

Contents list available at JMCS

Journal of Mathematics and Computer Science

On Some New Generalized Difference Sequence Spaces Defined By A Modulus Function

Tanweer Jalal

Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar-190006 tjalal@rediffmail.com

Article history:
Received November 2014
Accepted February 2015
Available online February 2015

Abstract

In this paper we introduces the new generalized difference sequences spaces $\begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix} (\Delta_u^r, E), \begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix} (\Delta_u^r, E), \begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix} (\Delta_u^r, E), \hat{S}_{\lambda} (\Delta_u^r, E)$ and

 $\hat{S}_{\lambda_0}(\Delta_u^r, E)$ (where E is any Banach space) which arise from the notion of generalized de la Vallée-Poussin means and the concept of modulus function. We also give some inclusion relations between these spaces.

Keywords: Difference sequence spaces, modulus function, paranorm, statistical convergence.

1. Introduction

Let ω be that set of all sequences real or complex numbers and l_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $\mathbf{x}=(x_k)$ with the usual norm $\|\mathbf{x}\|=\sup_k |x_k|$, where $\mathbf{k} \in \mathbb{N}=1.2...$, the set of positive integers. Let $\lambda=(\lambda_n)$ be a non-decreasing sequence of positive numbers tending to infinity such that $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1.$

The generalized de la Valle e-Poussin means of a sequence x is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k$$
, where $I_n = [n - \lambda_n + 1, n]$ for $n = 1, 2, ...$

A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number $l \ [8]$ if $t_n \ (x) \rightarrow l$ as $n \rightarrow \infty$. If $\lambda_n = n$, then (V, λ) —summability and strong (V, λ) —summability are reduced to (C, 1) – summability and [C, 1] –summability

Kizmaz [7] defined the difference sequence spaces

$$X(\Delta) = \{x = (x_k) : \Delta x \in X\}$$

for $X = l_{\infty}$, c and c_0 where $\Delta x = (x_k - x_{k+1})$. Then Et and Colak [3] generalized the above sequence spaces as:

$$X(\Delta^r) = \{ x = (x_k) : \Delta^r x \in X \},$$

for
$$X = l_{\infty}$$
, c and c_0 where $r \in N$, $\Delta^0 x = (x_k)$, $\Delta x = (x_k - x_{k+1})$, $\Delta^r x = (\Delta^r x_k - \Delta^r x_{k+1})$ and so $\Delta^r x_k = \sum_{\nu=0}^k \binom{r}{\nu} x_{k+\nu}$.

Later on the difference sequence spaces have been studied by Malkowsky and Parashar [12], Et and Basarir [2] and others.

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value. Let X be a linear space. A function $p: X \to R$ is called a paranorm, if

$$(P.1) p(0) \ge 0$$

$$(P.2)$$
 $p(x) \ge 0$ for all $x \in X$

$$(P.3)$$
 $p(-x) = p(x)$ for all $x \in X$

$$(P.4) p(x+y) = p(x) + p(y)$$
 for all $x, y \in X$ (triangle inequality)

(P.5) If (λ_n) is a senquence of scalers with $\lambda_n \to \lambda$ $(n \to \infty)$ and (x_n) is a sequence of vectors with $p(x_n - x) \to 0$ $(n \to \infty)$, then with $p(\lambda_n x_n - \lambda x) \to 0$ $(n \to \infty)$, (continuity of multiplication of vectors).

A paranorm p for which p(x) = 0 implies x = 0 is called total. It is well known that the metric of any linear metric space is given by some total paranorm ($\begin{bmatrix} 16 \end{bmatrix}$, Theorem 10.4.2 Page 183).

Following Ruckle [14] and Maddox [11], a modulus function f is a function from $[0, \infty)$ to $[0, \infty)$ such that

(i)
$$f(x)=0$$
 if and only if $x=0$, (ii) $f(x+y) \le f(x)+f(y)$ for all $x,y \ge 0$,

(iii)
$$f$$
 is increasing, (iv) f is continuous from right at $x = 0$.

