
1 
 

Journal of mathematics and computer Science        12 (2014) 1 - 11 

 

The Biennial Malmquist Index in the of Negative Data 

Narjes Mohammadi1, Alireza Yousefpour*, 2 

1. Science and Research branch, Islamic Azad university, Mazandaran, Iran. 

2.  Department of IT & Computer, Islamic Azad University of Qaemshahr branch, Iran 

aryousefpour@yahoo.com 

 
Article history: 

Received May 2014 

Accepted June 2014 

Available online July 2014 

Abstract 

We purpose the range directional model (RDM), a particular case of the directional distance 

function, is used for computing efficiency in the presence of negative data. We use RDM efficiency 

measures to arrive at a Malmquist-type index which can reflect productivity change. 

We illustrate how the biennial Malmquist index can be used, not only for comparing the 

performance of a unit in two time periods, but also for comparing the performance of two different 

units at the same or different time periods. The proposed approach is then applied to a sample of bank 

branches where negative data were involved. In this paper, we introduce a biennial Malmquist index of 

productivity change that can be used with negative data. 

 

 

1. Introduction 

The computation of productivity change by means of efficiency measures was introduced by Caves et 

al. (1982) at the first time and developed by Nishimizu and Page (1982) and by Fare et al. (1994), in 

the context of parametric and non-parametric efficiency measurement, respectively. The Fare et al. 

(1994) approach has become known as the measurement of productivity change through Malmquist 

indices. Though several applications of Malmquist indices exist in the literature, to the authors’ 

knowledge there is none where efficiency measures were computed for situations where some data 

were negative. Negative data may arise due to the use of input–output variables like changes in clients 

or accounts from one period to the next in the case of our bank branches, or due to the use of variables 

like profit that may take both positive and negative values.  
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The use of profit measures is very common in the banking literature in particular for measuring profit 

efficiency. To measure efficiency under negative data we use the approach developed by Portela et al. 

(2004) named range directional model (RDM). To calculate Malmquist indices using the RDM we 

adapt the Global Malmquist index of Pastor and Lovell (2005), analyzed and extended in Portela and 

Thanassoulis (2008). The index uses a single reference frontier drawn on a pooled panel of data. We 

refer to our productivity index as the biennial Malmquist index since the frontier of a pooled panel is 

often referred to as a biennial frontier. We use the biennial Malmquist index not only to assess the 

change in the productivity of a unit over time but to also compare the productivities of two units 

operating at the same or different points in time. 

The biennial Malmquist productivity index that has three attractive features: it avoids linear 

programming infeasibilities under variable returns to scale, it allows for technical regress, and it does 

not need to be recomputed when a new time period is added to the data set. 

2. DEA Malmquist productivity index 

Fare et al. (1992) construct the DEA-based Malmquist productivity index as the geometric mean of 

two Malmquist productivity indexes of Caves et al. (1982), which are defined by a distance Function 

D(.). Caves et al. (1982) assume 1),( kkK yxD  , that is, they assume the technology for firm k is 

efficient, and their distance function does not reveal inefficiency. By allowing for inefficiency and 

modeling the technology frontier as piecewise linear, Fare et al. (1992) decompose their Malmquist 

productivity index into two components, one measuring the change in efficiency and the other 

measuring the change in the frontier technology. The frontier technology determined by the efficient 

frontier is estimated using DEA for a set of DMUs. However, the frontier technology for a particular 

DMU under evaluation is only represented by a section of the DEA frontier or a facet. Suppose we 

have a production function in time period t as well as period t+1. Malmquist index calculation requires 

two single period and two mixed period measures. The two single period measures can be obtained by 

using the CCR DEA model. 
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Where 
t

iox  is the ith input and 
t

roy  is the rth output for DMU in time period t. The efficiency 

)),((  o

t

o

t

o

t

o yxD  determines the amount by which observed inputs can be proportionally reduced, 

while still producing the given output level. Using t+1 instead of t for the above model, we get

),((
111  t

o

t

o

t

o yxD , the technical efficiency score for DMU in time period t+1.  

The first of the mixed period measures, which is defined as ),((
11  t

o

t

o

t

o yxD  for each DMU o ,

},,...,2,1{ nQo  is computed as the optimal value to the following linear programming problem: 
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Similarly, the other mixed period measure, ),(
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

, which is needed in the computation of the 

output-oriented Malmquist productivity index, is the optimal value to the following linear problem: 
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Fare et al, (1992) input-oriented Malmquist productivity index, which measures the productive change 

of a particular DMU o , },,...,2,1{ nQo  in time t+1 and t is given as 
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It can be seen that the above measure actually is the geometric mean of two Caves et al. (1982) 

Malmquist productivity indexes. Thus, following Caves et al. (1982) suit, Fare et al. (1992) defined 

that M O >1 indicates productivity gain; M O <1 indicates productivity loss; and M O =1 means no 

change in productivity from time t to t+1. 
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one, and allowing for technical inefficiency, Fare et al. (1992) decompose their Malmquist productivity 
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shift or technical progress, a value of FS O  less than one indicates a negative shift or technical regress, 

and value of FS O  equal to one indicates no shift in technology frontier.  

