
Journal of mathematics and computer science 12 (2014), 113-123

Comparison of Particle Swarm Optimization and Backpropagation

Algorithms for Training Feedforward Neural Network

Nasser Mohammadi
1*

, Seyed Javad Mirabedini
2

1
Department of computer engineering, Tehran Science and Research Branch, Islamic Azad

University, Damavand, Iran
2
Department of computer engineering, Central Tehran Branch, Islamic Azad University,

Tehran, Iran
*E-mail: n.mohammadi_uni@yahoo.com

Article history:

Received July 2014

Accepted August 2014

Available online August 2014

Abstract
An interesting tool for non-linear multivariable modeling is the Artificial Neural Network (ANN)

which has been developed recently. The use of ANN has been proved to be a cost-effective technique. It

is very important to choose a suitable algorithm for training a neural network. Generally Backpropagation

(BP) algorithm is used to train the neural network. While these algorithms prove to be very effective and

robust in training many types of network structures, they suffer from certain disadvantages such as easy

entrapment in a local minimum and very slow convergence. In this paper, to improve the performance of

ANN, the adjustment of network weights using Particle Swarm Optimization (PSO) was proposed as a

mechanism and the results obtained were compared with various BP algorithms such as Levenberg-

Marquardt and gradient descent algorithms. Each of these networks runs and trains for different learning

ratios, activation functions and numbers of neurons within their hidden layer. Among different criteria

Mean Square Error (MSE) and Accuracy are the main selected criteria used for evaluating both models.

Also the MSE was used as a criterion to specify optimum number of neurons in hidden layer. The results

showed that PSO approach outperforms the BP for training neural network models.

Keywords: Particle Swarm Optimization, Backpropagation, Artificial Neural Network.

1. Introduction

ANN is a parallel distributed processor which can express nonlinear and complicated relationship

using input-output training patterns from the experimental data. Generally neural network learning is a

nonlinear minimization issue with many local minimum [1] which depends on network weights,

learning rules and architecture [2].One of the most common neural network architectures is

Feedforward Neural Network (FNN).Feedforward means that data flows in one direction from input to

mailto:n.mohammadi_uni@yahoo.com

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

114

output layer (forward). Among the different FNNs, we choose Multilayer Perceptron (MLP) which is

widely used for pattern classification, recognition, prediction and approximation. In fact, MLP can

solve problems which are not linearly separable. These networks are normally arranged in three layers

of neurons: the input and output layers which represent the input and output variables of the model and

one or more hidden layers which lie between them and contain the network’s ability to learn non-linear

relationships [3].

ANNs have a special ability to approach the dynamics of nonlinear systems in many applications in a

black box way. Generally, the development of a good ANN model depends on various operators. The

first operator is identified with the input-output data driven, where model qualities are mostly affected

by the quality of data being used. The second operator is related to the network architecture.Various

network architectures result in different performances. The model size and its complexity are the third

operator in which a small network may not be able to depict the real situation of the model assessment

because of its limited ability, while a large network may have noise in the training data and therefore

fail to provide good generalization ability. The last operator is related to the quality of the process

model and strongly relies on the network training. Among all, the last issue may be the most important,

because it is mainly an identification of model parameters that fits with the given data. Although the

BP algorithm is commonly used in recent years to perform the training task, some drawbacks are often

encountered using this gradient-based method, include: very slow training convergence speed and

getting stuck in a local minimum easily [4, 5]. In order to solve these drawbacks different algorithms

have been proposed [6, 7 and 8]. This disadvantage can be removed by an exploration ability of the

evolutionary algorithms such as PSO. This paper represents the performance comparison of the FNNs

using various BP algorithms with PSO. The various BP training algorithms used are gradient descent,

gradient descent with adaptive learning, gradient descent with momentum, gradient descent with

momentum and adaptive learning and also Levenberg-Marquardt.