The following inequality will be used throughout this paper. Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \le \sup_k p_k = H$ and let $D = \max (1, 2^{H-1})$. For $a_k, b_k \in C$ the set of complex numbers and for all $k \in N$, we have (see $\begin{bmatrix} 10 \end{bmatrix}$)

$$\left| a_k + b_k \right|^{p_k} \le D \left\{ \left| a_k \right|^{p_k} + \left| b_k \right|^{p_k} \right\} \tag{1}$$

2. Some New Sequence Spaces Defined By Modulus Function

In this section we prove some results involving the sequence spaces $\left[\begin{array}{c} \stackrel{\circ}{V}, \lambda, f, p \end{array}\right]_0 \left(\Delta_u^r, E\right)$,

$$\left[\begin{array}{c} \hat{V},\,\lambda\,\,,f\,,p \right]_{\!\scriptscriptstyle 1}\!\left(\!\Delta^{\!\scriptscriptstyle r}_{\!\scriptscriptstyle u}\,\,,E\,\right) \quad \text{and} \quad \left[\begin{array}{c} \hat{V},\,\lambda\,\,,f\,,p \right]_{\!\scriptscriptstyle \infty}\!\left(\!\Delta^{\!\scriptscriptstyle r}_{\!\scriptscriptstyle u}\,\,,E\,\right).$$

Definition 2.1: Let E be a Banach space. We define $\omega(E)$ to be the vector space of all E-valued sequences that is $\omega(E) = \{x = (x_k) : x_k \in E\}$. Let f be a modulus function and $p = (p_k)$ be any sequence of strictly positive real numbers. We define the following sequence sets

$$\begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix}_{1} (\Delta_{u}^{r}, E) = \begin{cases} x \in \omega (E) : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\left\| \Delta_{u}^{r} x_{k+m} - l \right\| \right) \right]^{p_{k}} = 0, \text{ for some } l, \text{ uniformly in } m \end{cases},$$

$$\begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix}_{0} (\Delta_{u}^{r}, E) = \begin{cases} x \in \omega (E) : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\left\| \Delta_{u}^{r} x_{k+m} \right\| \right) \right]^{p_{k}} = 0, \text{ uniformly in } m \end{cases},$$

$$\left[\begin{array}{c} \stackrel{\circ}{V}, \lambda, f, p \right]_{\infty} \left(\Delta_{u}^{r}, E \right) = \left\{ x \in \omega \left(E \right) : \sup_{m,n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\left\| \Delta_{u}^{r} x_{k} \right\| \right) \right]^{p_{k}} < \infty \right\}.$$

If
$$x \in \left[\stackrel{\circ}{V}, \lambda, f, p \right]_1 \left(\Delta_u^r, E \right)$$
 then we write as $x_k \to l \left[\stackrel{\circ}{V}, \lambda, f, p \right]_1 \left(\Delta_u^r, E \right)$ and l will be called $\lambda_E - difference$ limit of x with respect to the modulus f .

Throughout the paper Z will denote any of the notation 0, 1, ∞ . In case f(x)=x, $p_k=1$ for all $k \in N$ we shall write $\begin{bmatrix} \hat{V}, \lambda \end{bmatrix}_Z \begin{pmatrix} \Delta_u^r, E \end{pmatrix}$, and $\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_Z \begin{pmatrix} \Delta_u^r, E \end{pmatrix}$ instead of $\begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix}_Z \begin{pmatrix} \Delta_u^r, E \end{pmatrix}$ respectively.

Theorem 2.2. Let the sequence (p_k) be bounded. Then the sequence spaces $\hat{V}, \lambda, f, p \left(\Delta_u^r, E\right)$ are linear.

Proof : We shall prove it for $\begin{bmatrix} \hat{V} & \lambda, f, p \end{bmatrix}_0 (\Delta_u^r, E)$. The others can be proved in the same manner. Let $x, y \in \begin{bmatrix} \hat{V} & \lambda, f, p \end{bmatrix}_0 (\Delta_u^r, E)$ and $\beta, \mu \in C$. Then there exists positive numbers M_{β} and N_{μ} such that $|\beta| \leq M_{\beta}$ and $|\mu| \leq N_{\mu}$. Since f is sub additive and Δ_u^r is linear we have

