmer, and POS tagger. Moreover, the concept of 
lexical chain and WordNet are used to extract the coherences between words. This system processes 
text via some feature sets like position, thematic, and coherence.  

The remainder of the paper is organized as follows: Section 2 discusses related works. Section 3 
introduces TabSum and Section 4 shows the experimental results. Finally, the Conclusion discusses 
current-and future efforts being made to improve the summaries generated. 

2. Related works 

The main steps of text summarization are identifying the essential content, “understanding” it clearly 
and generating a short text. Understanding the major emphasis of a text is a very hard problem of 
NLP [3]. This process involves many techniques including semantic analysis, discourse processing and 
inferential interpretation and so on. Text Summarization methods can be classified into extractive 
and abstractive summarization. An extractive summarization method consists of selecting important 
sentences, paragraphs etc. from the original document and concatenating them into shorter form. 
The importance of sentences is decided based on statistical and linguistic features of sentences. 
Simply extractive model based on selecting some pieces of original text in the other hand Abstractive 
models based on paraphrasing and generating a shorter text. It’s clear that the implementing of 
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abstractive models is more difficult than the Extractive one. Most of the researcher chose the 
extractive methods. 

There are many summarization methods and systems available for languages such as English. 
Although some of them claim to be language-independent, they need at least language resources to 
work with. The lack or shortage of these resources such as training and test data, lexical ontologies or 
semantic lexicons, lists of stop words and cue-words and even fundamental language processing 
tools such as reliable tokenizers, stemmers and parsers all make text summarization a hard task for 
languages such as Persian with less resources. In contrast to English summarization systems, 
summarization document written in Persian is a new, ongoing research effort. 

The oldest work on Persian text summarization is FarsiSum [4]. It is an HTTP client/server application 
programmed in Perl based on SweSum [5], a summarizer for the Swedish language. FarsiSum extracts 
data from single documents with the main body of language independent modules implemented in 
SweSum. In FarsiSum, the Persian stop-list has been added in Unicode format and the interface 
modules are adapted to accept Persian texts. 

The second work is a single document Persian text extractor based on lexical chains and graph-based 
methods [8]. This System uses 5 measures: namely similarity to other sentences, similarity to user’s 
query, similarity to the title and the number of common words and cue words to score a sentence. 
Some specific Persian resources to prepare the chains and graphs are used in its scoring module. 

Honarpisheh and his colleagues [9] have developed a multi-document multi-lingual text summarizer 
based on singular value decomposition and hierarchical clustering. Their approach relies on only two 
resources for any language: a word segmentation system and a dictionary of words in conjunction 
with their document frequencies. The summarizer initially receives a collection of related documents 
and transforms them into a matrix; it then applies singular value decomposition to the resulting 
matrix. Using a binary hierarchical clustering algorithm, it then chooses the most important 
sentences of the most important clusters to create the summary. 

The next one is Parsumist [6]. It exploits a combination of statistical, semantic and heuristic- 
improved methods. It can generate generic or topic/ query- driven extracts summaries for single- or 
multiple Persian documents.  

The last system I introduced is a summarization system that it work base on fuzzy logic [7]. They used 
MATLAB because it is possible to simulate fuzzy logic in this software. To do so; first, they consider 
each characteristic of a text such as sentence length, similarity to little, similarity to keyword and etc, 
which are the input of fuzzy system. Then, they enter all the rules needed for summarization, in the 
knowledge base of this system. 

Afterward, a value from zero to one is obtained for each sentence in the output based on sentence 
characteristics and the available rules in the knowledge base. The obtained value in the output 
determines the degree of the importance of the sentence in the final summary. 

Our system is somehow similar to the system in [6] as they uses lexical chains as well, they have 
improved their work by using semantic features and representing a conceptual meaning of the text 
using synonym sets, applying redundancy checking, smoothing the summary for coherence and 
making it applicable. 

 

3. Proposed system 

The aim of this paper is to combine two approaches of summarization. Firstly, lexical chains are 
computed to exploit the lexical cohesion that exists in the text. Then, this deep level of knowledge 
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about the text is combined with other higher level analysis results such as location analysis and 
thematic analysis. Finally, all these results that give different levels of knowledge about the text are 
combined to obtain a general understanding. 

In this thesis, we use a sentence extraction procedure that makes use of these properties of the text 
to weight the sentences. Each sentence in a text is given a sentence score that is calculated using the 
different text feature scores. After that, the sentences are sorted in descending order of their score 
values. And then appropriate number of highest score sentences are selected from the text to form 
the summary, according to the summarization ratio. 