Following this introductory section, the rest of the paper is organized as follows: In section 2 related

works are presented then in section 3 the ANN training process is defined while the related subsections

are allocated to explaining of three different algorithms for training ANNs; Gradient decent, LM and

PSO. German dataset used in this paper is stated in section 4. Model performance assessment criteria,

Accuracy and MSE, are specified in the next section, then in section 6 our proposed methodology with

its flowchart are analyzed clearly. This paper is finished byillustrating the results in section 7 and the

last section is allocated to the conclusions of this study.

2. Related works

There are many researches in the field of training neural networks. Lahmiri in 2011 measured the

Accuracy of MLP networks trained with different heuristic and numerical algorithms. He found that

BFGS conjugate algorithm and Levenberg-Marquardt are the best in terms of Accuracy and numerical

algorithm outperform heuristic [9]. Hooshyaripor and Tahershamsi in 2012 provided a review of some

methods for estimation of peak outflow from breached dams and presented an effective and efficient

model for predicting peak outflow based on ANN. By comparing the results of ANN and empirical

formulas they found the higher ANN performance and declared that such formulas are better to be

replaced with a superior ANN model [10]. Mirjalili et al. in 2012 employed Gravitational Search

Algorithm (GSA) and PSOGSA as new training methods for FNNs to examine the efficiencies of these

algorithms in reducing the problems of trapping in local minimum and the slow convergence rate of

current evolutionary learning algorithms. The results were compared with a standard PSO-based

algorithm. The experimental results showed that PSOGSA outperforms both PSO and GSA for training

FNNs [11]. Yaghini et al. in 2013 presented a method for training ANN. They combined the ability of

meta-heuristics and greedy gradient based algorithms to obtain a hybrid improved opposition based

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

115

PSO and a BP algorithm with the momentum term. They proposed a new cross validation method to

prevent over-fitting then the effectiveness and efficiency of the proposed method were compared with

several other famous ANN training algorithms on various benchmark problems [12]. Das et al. in 2013

applied ANN trained with PSO for the problem of channel equalization. They employed PSO to

optimize the number of layers, the type of transfer functions, input and hidden neurons etc. [13].

3. ANN training process

The training process of ANN is usually complicated and high dimensional. Until today, many

researchers prefer to use BP algorithms to train ANNs. BP works by measuring the output error,

calculating the gradient of this error and adjusting the ANN weights and biases in the descending

gradient direction. These gradient methods estimate the error in the network’s decision as compared to

a supervisor and propagate the error to the weights throughout the network, so that one of the main

obstacles due to the fact that searching of optimal weights is strongly dependent on initial weights, and

if they are located near local minimum, the algorithm would be stuck at a sub-optimal solution. Hence,

the conventional gradient search method is prone to be converged at local optima. Many solutions are

proposed by neural network researchers to overcome the slow convergence rate and being trapped in a

local minimum. Some powerful optimization algorithms, which are based on a simple gradient descent

algorithm [14] such as conjugate gradient descent, scaled conjugate gradient descent, Quasi-Newton

BFGS and Levenberg-Marquardt methods, have been devised to improve the convergence rate. Since

evolutionary algorithms (EAs) do not use gradient information, it is advantageous for problems where

such information is unavailable or very costly to obtain. These advantages make them more robust and

attractive than many other search algorithms [15]. The PSO as an evolutionary algorithm is easy to

implement and performs well on many optimization problems. Like other evolutionary techniques,

PSO could also be used in neural network training. Among many algorithms for training ANNs the

following algorithms were used in this study:

3.1. Gradient descent

This algorithm is one of the most common training algorithms in the field of neural networks. At first it

measures the output error, then calculates the gradient of this error and finally adjusts the ANN weights

and biases in the descending gradient direction. The learning rate is a tunable factor that controls the

speed of the learning process. The ANN model will learn faster with a faster learning rate, but the

training process will never converge if it is too high. In contrast, if the learning rate is too slow, the

ANN model may be caught in a local minimum instead of the global minimum. In order to avoid local

minimum, reduction of oscillation and to decrease the sensitivity of the network to fast changes of the

error surface, the change in weight is made dependent on the past weight change by adding a

momentum coefficient [16]. The proportion of the last weight change added into the new weight

change is specified by momentum coefficient.