$$\begin{split} \frac{1}{\lambda_{n}} & \sum_{k \notin I_{n}} \left[f \left(\left\| \Delta_{u}^{r} \left(\beta \ x_{k+m} + \mu \ y_{k+m} \ \right) \right\| \right) \right]^{p_{k}} \\ & \leq \frac{1}{\lambda_{n}} \sum_{k \notin I_{n}} \left[f \left(\left\| \beta \right\| \left\| \Delta_{u}^{r} x_{k+m} \right\| \right) + f \left(\left\| \mu \right\| \left\| \Delta_{u}^{r} y_{k+m} \right\| \right) \right]^{p_{k}} \\ & \leq D \left(M_{\beta} \right)^{H} \frac{1}{\lambda_{n}} \sum_{k \notin I_{n}} \left[f \left(\left\| \Delta_{u}^{r} x_{k+m} \right\| \right) \right]^{p_{k}} + D \frac{1}{\lambda_{n}} \left(N_{\mu} \right)^{H} \sum_{k \in I_{n}} \left[f \left(\left\| \Delta_{u}^{r} \ y_{k+m} \right\| \right) \right]^{p_{k}} \to 0 \quad \text{as} \\ & n \to \infty, \text{ uniformly in } m \text{ . This proves that } \left[\hat{V}, \lambda, f, p \right]_{0} \left(\Delta_{u}^{r}, E \right) \text{ is a linear space.} \end{split}$$

Theorem 2.3. Let f be a modulus function, then

$$\left[\begin{array}{c} \hat{V}, \lambda, f, p \end{array}\right]_{0} \left(\Delta_{u}^{r}, E\right) \subset \left[\begin{array}{c} \hat{V}, \lambda, f, p \end{array}\right]_{1} \left(\Delta_{u}^{r}, E\right) \subset \left[\begin{array}{c} \hat{V}, \lambda, f, p \end{array}\right]_{\infty} \left(\Delta_{u}^{r}, E\right).$$

Proof: The first inclusion is obvious. We establish the second inclusion.

Let
$$x \in \left[\stackrel{\circ}{V}, \lambda, f, p \right] \left(\Delta_u^r, E \right)$$
. By definition of f we have for all $m \in N$,

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\left\| \Delta_u^r x_{k+m} \right\| \right) \right]^{p_k} = \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\left\| \Delta_u^r x_{k+m} - l + l \right\| \right) \right]^{p_k}$$

$$\leq \, D \, \frac{1}{\lambda_n} \, \sum_{k \in I_n} \, \left[f \, \left(\left\| \, \Delta_u^r \, x_{k+m} \, - l \, \, \right\| \, \right) \, \right]^{p_k} \, + \, D \, \frac{1}{\lambda_n} \, \sum_{k \in I_n} \, \left[\, f \, \left(\left\| \, l \, \, \right\| \, \right) \, \right]^{p_k}.$$

There exists a positive integer K_l such that $||l|| \leq K_l$. Hence we have

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\left\| \Delta_{u}^{r} x_{k+m} \right\| \right) \right]^{p_{k}} \leq \frac{D}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\left\| \Delta_{u}^{r} x_{k+m} - l \right\| \right) \right]^{p_{k}} + \frac{D}{\lambda_{n}} \left[K_{l} f \left(1 \right) \right]^{H} \lambda_{n}.$$

Since $x \in \left[\stackrel{\circ}{V}, \lambda, f, p \right]_0 \left(\Delta_u^r, E \right)$ we have $x \in \left[\stackrel{\circ}{V}, \lambda, f, p \right]_{\infty} \left(\Delta_u^r, E \right)$ and this completes the proof.

Theorem 2.4. $\left[\stackrel{\circ}{V}, \lambda, f, p \right]_0 \left(\Delta_u^r, E \right)$ is a paranormed (need not be total paranormed) space with $g_{\Delta}(x) = \sup_{m,n} \left[\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\left\| \Delta_u^r x_{k+m} \right\| \right) \right]^{p_k} \right]_{M}^{1/M}$ where $M = \max \left(1, \sup_{k} p_k \right)$.