While weighting the sentences, not all the properties of the text will have the same importance. 
However, weighting the text feature scores with predetermined constant weights does not seem to 
be powerful enough for a good summarization. For this reason, the system first goes through a 
training phase, where the weights of each text feature are learned using machine learning methods. 

In order to be able to learn the weights of different text features, a set of manually summarized 
documents is used. These human generated extracts are expected to give an idea about the patterns 
which lead to the summaries. In this study, we made a corpus from some of Iranian famous 
newspapers. Our corpus has 30 documents and each document has 5 ideal summaries.  

After the feature score weights are learned through the training phase, the system will go through a 
testing phase where new documents are introduced to the system for summarization. In this phase, 
sentence scores will be calculated for each sentence in a document using the text feature scores for 
that sentence and their respective score weights. Then the sentences will be sorted in a descending 
order of their score values, and the highest score sentences will be selected to form the extractive 
summary. 

3.1. Text Features 

In this system, the sentences are modeled as vectors of features extracted from the text. The system 
uses 8 text features to score sentences. For each sentence of a document, a sentence score will be 
calculated using the feature scores of these text features for that sentence. Each feature score can 
have a value between 0 and 1. 

The text features used in this system are grouped into three classes, according to their level of text 
analysis. Table 1 shows the features and their corresponding classes. 

Table 1: Text features 

Location Features 
Sentence Location 

Sentence Relative Length 

Thematic Features 

Average TF 

Sentence Resemblance to Title 

Sentence Centrality 

Cohesion Features 

Number of Synonym Links 

Number of Co-occurrence Links 

Lexical Chain Score 

3.2.Location Features 

These features exploit the structure of the text at a shallow level of analysis. Depending on the 
location and length of the sentence, the importance of its content is tried to be predicted. Based on 
this prediction, a sentence will be given a higher or a lower score. 

3.2.1.Sentence Location 

This feature scores the sentences according to their position in the text. In this work, we assume that 
the first sentences of the text are the most important ones. So, the first sentence of a document gets 
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a score value of 1, the second sentence gets 0.9, the tenth sentence gets 0.1 and the rest of the 
sentences get 0. 

3.2.2. Sentence Relative Length 

This feature uses the sentence length to score a sentence, assuming that longer sentences contain 
more information and have a higher possibility to be in the summary. Thus, shorter sentences are 
penalized. The feature score is calculated as follows for the sentence s in the document d: 

𝑆𝑅𝐿(𝑠, 𝑑) =  
𝑙𝑒𝑛𝑔𝑡(𝑠)

𝑚𝑎𝑥𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡(𝑑)
 (1) 

3.3.Thematic Features 

These features study the text more deeply to analyze the term based properties. The term 
frequencies of each document and each sentence are calculated. 

3.3.1.Average TF 

This feature calculates the Term Frequency (TF) score for each term in a sentence and takes their 
average. The TF metric makes two assumptions: 

(i) Multiple appearances of a term in a document are more important than single appearances. 

(ii) Length of the document should not affect the importance of the terms.  

The TF score for a term t in the document d is calculated as follows: 

𝑇𝐹 𝑡, 𝑑 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑂𝑓 𝑇𝑒𝑟𝑚 𝐼𝑛 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡(𝑡, 𝑑)

𝑚𝑎𝑥𝑇𝑒𝑟𝑚𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑑)
 

(2) 

So, the feature score for a sentence s is the average of the TF scores of all the terms in s. 

3.3.2.Sentence Resemblance to Title 

This feature considers the vocabulary overlap between a sentence and the document title. If a 
sentence has many words in common with the document title, it is assumed to be related to the 
main topic of the document. So, it is assumed to have more chance to be in the summary. 

The feature score is calculated as follows for a sentence s: 

𝑆𝑅𝑇 𝑠 =
 𝑚 ∩ 𝑘 

 𝑚 ∪ 𝑘 
 (3) 

where m is the set of terms that occur in sentence s, and k is the set of terms that occur in the title. 

3.3.3.Sentence Centrality 

This feature considers the vocabulary overlap between a sentence and the other sentences in the 
document. If a sentence has many words in common with the rest of the document, it is assumed to 
be about an important topic in the document. So, it is assumed to have more chance to be in the 
summary. 