3.2. Levenberg–Marquardt

One of the most popular tools for non-linear minimum mean squares problems is LM which is another

type of BP training algorithm. The LM algorithm approximates to the Newton Method and has been

also used for ANN training. The Newton method estimates the error of the network with a second order

expression which is in contrast to the prior category which follows a first order expression. LM is

popular in the field of ANN as well as it is considered as the first approach for an unobserved MLP

training task and is more powerful than conventional gradient descent techniques [17, 18].

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

116

 3.3. Particle swarm optimization

Eberhart and Kennedy in 1995 [19] developed a global optimization technique, PSO, which is a group-

based stochastic optimization technique for continuous nonlinear functions. In comparison with other

Meta heuristics, PSO has obtained popularity and showed clearly to be an effective and competitive

optimization algorithm. Each member in PSO algorithm known as particle flies around the multi-

dimensional search space with a velocity, which is continuously brought up to date by the particle’s

own experience and the experience of the particle’s neighbors or the experience of the entire swarm. It

means that two discrepancies of the PSO algorithm are developed; PSO with a local neighborhood and

PSO with a global neighborhood. According to the global surroundings, each particle moves towards

its best previous position and towards the best particle in the entire swarm, called gbest model [20, 21

and 22]. On the other hand, according to the local discrepancy, called lbest, each particle moves

towards its best previous position and towards the best particle in its restricted neighborhood [19].

Whereas PSO has memory of the past, knowledge of good solutions is kept by all particles. Particles

works together in a useful manner and can share information in the swarm.

3.3.1. PSO in ANNs: Unlike BP, PSO is a global search and population-based algorithm which has

been used for training neural networks, finding neural network architectures, tuning network learning

parameters, and optimizing network weights. PSO avoids trapping in a local minimum, because it is

not based on gradient information [23]. The function of PSO in ANN is to get the best set of weights

(particle position) where several particles are trying to move to get the best solution. The dimension of

the search space is the total number of weights and biases.Through following the personal best solution

of each particle and the global best amount of the entire swarm, the algorithm finishes the optimization.

The success or failure of a population based algorithm depends on its ability to establish proper trade-

off between exploration and exploitation. An unsuitable balance between exploration and exploitation

may result in a weak optimization method which may suffer from premature convergence, trapping in a

local optimum and stagnation.

4. Dataset

In this study, we use the UCI machine learning database, one of the 100 reliable databases, which has

the most references in scientific papers available via http://archive.ics.uci.edu/ml/datasets.html. The

German dataset is the credit dataset used in this study to evaluate the models. Table1 shows a summary

of main features of this credit dataset.

Table 1. Some Details of dataset used in study

No. Dataset No. of Attributes No. of Good Instances No. of Bad Instances

1 German 21 700 300

In data normalization process the input data are normalized between 0 and 1. This is performed by

finding the maximum number in each column (feature) for all instances and dividing the rest of the

entries in each column to its maximum value.

5. Model performance assessment criteria

The performance assessment criteria used in this study include Accuracy and MSE. Accuracy indicates

the proportion of the correctly classified cases on a particular dataset and is defined by Equation (1);

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

117

Accuracy =
TP + TN

TP + FP + FN + TN
 (1)

Where, TP (True Positive): is the proportion of positive cases that are correctly diagnosed as positive;

FP (False Positive): is the proportion of negative cases that are wrongly diagnosed as positive;

FN (False Negative): is the proportion of positive cases that are wrongly diagnosed as negative;

TN (True Negative): is the proportion of negative cases that are correctly diagnosed as negative.