Proof: From Theorem 2. 3, for each $x \in \left[\stackrel{\circ}{V}, \lambda, f, p \right]_0 \left(\Delta_u^r, E \right)$, $g_{\Delta}(x)$ exists. Clearly $g_{\Delta}(x) = g_{\Delta}(-x)$. Furthermore $g_{\Delta}(x) = 0$ implies $\Delta^r x_k = 0 \implies x = 0$. Since f(x) = 0, we get $g_{\Delta}(x) = 0$ for x = 0. Since $p_k/M \le 1$ and M > 1, using the Minkowski's inequality and definition of f, for each n, we have

$$g_{\Delta}(x+y) = \sup_{m,n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\| \Delta_{u}^{r} x_{k+m} + \Delta_{u}^{r} y_{k+m} \right\| \right) \right]^{p_{k}} \right)^{1/M}$$

$$\leq \sup_{m,n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\| \Delta_{u}^{r} x_{k+m} \right\| \right) + f\left(\left\| \Delta_{u}^{r} y_{k+m} \right\| \right) \right]^{p_{k}} \right)^{1/M}$$

$$\leq \sup_{m,n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\| \Delta_{u}^{r} x_{k+m} \right\| \right) \right]^{p_{k}} \right)^{1/M} + \sup_{m,n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\| \Delta_{u}^{r} y_{k+m} \right\| \right) \right]^{p_{k}} \right)^{1/M}$$

$$\leq g_{\Delta}(x) + g_{\Delta}(y).$$

Hence $g_{\Delta}(x)$ is sub additive. Finally, to check the continuity of multiplication, let us take any complex number β . By definition of f we have

$$g_{\Delta}(\beta x) = \sup_{m,n} \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\left\| \Delta_u^r(\beta x_{k+m}) \right\| \right)^{p_k} \right] \right)^{1/M} \leq K_{\beta}^{\frac{H}{M}} g_{\Delta}(x)$$

where K_{β} is a positive integer such that $|\beta| < K_{\beta}$. Now, let $\beta \to 0$ for any fixed x with

 $g_{\Delta}(x) \neq 0$. By definition of f for $|\beta| < 1$, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\left\| \beta \Delta_u^r x_{k+m} \right\| \right) \right]^{p_k} < \varepsilon, \text{ for } n > n_0(\varepsilon).$$
 (2)

Also, for all n with $1 \le n \le n_0$, and for all m, taking β small enough, since f is continuous we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\left\| \beta \Delta_u^r x_{k+m} \right\| \right) \right]^{p_k} < \varepsilon. \tag{3}$$

(2) and (3) together imply that $g_{\Delta}(\beta x) \rightarrow 0$ as $\beta \rightarrow 0$.

Theorem 2.5. If $r \ge 1$, then the inclusion $\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_Z \left(\Delta_u^{r-1}, E \right) \subset \begin{bmatrix} V, \lambda, f \end{bmatrix}_Z \left(\Delta_u^r, E \right)$ is strict. In general $\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_Z \left(\Delta_u^i, E \right) \subset \begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_Z \left(\Delta_u^r, E \right)$ for all i = 1, 2, ..., r-1 and the inclusion is strict.

Proof: We give the proof for $Z = \infty$ only . For Z = 0 and Z = 1, the proof is similar.

Let
$$x \in [\hat{V}, \lambda, f,]_{\infty} (\Delta_u^r, E)$$
. Then we have

$$\sup_{m,n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\left\| \Delta_u^r x_{k+m} \right\| \right) \right]^{p_k} < \infty.$$

By definition of f, we have

$$\frac{1}{\lambda_{n}} \sum_{k \in I} \left[f \left(\left\| \Delta_{u}^{r} x_{k+m} \right\| \right) \right] \leq$$

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[\ f \left(\left\| \ \Delta_u^{r-1} x_{k+m} \ \right\| \ \right) \right] + \ \frac{1}{\lambda_n} \sum_{k \in I_n} \left[\ f \left(\left\| \ \Delta_u^r \ x_{k+m+1} \ \ \right\| \ \right) \right] < \infty \ .$$

Thus $\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_{\infty} (\Delta_u^{r-1}, E) \subset \begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_{\infty} (\Delta_u^r, E)$. Proceeding in this way one can show

that
$$\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_{\infty} (\Delta_u^i, E) \subset \begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_{\infty} (\Delta_u^r, E)$$
 for $i = 1, 2, 3, ..., r - 1$.