The feature score is calculated as follows for a sentence s in the document d: 

𝑆𝐶 𝑠, 𝑑 =
𝑚

𝑘
 (4) 

Where m is the number of terms that occur both in sentence s and in a sentence of document d 
other than s, and k is the total number of terms in document d. 
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3.4. Cohesion Features 

Cohesion can be defined as the way certain words or grammatical features of a sentence can connect 
it to its predecessors and successors in a text. Cohesion is brought about by linguistic devices such as 
repetition, synonymy, anaphora and ellipsis. In this system, three cohesion based features are used. 

3.4.1. Number of Synonym Links 

In order to compute this feature, first the nouns in a sentence are extracted by a Persian part-of-
speech tagger. Then nouns in the given sentence s are compared to the nouns in other sentences in 
the document. This comparison is made by taking two nouns from the two sentences and looking 
whether they have a synset in common in WordNet. For instance, if a noun from sentence s has a 
synset in common with a noun from another sentence t, this means there is a synonym link between 
the sentences s and t. 

So, the feature score is calculated as follows for a sentence s in the document d: 

𝑁𝑆𝐿 𝑠 =
𝑛

𝑘
 (5) 

Where n is the number of synonym links of sentence s (i.e., the number of sentences t) and k is the 
total number of sentences in document d. 

3.4.2. Number of Co-occurrence Links 

In order to compute this feature, first all the bigrams in the document are considered and their 
frequencies are calculated. If a bigram in a document has a frequency greater than one, then this 
bigram is assumed to be a collocation. 

Secondly, terms of the given sentence s are compared to the terms in other sentences in the 
document d. This comparison procedure checks if a term from sentence s forms a collocation with a 
term from another sentence. If it does, this means there is a co-occurrence link between this 
sentence and the sentence s. 

So, the feature score is calculated as follows for a sentence s in the document d: 

𝑁𝐶𝐿 𝑠 =
𝑛

𝑘
 (6) 

Where n is the number of co-occurrence links of sentence s and k is the total number of sentences in 
document d. 

3.4.3. Lexical Chain Score 

In order to use lexical chains as a means for scoring the sentences of a document, first the chains are 
computed for the whole document. Then these constructed chains are scored and the strongest ones 
among them are selected. Finally, sentences of the document are scored according to their inclusion 
of strong chain words. The details of the lexical chain computing and scoring processes are explained 
in the next part. 

So, after the chains are constructed and scored for a document d, the lexical chain score of a 
sentence s is as follows: 

𝐿𝐶 𝑠 =
 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖 |𝑖 ∈ 𝑠 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑎 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑎 𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑎𝑖𝑛𝑖

𝑚𝑎𝑥𝐿𝐶𝑆𝑐𝑜𝑟𝑒(𝑑)
 

(7) 

3.5.Computing Lexical Chain Scores 
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Lexical chains are composed of words that have a lexical relation. In order to find these relations 
among words, Persian WordNet lexical knowledge base is used. In WordNet, words have a number of 
meanings corresponding to different senses. Each sense of a word belongs to a synset (a set of words 
that are synonyms). This means, ambiguous words may be present in more than one synset. Synsets 
may be related to each other with different types of relations (like hyponym, hypernym, antonym, 
etc.). 

In computing lexical chains, each word must belong to exactly one lexical chain. There are two 
challenges for this. First, there may be more than one sense for ambiguous words and a heuristic 
must be used to determine the correct sense of the word. Second, a word may be related to words in 
different chains. For example, a word may be in the same synset with a word in one lexical chain, 
while having a hyponym/hypernym relationship with another word in another chain. The aim here is 
to find the best way of grouping words that will result in the longest and strongest lexical chains. 

This process consists of four steps: 

• Selecting candidate words 

• Constructing lexical chains from these words 

• Scoring these chains 

• Selecting the strong chains 

3.5.1. Selecting Candidate Words 

Candidate words for lexical chains are the nouns. So, firstly, the text is put through Persian part of 
speech (POS) tagging. This tagging process is necessary to determine the nouns in the document. 
After the nouns are determined, they are added to the lexical chain candidate words list. 

3.5.2. Constructing Lexical Chains from Candidate Words 

When the candidate words list is constructed, the words in the list are sorted in ascending order of 
their number of senses. This way, the words with the least number of senses (i.e., the least 
ambiguous ones) are treated first.  

For each word, the system tries to find an appropriate chain that the candidate word can be added, 
according to a relatedness criterion among the members of the chain and the candidate word. This 
search continues for every sense of the candidate word, until an appropriate chain is found. If such a 
chain is found, the current sense of the candidate word is set to be the disambiguated sense, and the 
word is added to the lexical chain. 