MSE is the difference between the actual and predicted value by the model. This measure is computed

by Equation (2) and our target is to minimize this value;

e = y − y MSE =
1

N
 ei

2

N

i=1

 (2)

Where, 𝑒 is the difference between 𝑦 as predicted value and 𝑦 as the actual value.

6. Methodology

In this study, firstly, in order to find the best BP neural network different learning algorithmswere used

which are shown in Table 2. ANNs are constructed based on learning algorithm, activation function

and the number of neurons as the parameters. Also, log-sigmoid and hyperbolic tangent sigmoid are

used as activation functions (other activation functions were not applicable in this case). The BP

learning algorithms are examined by different numbers of training and test data ratios (or as we refer to

them, learning ratios). The lower the ratio, the more challenging it is for a neural network, but the

learning is more robust and meaningful. Learning rate of 0.01 and a momentum coefficient of 0.9 was

considered in this work for BP Learning.

Table 2. Different learning algorithms

No. Abbreviation Learning algorithmdescription

1 LM Levenberg-Marquardt

2 GD Gradient descent

3 GDM Gradient descent with momentum

4 GDA Gradient descent with adaptive learning rate

5 GDMA Gradient descent with momentum and adaptive learning rate

Another factor which should be considered in constructing an ANN is the number of neurons present in

the hidden layer. Each of these five networks with considering the learning ratio and activation

function runs and trains for different numbers of neurons from 20 up to 50 within their hidden layer.

Training process performs 10 times for each number of these neurons as well. The optimum number of

neurons in hidden layer is specified according to the minimum value of MSE on test data. We compare

the performance of the neural network models under all schemes and then select the ideal neural model

and learning scheme.

Secondly, to enhance the convergence rate and learning process, PSO is used to train MLP neural

network. The learning process includes finding a set of weights to minimize the learning error. A set of

weights for current iteration shows the position of each particle and the number of weights associated

with the network represents the dimension of each particle. The goal in this algorithm is to minimize a

learning error (cost function) which is calculated by using MSE. The particle will move inside the

weight space trying to minimize learning error. The PSO procedure is presented in Figure 1. The

iterative approach of PSO can be described by the following steps:

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

118

1) Initialize position and velocity of all the particles randomly in the d-dimension space.

2) Training the PSO-ANN by using the particles position and determine MSE (particle fitness) for each

particle.

3) The current position and fitness achieved by particle p is set as its best history amount, also called

the personal best (pbest).The pbest with best value in all particles are set as global best (gbest).

4) Change the velocity of the particle according to Equation (3).

5) Update particle position by adding the calculated velocity value to the current position value

according to Equation (4).

6) Using the new sets of positions to generate new learning error.

7) Comparing the MSE of each particle with its pbest MSE then updating pbest, if the current MSE is

lower than the pbest MSE.

8) Finding the minimum calculated MSE in the swarm then comparing it by the global best MSE then

updating gbest, if the minimal MSE is lower than gbest MSE.

9) The optimization output is based on gbest position value. The iteration loop continues until reaching

the MSE of the gbest lower than the desirable threshold or a maximum iteration number. The gbest

weights are used as the training results when the iteration is finished.

𝑣𝑖𝑑 [𝑡 + 1] = 𝑤𝑣𝑖𝑑 [𝑡] + 𝑐1𝑟1 𝑝𝑖𝑑 𝑡 − 𝑥𝑖𝑑 𝑡 + 𝑐2𝑟2 𝑔𝑑 𝑡 − 𝑥𝑖𝑑 𝑡 (3)

𝑥𝑖𝑑 𝑡 + 1 = 𝑥𝑖𝑑 𝑡 + 𝑣𝑖𝑑 𝑡 + 1 (4)