2. The RDM for computing efficiency measures when some data are negative 

The Range Directional Model (RDM) developed in Portela et al. (2004) was inspired by the well 

known directional distance model of Chambers et al. (1996, 1998). The RDM provides efficiency 

scores similar in meaning to radial efficiency scores, which can be directly used to compare 

production units when some inputs and/or outputs are negative. Consider for DMU j (j=1,..,n) a vector

),...,( 1

t
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j xxx  reflecting m inputs consumed for producing a vector of s outputs ),...,( 1

t

sj

t
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t
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time period t (t=1,..,T). Define the technology of time period t as ),{( ttt yxT  ,

}tt yproducecanx  Considering ),...,,,..,,(),( t
s

tt
m

tt yyxxxyx ggggggg
121

 as the directional vector, 

results in the directional distance function being generally defined for a DMU k as: 
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The directional distance function can be used with any directional vector. Often the observed input and 

output levels of the DMU concerned are used as the directional vector so as to link with Farrell 

measures of efficiency. However, using such directional vectors poses a problem when some of its 

components are negative. This is because the negative components in the directional vector lead to 

worse rather than better values for the input or output concerned when a positive step length is taken in 

the direction of the vector. One way to overcome this problem would be to use a fixed directional 

vector, like the unit direction vector used in or the average input and output vector used in Park and 

Weber (2006). However, the choice of a fixed direction would be arbitrary, while our approach selects 

a direction that has an intuitive appeal, because we can control whether improvements are sought 

which lead to attainment targets that are either least or alternatively most challenging to attain.  

In the RDM the directional vector reflects ranges of possible improvement defined for DMU k, and for 

a given time period t, as 
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These ranges assume implicitly the existence of an ideal point with maximum outputs and minimum 

inputs observed in period t. Note that this idea has also been used in a different context by Fare et al. 

(2004), where a hypothetical DMU with maximum outputs and minimum inputs was used as a base 

against which all others were compared in a cross section of countries in one year. The RDM for 

DMUk, observed in time period t, is as in 
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In this paper we are particularly interested in the output oriented RDM model (that is used in the 

empirical application). This is a particular case of the general model in (2), where R t
kx

is set to the zero 

vector. For the case of a technology exhibiting variable returns to scale (VRS) the output oriented 

RDM can be solved through linear programming using the model in (3), for each DMUk where (k 

=1,... , n) observed in a general time period t. 
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The optimum solution to model (3) provides an inefficiency measure equal to
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efficiency of unit k. Note that we have 
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constraint in (3) is binding, 
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rky   being the value at the frontier (target) yielded by (3) for output r (i.e 
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rjjj

t

rk yy  ).the measure is radial as in the traditional DEA model in the sense that it leads to 

target output levels 
t

rky  for kDMU  which are an equiproportional distance )(  k1  from the 

observed output levels )
t

rky ). However, the proportions here are not of the distance between the 

observed output levels and the origin as in the traditional DEA model, but rather of the distance 

between the observed and the ideal output levels. In other words the ideal point here plays the role of 

the origin in traditional radial DEA measures of efficiency.  

Note, however, that there is qualitative difference between measuring efficiency relative to observed 

benchmark units, as in traditional DEA, and the use of an ideal point to simply define a direction of 

improvement. For example, the direction of improvement may not necessarily take us towards 

benchmark units that have a similar mix of inputs and outputs to the unit being assessed. It is shown in 

Portela et al. (2004) that the RDM model is translation and units invariant when defined for a variable 

returns to scale (VRS) technology. A constant returns to scale (CRS) assumption for the technology is 

not consistent with the existence of negative data, because a CRS technology assumes that any activity 

can be ‘‘radially expanded or contracted to form other feasible activities”. However, the radial scaling 

loses its meaning when we have a mix of positive and negative data, since a radial expansion of the 

absolute value of a negative factor would make its level worse (i.e. less desirable). Hence the CRS 

assumption that efficiency is maintained under the same radial expansion or contraction of all inputs 

and outputs cannot be guaranteed. In addition, when some data are negative one may not be able to 

define an efficient frontier passing through the origin, as is assumed under CRS, and therefore an 

assumption of global CRS breaks down for negative data. The ability of the RDM to yield radial-like 

measures of efficiency in the presence of negative data makes this model suitable for computing 

Malmquist indices when some data are negative. 