This relatedness criterion compares each member of the chain to the candidate word to find out if 

• the sense of the lexical chain word belongs to the same synset as the sense of the candidate 
word 

• the synset of the lexical chain word has a hyponym relation with the synset of the candidate 
word 

• the synset of the lexical chain word has a hypernym relation with the synset of the candidate 
word 

• the synset of the lexical chain word has a co-occurrence relation with the synset of the 
candidate word 

• the synset of the lexical chain word has a related-to relation with the synset of the candidate 
word 
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If the system cannot find an appropriate lexical chain to add the candidate word for any sense of the 
word, a new chain is constructed for every sense of the word. For instance, this will create five new 
lexical chains in the system for a word that has five different senses. This way, when a new candidate 
word is compared to these chains, it will be possible to find a relation between the new candidate 
word and any of these five senses of the previous word. 

The problem here is that, there may be more than one chain in the system for the same word, which 
continue growing at the same time. For example a word with two senses will create two different 
lexical chains. When a second word arrives, it may be related to the first sense of the first word and 
be added to the first chain. After that, if a third word arrives and is related to the second sense of the 
first word, it will be added to the second chain and the two chains will continue growing 
independently. This will conflict the requirement that says each word must belong to exactly one 
lexical chain.  

This problem is eliminated by removing the rest of the chains for the word in the system, as soon as a 
second word is related with one of the senses of the word. 

3.5.3. Scoring the Chains 

Once the lexical chains are computed, each chain is given a score number that shows its strength. 
This score number will be used to select the strongest chains of the document and the sentences that 
contain words that occur in strong chains will be given a higher sentence score. 

The score of a chain depends both on its length and on its homogeneity. The length of a chain is the 
number of occurrences of members of the chain. Its homogeneity is inversely related with its 
diversity. For instance, if there are three distinct words in a chain that has seven members, this chain 
is assumed to be stronger than a chain with the same number of members, but five distinct words. 

So, the score of a chain is calculated as follows: 

𝑠𝑐𝑜𝑟𝑒 = 𝑙𝑒𝑛𝑔𝑡 ∗ 𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 (8) 
Where 

𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = 1 −
𝑛𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

𝑙𝑒𝑛𝑔𝑡
 

(9) 

3.5.4. Selecting the Strong Chains 

In this work, strong lexical chains are assumed to be the ones whose score exceeds the average of 
the chain scores by standard deviation. That is, a strong chain must satisfy the criterion; 

𝑠𝑐𝑜𝑟𝑒 𝑐𝑎𝑖𝑛 > 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑖𝑛𝑆𝑐𝑜𝑟𝑒𝑠 + 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑐𝑎𝑖𝑛𝑆𝑐𝑜𝑟𝑒𝑠) (10) 

Moreover, chains that contain only one word are not accepted as strong chains. 

3.6.Feature Weighting With Genetic Algorithm 

In this paper we use 8 different text features to score sentences. After each sentence of a document 
is scored, the sentences of the document are sorted according to their scores and the highest scored 
sentences are selected to form the summary of that document. 

However, not all the feature scores have the same importance while calculating the sentence score. 
A sentence score is a weighted sum of that sentence's feature scores. Each feature may have a 
different weight and these weights are learned from the manually summarized documents, using 
machine learning methods. Thus, a sentence's score is calculated as follows: 
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𝑆𝑐𝑜𝑟𝑒(𝑠)  =  𝑤1𝑓1(𝑠)  +  𝑤2𝑓2(𝑠)  +  𝑤3𝑓3(𝑠)  +  𝑤4𝑓4(𝑠)  +  𝑤5𝑓5(𝑠)  
+  𝑤6𝑓6 𝑠 + 𝑤7𝑓7(𝑠)  +  𝑤8𝑓8(𝑠) 

(11) 

𝑓𝑖are the feature scores of each sentence and their values can range from 0 to 1. They are computed 
separately for each sentence s. wican range from 0 to 15. They are learned using genetic algorithms. 

The system has two modes of operation: Training Mode (where the feature weights are learned from 
the corpus) and Testing Mode (where new documents are summarized using the weighted feature 
scores). Figure 1 shows these two modes. 

 

Figure 1: Model of the automatic summarization system 

In the training mode, the weights of each feature are learned by the system, using the manually 
summarized documents. 

Firstly, the text feature scores are calculated for every sentence. Since these scores are constant for 
each sentence, they are calculated once before the machine learning procedure starts. 

Then, these feature scores are integrated by a weighted score function in order to score each 
sentence. On each iteration of the training routine, random weights are assigned to 8 text features, 
and thus sentence scores are calculated. According to these sentence scores, a summary is generated 
for each document in the corpus. The precision of each automatically generated summary when 
compared to its manually generated summary is calculated using the following formula: 

𝑃 =
 𝑆 ∩ 𝑇 

 𝑆 
 

(12) 

where T is the reference summary and S is the machine generated summary. 