Where, a d-dimensional vector in problem space 𝑥𝑖𝑑 = (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑑) represents the position of

each particle, 𝑣𝑖𝑑 = (𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑑) is the velocity of the 𝑖th particle,𝑝𝑖𝑑 = (𝑝𝑖1 , … , 𝑝𝑖𝑑) is the best

position encountered by 𝑖th particle (pbest), 𝑔𝑑 shows the best position found by any member in the

entire swarm population (gbest), 𝑡 is iteration counter; 𝑐1, 𝑐2 are acceleration coefficients and 𝑟1 , 𝑟2 are

two similar random numbers in [0, 1]. Parameters used for running PSO are shown in Table 3:

Table 3. Parameters used for running PSO

The acceleration coefficients control how far a particle will move in a single iteration. While high

values result in abrupt movement and low values allow particles to drift far from target regions. The

effect of previous histories of velocities on present velocity is often used as a parameter to control the

trade-off between exploration and exploitation by the inertia weight (𝑤). The inertia weight was

introduced by Shi and Eberhart in 1998 [24]to improve the convergence rate of PSO algorithm.

Particle’s velocity is limited by a user specified value, maximum velocity (𝑣𝑚𝑎𝑥) and minimum

velocity (𝑣𝑚𝑖𝑛) to prevent the particles from moving too far from potential solution.

Parameter Value

No. of population 20

No. of generations 300

C1,C2 2

Inertia weight 1

Inertia Weight Damping Ratio 0.9

Search space range (-1,1)

Maximum velocity 0.18

Minimum velocity -0.18

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

119

Figure 1. PSO flow chart

7. Results

At first, the performance of the ANN Backpropagation (ANN-BP) models was evaluated based on the

optimum number of neurons in hidden layer calculated according to MSE criterion, i.e. the models

have the lowest MSE for this number of neuron. The obtained results of implementation of the MLP

neural network models with five BP learning algorithms are listed in detail in Table 4, which shows

that the preferred ANNs are the ones using LM as learning algorithm with Log-sigmoid and Tan-

PSO Main Loop

PSO Initialization

No

Yes

If particle Fitness < particle pbest Fitness, update particle pbest

Update particle velocity

Update particle position

Evaluate Fitness of particle

If particle pbest < particle gbest Fitness, update particle gbest

Last Particle?

Global Best Satisfactory

N
ex

t
P

ar
ti

cl
e

Max iteration?

No

Initialize particles position and velocity randomly

Train the PSO-ANN by particles position and determine MSE for each particle

The pbest with best value in all particles is set as gbest

If particle pbest Fitness < particle gbest Fitness, update particle gbest

The current position and fitness achieved by particle 𝑝 is set as pbest

Yes
N

ex
t Iteratio

n

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

120

sigmoid as activation functions in hidden and output layers respectively. The results show that accurate

selection of the activation function has a great impact on network performance. For each learning

algorithm, the model with the highest Accuracy is highlighted in boldface. In order to simulate the

considered MLP neural network, MATLAB version R2012a software was used.

 Table 4. Implementation results of different BP learning algorithms

No.
Learning

Algorithm

Learning

Ratio

Activation Functions

(hidden, output layers)