4. Biennial Malmquist indices 

As noted earlier, for computing our index and indicator of productivity change we shall use a biennial 

frontier, which envelops the pooled data of a panel covering a number of time periods, to which we 

refer collectively as the meta-period. In the present context, one advantage of using biennial  frontiers 

that we can handle well VRS technologies which become necessary in the presence of negative data. 

Using biennial meta-frontiers under VRS makes it possible to compute the index for all units. It is 

recalled that some approaches to decomposing Malmquist indices of productivity change under VRS 

can encounter infeasible models for some units. 

In the following we consider output-oriented distance functions and Malmquist indices and a balanced 

panel of  j=1,.,n producers in each of  t=1,.,u time periods. Denote by  
sm RRyx  ),(  the input-

output vector of a generic producer and by
smtt RRyx  ),(  the corresponding vector for a specific 
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producer j in time period t. For each t consider two benchmark technologies, the period t technology 

defined as  
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 The biennial technology corresponds to a DEA window analysis with a window width of two. In the 

case of panel data consisting of two time periods, i.e. u =2, the biennial technology is identical to a 

pooled or meta-frontier technology also used to construct a global Malmquist index. But in the general 

case of more than two time periods (u > 2), a series of u-1 overlapping biennial technologies exists for 

each pairwise comparison of adjacent time periods. The biennial Malmquist index is defined 

specifically for the adjacent time periods t and t+1 since two adjacent time periods are sufficient to 

establish the desirable properties of avoiding infeasibility, allowing technical regress, and maintaining 

previous productivity calculations. Sufficiency of two time periods for these desirable properties does 

not preclude the construction of a triennial Malmquist index. However the biennial Malmquist index is 

not transitive because it is constructed from a series of overlapping two period technologies, and these 

technologies can differ. This drawback, however, is not uncommon; it is shared by all Malmquist 

indices except the global index, which is transitive because it contains a single technology. Based on 

the classic CRS output distance function for (x, y) defined on the period t technology, 
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And the adjacent period t+1 Malmquist index is defined similarly, using the output distance function 

defined on the technology for period t+1,
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  i.e. similarly to the definition of 
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Since we are using the biennial CRS technology, which includes both the period t and period t+1 

technologies, we do not need to resort to any geometric mean when defining (6). 

The CRS benchmark technologies should be distinguished from the best practice technologies 

allowing for variable returns to scale (VRS). This convention enables it [the Malmquist index] to 

incorporate the influence of scale economies as a departure of the best practice technology from the 

benchmark technology. To define VRS counterparts of the CRS constructs above, consider first the 

period t VRS technology defined as 
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lambdas. Similarly the remaining VRS technologies are easily defined and denoted by the subscript 
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And the biennial VRS Malmquist index is defined by 
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Fig.1 Illustration of the biennial Malmquist index 

In Fig.1 consider two period specific frontiers (t and t+1) and a biennial-frontier (lying above the 

period t and t+1 frontiers for ease of illustration). 

Branch  F  observed in period t has a RDM efficiency of  IF/IF when it is assessed in relation to the 

period t frontier. We can also assess the efficiency of branch F in relation to the biennial meta-frontier, 

which we refer to as biennial efficiency. The biennial efficiency of branch F is given by IF''/IF, and it 

can be decomposed into two components: The within-period-efficiency (IF'/IF) and a technological 

gap(IF''/IF'). That is, .FIFIIFFIIFFI  The within-period-efficiency measures how distant 

the production unit is from the frontier of the period in which it was observed. The technological gap 

(TG) measures the distance between the period t frontier and the biennial frontier, at the input/output 

mix of the unit concerned. 
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Generalising, let ),0,,( t
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Retaining the same ideal point for within-period efficiencies and for biennial efficiencies makes the 

vector that departs from the observed point to the global ideal point collinear with the vector that 

departs from the target (on the within-period frontier) to the ideal point. This collinearity allows the 

meaningful computation of ratios between the various RDM efficiency measures as is now explained. 