The average of these precisions gives the performance of that iteration. This performance metric 
shows how appropriate the random weights of that iteration werefor this summarization system. The 
best of all iterations is selected using geneticalgorithms. 

In this work, each individual of the population is a vector of feature weights. There are 8 features and 
each feature weight can have a value between 0 and 15. When these weights are represented in 
binary mode using 4 bits, they form a vector of length 32. This vector is the individual of the GAs.  

The fitness of an individual is the performance metric. Each individual represents a set of feature 
weights. Using these weights, sentence scores are calculated and summaries are generated for each 
document in the corpus. 
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The precision of the automatically generated summary when compared to the manually generated 
summary is calculated for each document and the average of these precision values is the fitness of 
that individual.  

In the training mode, genetic algorithms were run with the following properties: 

 There are 100 individuals in a population. 

 At each iteration, one fittest individual is selected for the next generation as an elite. 

 Rest of individuals is selected through selection, crossing over and mutation. 
o Rolette wheel for selection 
o Two point crossover 
o Swap for mutation 

 The algorithms are run for 1000 iterations. 

 Summarization ratio is 30 

Table 6.2 shows the weights of each text feature calculated by the training module. 

Table 2: feature weights from learning phase 
Sentence 
Location 

Sentence 
Relative Length 

Average 
TF 

Sentence 
Resemblance to Title 

Sentence 
Centrality 

Number of Co-
occurrence Links 

Number of 
Synonym Links 

Lexical 
Chain Score 

7 12 6 14 10 13 14 1 

 

4. Evaluation 

We used the intrinsic evaluation method and a summary evaluation tool (TabEval). Frist one judges 
the quality of a summary based on the coverage between it and the manual summary and the 
second one uses semantic relation between sentences of machine and human summaries. For testing 
the performance of our proposed system we compared it with two of exist Persian summarizers 
(FarsiSum, Ijaz). 

First, we used precision and recall as the performance measures. Assuming that T is the manual 
summary and S is the machine generated summary, the measurement of precision P and recall R are 
defined as follows: 

𝑃 =
 𝑆∩𝑇 

 𝑆 
 , 𝑅 =

 𝑆∩𝑇 

 𝑇 
 

 

Figure 2:results of evaluation by Precision metric 
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Figure 3:results of evaluation by Recall metric 

We used F-measure metric for balancing amounts between precision and recall where it is defined 
as: 

𝐹 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

 

Figure 4:results of evaluation by F-measure metric 

Results of intrinsic evaluation showed that our proposed system has better Precision and Recall 
among all systems and its performance is acceptable too. 

TabEval evaluates Persian text summarizers semantically. We sent our system’s results through it and 
got the score. 
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Figure 5:results of evaluation by TabEval tool 

The results of evaluating proposed system with TabEval show that our system is the best Persian 
summarizer and considers semantic metrics besides lexical ones. 

5. Conclusion 

In this study, we have combined two approaches used in automatic text summarization: using Lexical 
Chains to detect the lexical cohesion that exists throughout the text, and using Genetic Algorithms to 
efficiently learn the weights to be used in sentence scoring. 

We have computed lexical chains in a text depending on the lexical relations among words in the 
text. These relations were determined using WordNet. All these computed chains were scored in 
order to select the strongest chains in a given text. 

Then we have computed different text features for each sentence in a text. These features tried to 
analyze the sentence to different levels. We used lexical chains as the basis for one of these feature 
functions. We gave higher lexical chain feature scores to sentences that contained more strong 
lexical chain words. After all the feature scores were computed, we used genetic algorithms to 
determine the appropriate feature weights. These feature weights were then used to score the 
sentences in the testing mode. The highest scored sentences were selected to be included in the 
summary. 

The contribution of this study is that it puts the benefits of lexical chain approach and genetic 
algorithms approach together. It combines information coming from different levels of analysis on 
text. Different from other work in this area, location features like sentence location, thematic 
features like sentence centrality and cohesion features like sentence inclusion of strong lexical chain 
words are all considered together in this study. It also makes use of machine learning approach to 
determine the coefficients of this combination. 

As a future work, the model can be tested on different text genres. The corpus we used in this study 
consisted of newswire documents. However, the tests can be run on scientific documents or some 
other genre in order to see the change in the text feature performances and in the overall system 
performance. 
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