Optimum No. of

Neurons

in Hidden Layer

MSE Accuracy

1 LM 70,30 Log-sigmoid, Tan-sigmoid 23 0.1890 77.52%

 Tan-sigmoid, Tan-sigmoid 21 0.1989 77.45%

 65,35 Log-sigmoid, Tan-sigmoid 28 0.1964 76.90%

 Tan-sigmoid, Tan-sigmoid 25 0.1969 76.80%

 60,40 Log-sigmoid, Tan-sigmoid 24 0.2012 75.40%

 Tan-sigmoid, Tan-sigmoid 30 0.2058 75.20%

2 GD 70,30 Log-sigmoid, Tan-sigmoid 34 0.2458 64.30%

 Tan-sigmoid, Tan-sigmoid 21 0.2441 64.20%

 65,35 Log-sigmoid, Tan-sigmoid 24 0.2590 64.30%

 Tan-sigmoid, Tan-sigmoid 27 0.2417 64%

 60,40 Log-sigmoid, Tan-sigmoid 44 0.2593 63.90%

 Tan-sigmoid, Tan-sigmoid 38 0.2698 63.60%

3 GDM 70,30 Log-sigmoid, Tan-sigmoid 35 0.1871 68.90%

 Tan-sigmoid, Tan-sigmoid 42 0.2052 68.60%

 65,35 Log-sigmoid, Tan-sigmoid 39 0.2117 68.60%

 Tan-sigmoid, Tan-sigmoid 32 0.2556 67.80%

 60,40 Log-sigmoid, Tan-sigmoid 36 0.2250 68.50%

 Tan-sigmoid, Tan-sigmoid 37 0.2587 68.50%

4 GDA 70,30 Log-sigmoid, Tan-sigmoid 42 0.1892 72.20%

 Tan-sigmoid, Tan-sigmoid 27 0.2041 71.20%

 65,35 Log-sigmoid, Tan-sigmoid 33 0.2096 70.20%

 Tan-sigmoid, Tan-sigmoid 34 0.2119 70%

 60,40 Log-sigmoid, Tan-sigmoid 32 0.2394 69.50%

 Tan-sigmoid, Tan-sigmoid 42 0.2425 69.40%

5 GDMA 70,30 Log-sigmoid, Tan-sigmoid 43 0.2106 71.40%

 Tan-sigmoid, Tan-sigmoid 32 0.2007 70.30%

 65,35 Log-sigmoid, Tan-sigmoid 37 0.2125 70.30%

 Tan-sigmoid, Tan-sigmoid 30 0.2557 69.40%

 60,40 Log-sigmoid, Tan-sigmoid 37 0.2146 70%

 Tan-sigmoid, Tan-sigmoid 43 0.2676 68.80%

In this section BP learning algorithms with best activation functions (Log-sigmoid, Tan-sigmoid) under

different learning ratios are plotted against Accuracy in Figure 2(a) and MSE in Figure 2(b).

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

121

 (a) (b)

 Figure 2. BP algorithms: (a) Accuracy (b) MSE

Figure 2 shows that by reducing the number of training and consequently increasing the number of

testing observations, the Accuracy of the model decreases and the MSE increases. Therefore it

confirmed that for a neural network if the ratio be lower, it would be more challenging. As can be

observed, among these five models LM significantly is the best and GD is the worst model. Hence, the

performance of LM Backpropagation (LMBP) learning algorithm is compared with PSO.

In the following the performance of the proposed PSO for training neural network (PSO-ANN) is

evaluated. The obtained results of implementation of the PSO-ANN model with different learning

ratios and activation functions for optimum number of neurons in hidden layer are listed in detail in

Table 5.

Table 5. Implementation results of PSO algorithm

Learning

Method

Learning

Ratio

Activation Function

(hidden, output layers)

Optimum No. of

Neurons

in Hidden Layer

MSE Accuracy

PSO 70:30 Tan-sigmoid, Log-sigmoid 22 0.1419 80.10%

Tan-sigmoid, Tan-sigmoid 22 0.1593 78.10%

65:35 Tan-sigmoid, Log-sigmoid 27 0.1434 79.80%

Tan-sigmoid, Tan-sigmoid 21 0.1601 77.40%

60:40 Tan-sigmoid, Log-sigmoid 21 0.1480 79.20%

Tan-sigmoid, Tan-sigmoid 23 0.1582 77.50%

The PSO-ANN models achieving the lowest MSE and best Accuracy are the ones used Tan-sigmoid

and Log-sigmoid as activation functions in hidden and output layers respectively. These models are

highlighted in bold face for each learning ratio. Figure 4 shows the learning curves (error convergence)

of PSO-ANN model under different schemes. As mentioned before, the number of generations (max

iteration) is considered as 300, but in order to overcomethe problem of over-fitting in neural network

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Learning ratio: 70,30 Learning ratio: 65,35 Learning ratio: 60,40

Accuracy

LM GDMA GDA GDM GD

0

0.05

0.1

0.15

0.2

0.25

0.3

Learning ratio: 70,30 Learning ratio: 65,35 Learning ratio: 60,40

MSE

LM GDMA GDA GDM GD

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

122

model, a validation check criterion with a value of 5 is determined. Therefore, learning algorithms are

stopped upon achieving either of these criteria (achieving validation check = 5 or max iteration = 300).