Thus, we have: 
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Is retrieved residually as 
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Using the above definitions where efficiency measures are computed through the RDM model, we can 

define a biennial Malmquist index as: 
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When 1, tt

jBM  is greater than 1, the productivity of unit j has improved from t to t+1 (since its 

biennial efficiency in period t+1 is higher than that in t). Productivity has declined when 1, tt

jBM  is 

below 1. In 1, tt

jBM  we used two subsequent periods (t and t+1), but the definitions in (11) and 

throughout the paper are valid whatever the two periods being compared. Using (9) we can decompose 

the biennial Malmquist index as shown in (12). 
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              (12) 

The first term in (12) captures the pure technical efficiency change of unit j from year t to year t+1.  
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5. Empirical application to bank branches 

We consider input and output five bank branches in period t and period t+1 and to use biennial 

Malmquist in the model RDM to arrive at efficiency measure input and output in period t and period 

t+1. 

Output 3 Output 2 Output 1 Input 3 Input 2 Input 1 Bank 

89.453 838983 3668 56661 52.45 56.9.56 A 

283428 29225642 18..3488 62.7 54.51 5..6.95 B 

588485 83826242 288348 5..76.69 5..55 975... C 

238842. 692882 .868 946..1 51.99 619.74 D 

932488 923383488 .8.3488 5924. 55.5. 4.64.6 E 

Table 1 input and output five bank branches in period t 

Output 3 Output 2 Output 1 Input 3 Input 2 Input 1 Bank 

88.848 829328 3238 566.2 5..2 51.4.94 A 

3.2425 295532439 8838433 6192..1 54.52 5.59.16 B 

8538492 83329245 289346 5.166.9 5...5 962.94 C 

8.38468 63.23849 833. 77...1 51.71 6...6 D 

28359462 95328349 .3.849 592.5.7. 55..7 41.2.66 E 

Table 2 input and output five bank branches in period t+1 

To using the data and this model sryyRg t

rk

t

rjjyy t
rk

t
rk

..,,1,}{max   Calculations value t
rky

R  

for period t and period t+1. 

 Period t Period t+1 

RX11 0.0 0.0 

RX12 447.699 388910.5 

RX13 1477.76 12571.47 

RX21 6212.77 5419.12 

RX22 493440.3 444882.45 

RX23 1104.62 12053.88 

RX31 7424.7 7343.4 

RX32 449075.9 396631.6 

RX33 900.35 9993.16 

RX41 4300.0 4818.0 

RX42 0.0 0.0 

RX43 0.0 10492.05 

RX51 4422.67 46585.0 

RX52 80398.67 14655.0 

RX53 1251.51 0.0 

Table 3 value t
rky

R  for period t and period t+1 
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Table 4 shows optimal values 1ttand  is given by model RDM. 

 Max
t  Max

1t  

1 0.586310 0.0 

2 0.0 0.1312528 

3 0.643240 0.0 

4 0.0 0.0 

5 0.217417 0.0 

 Table 4 optimal values
1ttand   

The solution to model RDM provides an efficiency measure is as in: 

 ky
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RyxRDRyxRDM 1010 ),,,(),,,(
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 A measure of productivity is given by the ratio of efficiency measure in two periods (t and t+1), we 

can define a biennial Malmquist index as:  

t

j

t

j

Bf

y

t

j

t

j

Bf

Bf

y

t

j

t

j

Bf

tt

j

t
j

t
j

RyxMRD

RyxMRD
BM















1

1

),,,(

),,,( 111

1,
1







 

41726896.2
41369.0

1

586310.01

011,

1 



ttBM  

8687472.0
1

8687472.0

01

1312528.011,

2 



ttBM  

8030048.2
35676.0

1

643240.01

011,

3 



ttBM  

1
1

1

01

011,

4 



ttBM  

27293996.1
785583.0

1

2174417.01

011,

5 



ttBM  

When 1, tt

jBM  is greater than 1, the productivity of unit j has improved from t to t + 1 (since its 

biennial efficiency in period t+1 is higher than that in t). Productivity has declined when 1, tt

jBM  is 

below 1. 

DMU1 productivity has improved in period t and period t+1. DMU2 productivity has declined in period 

t and period t+1. DMU3 productivity has improved in period t and period t+1. DMU4 productivity has 

not changed in period t and period t+1. DMU5 productivity has improved in period t and period t+1. 

6- Conclusion 

This paper has presented an approach for computing biennial Malmquist indices for measuring 

productivity change over time and productivity differences between units in multi-input/multi-output 

contexts where some of those inputs and/or outputs take negative values.  

The paper also shows how biennial Malmquist indices can be computed in order to compare units on 

performance over time. This can be useful in several contexts where a company or government body 

needs to monitor comparative productivity changes between units. The paper uses unit-specific 
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boundaries and the biennial-frontier to compare units on productivity, and decompose the resulting 

measure into a number of components capturing the position of a unit within its own unit-specific 

frontier and the differences in unit-specific frontiers relative to the biennial-frontier. 
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