Figure 4. Learning curves (error convergence) of PSO-ANN models

From the results shown in Tables 4, 5, when the performance of PSO-ANN and LMBP-ANN models is

compared, PSO-ANN can perform better (the lowest MSE and best Accuracy), meaning that PSO is

very effective in training ANNs.

8. Conclusion

The use of ANNs has been shown to be an effective technique. Among the different neural networks,

MLP was used for evaluating learning algorithms. It is very important to choose a proper algorithm for

training a neural network, so this paper presents a comparison of various BP algorithms and PSO with

different learning ratios and activation functions. BP algorithms update weights and biases in the

direction of the negative gradient. ANNs training with BP algorithms is usually faced certain

drawbacks such as very slow convergence and may trap in the local minimum. In contrast, weights and

biases in PSO-ANN are represented by particles position. These particles velocity and position are

updated, which search for personal best and global best values. This will avoid the weights and biases

being trapped in local minimum. Experimental results showed that the LM algorithm achieved better

performance than all other BP algorithms in training MLP neural networks. Comparing these results

with PSO as a training algorithm showed the superiority of PSO.

0 50 100 150 200 250 300 0.12

0.14

0.16

0.18

0.2

0.22

0.24

Iteration

M
S

E
 (

B
e
s
t

C
o
s
t)

Learning ratio: 70, 30

Activation Function: Tan-sigmoid, Log-sigmoid

Optimum No. of neurons in hidden layer: 22

0 50 100 150 200 250 300 0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Iteration

M
S

E
 (

B
e
s
t

C
o
s
t)

Activation Function: Tan-sigmoid, Tan-sigmoid

Optimum No. of neurons in hidden layer: 22

Learning ratio: 70, 30

0 50 100 150 200 250 300 0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23

Iteration

M
S

E
 (

B
e
s
t

C
o
s
t)

Learning ratio: 65, 35

Activation Function: Tan-sigmoid, Log-sigmoid

Optimum No. of neurons in hidden layer: 27

0 50 100 150 200 250 300

0.2
0.25
0.3

0.35
0.4

0.45
0.5

Iteration

M
S

E
 (

B
e
s
t

C
o
s
t)

Learning ratio: 65, 35

Activation Function: Tan-sigmoid, Tan-sigmoid

Optimum No. of neurons in hidden layer: 21

0 50 100 150 200 250 300
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23

Iteration

M
S

E
 (

B
e
s
t

C
o
s
t)

Learning ratio: 60, 40

Activation Function: Tan-sigmoid, Log-sigmoid

Optimum No. of neurons in hidden layer: 21

0 50 100 150 200 250 300 0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45

Iteration

M
S

E
 (

B
e
s
t

C
o
s
t)

Learning ratio: 60, 40

Activation Function: Tan-sigmoid, Tan-sigmoid

Optimum No. of neurons in hidden layer: 23

N. Mohammadi and S. J. Mirabedini / J. Math. Computer Sci. 12 (2014), 113-123

123

References

[1] Y. Shang, B.W. Wah, Global Optimization for Neural Networks Training, IEEE Computer. 29 (1996) 45-54.
[2] A. Abraham, Meta learning evolutionary artificial neural networks, Neuro Computing. 56 (2004) 1-38.
[3] M.S. Mirtalaei, M. Saberi, O. K. Hussain, B. Ashjari, F. K. Hussain, A trust-based bio-inspired approach for credit lending
decisions, Computing. 94 (2012) 541-577.
[4] Y.Y. Hsu, C.C. Yang, Fast voltage estimation using ANN, Electric Power System Research. 27 (1993) 1-9.
[5] T. Jain, L. Srivastava, S.N. Singh, Fast voltage contingency screening using Radial Basis Function neural network, IEEE
Transactions on Power Systems. 18 (2003) 1359-1366.
[6] R. Govindaraju, A. Rao, Artificial Neural Networks in Hydrology, Kluwer Academic Publishers, Dordrecht, 2000.
[7] S.Y. Liong, W.H. Lim, G.N. Paudyal, River stage forecasting in Bangladesh: neural network approach, Journal of
Computing in Civil Engineering. 14 (2000) 1-8.
[8] K.W. Chau, C.T. Cheng, Real-time prediction of water stage with artificial neural network approach, Lecture Notes in
Artificial Intelligence. 2557 (2002) 715-715.
[9] S. Lahmiri, A comparative study of backpropagation algorithms in financial prediction, International Journal of Computer
Science, Engineering and Applications. 1 (2011) 15-21.
[10] F. Hooshyaripor, A. Tahershamsi, Comparing the performance of Neural Networks for Predicting Peak Outflow from
Breached Embankments when Back Propagation Algorithms Meet Evolutionary Algorithms, International Journal of
Hydraulic Engineering. 1 (2012) 55-67.
[11] S.A. Mirjalili, S.Z.M. Hashim, H.M. Sardroudi, Training feedforward neural networks using hybrid particle swarm
optimization and gravitational search algorithm, Applied Mathematics and Computation. 218 (2012) 11125-11137.
[12] M. Yaghini, M.M. Khoshraftar, M. Fallahi, A hybrid algorithm for artificial neural network training, Engineering
Applications of Artificial Intelligence. 26 (2013) 293-301.
[13] G. Das, P.K. Patnaik, S.K. Padhy, Artificial Neural Network trained by Particle Swarm Optimization for non-linear
channel equalization, Expert Systems with Applications. 41 (2013) 491-3496.
[14] C. M. Bishop, Neural networks for pattern recognition, Oxford University Press, New York, 1995.
[15] D.B. Fogel, An introduction to simulated evolutionary optimization, IEEE Transactions on Neural Networks. 5 (1994) 3-
14.
[16] J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and
Machine Intelligence, Prentice-Hall, Upper Saddle River, 1997.
[17] M.T. Hagan, M. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans Neural Networks. 5
(1994) 989-993.
[18] M.Y. El-Bakyr, Feed forward neural networks modeling for K–P interactions, Chaos, Solitons and fractals. 18 (2003)
995-1000.
[19] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE international conference on neural networks. 4 (1995) 1942-
1948.
[20] R. Kiran, S.R. Jetti, G.K. Venayagamoorthy, Online training of generalized neuron with particle swarm optimization,
IEEE International Joint Conference on Neural Networks. (2006) 5088-5095.
[21] N. Kwok, D. Liu, K. Tan, An empirical study on the setting of control coefficient in particle swarm optimization,
Proceedings of IEEE Congress on Evolutionary Computation. (2006) 823-830.
[22] T.J. Richer, T.M. Blackwell, When is a swarm necessary?, IEEE Congress on Evolutionary Computation. (2006) 1469-
1476.
[23] H.A. Abbass, R. Sarker, C. Newton, PDE: A Pareto-frontier Differential Evolution Approach for Multi-objective
Optimization Problems, IEEE Congress on Evolutionary Computation. 2 (2001) 971-978.
[24] R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and Particle Swarm Optimization, International
Conference on Evolutionary Programming VII. 1447 (1998) 611-616.

http://scholar.google.com.eg/citations?view_op=view_citation&hl=en&user=fiRU9SIAAAAJ&citation_for_view=fiRU9SIAAAAJ:vV6vV6tmYwMC