Let E=C, and $\lambda_n=n$ for each $n\in N$. Then the sequence $x=\left(k^r\right)$, belongs to

$$\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_{x} (\Delta_{u}^{r}, E)$$
, but does not belong to $\begin{bmatrix} \hat{V}, \lambda, f \end{bmatrix}_{x} (\Delta_{u}^{r-1}, E)$, for $f(x) = x$.

(If
$$x = (k^r)$$
, then $\Delta_u^r x_k = (-1)^r r!$ and $\Delta_u^{r-1} x_k (-1)^{r+1} r! \left(k + \frac{(r-1)}{2}\right)$ for all $k \in N$).

The proof of the following result is a routine work.

Theorem 2.6.
$$\begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix} \begin{bmatrix} \Delta_u^{r-1}, E \end{bmatrix} \subset \begin{bmatrix} \hat{V}, \lambda, f p \end{bmatrix}_0 (\Delta_u^r, E).$$

Theorem 2.7. Let f, f_1 , f_2 be modulus functions. Then we have

(i)
$$\left[\begin{array}{c} \hat{V}, \lambda, f_1, p \end{array}\right]_{\mathcal{I}} \left(\Delta_u^r, E\right) \subset \left[\begin{array}{c} \hat{V}, \lambda, f \circ f_1, p \end{array}\right]_{\mathcal{I}} \left(\Delta_u^r, E\right),$$

$$(ii) \left[\stackrel{\circ}{V}, \lambda, f_1, p \right]_{\mathcal{I}} \left(\Delta_u^r, E \right) \cap \left[\stackrel{\circ}{V}, \lambda, f_2, p \right]_{\mathcal{I}} \left(\Delta_u^r, E \right) \subset \left[\stackrel{\circ}{V}, \lambda, f_1 + f_2, p \right]_{\mathcal{I}} \left(\Delta_u^r, E \right).$$

Proof: We shall only prove (i) .Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. Write $y_k = f_1(\|\Delta_u^r x_{k+m}\|)$ and consider

$$\sum_{k \in I_n} \left[f\left(y_{k+m}\right) \right]^{p_k} = \sum_{1} \left[f\left(y_{k+m}\right) \right]^{p_k} + \sum_{2} \left[f\left(y_{k+m}\right) \right]^{p_k}$$

Where the first summation is over $y_k \le \delta$ and the second summation is over $y_k > \delta$. Since f is continuous, we have

$$\sum_{1} \left[f\left(y_{k+m}\right) \right]^{p_{k}} < \lambda_{n} \varepsilon^{H} \tag{4}$$

and for $y_k > \delta$, we use the fact that $y_k < \frac{y_k}{\delta} \le 1 + \frac{y_k}{\delta}$. By definition of f we have for $y_k > \delta$, $f(y_k) < 2 f(1) \frac{y_k}{\delta}$. Hence

$$\frac{1}{\lambda_n} \sum_{2} \left[f\left(y_{k+m}\right) \right]^{p_k} \le \max\left(1, \left(2f\left(1\right)\delta^{-1}\right)^{H}\right) \frac{1}{\lambda_n} \sum_{k \in I_n} y_{k+m}. \tag{5}$$

From (4) and (5), we obtain
$$\begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix}_0 (\Delta_u^r, E) \subset \begin{bmatrix} \hat{V}, \lambda, f, p \end{bmatrix}_0 (\Delta_u^r, E)$$
.

The proof of (ii) follows from the following inequality:

$$\left[\left(f_{1}+f_{2}\right)\left(\left\|\Delta_{u}^{r}x_{k+m}\right\|\right)\right]^{p_{k}} \leq D\left[f_{1}\left(\left\|\Delta_{u}^{r}x_{k+m}\right\|\right)\right]^{p_{k}}+D\left[f_{2}\left(\left\|\Delta_{u}^{r}x_{k+m}\right\|\right)\right]^{p_{k}}.$$

The following result is a consequence of Theorem 2.7. (i).

Theorem 2. 8. Let f be a modulus function. Then

$$\left[\begin{array}{c} \hat{V}, \lambda, p \end{array}\right]_{Z} \left(\Delta_{u}^{r}, E\right) \subset \left[\begin{array}{c} \hat{V}, \lambda, f, p \end{array}\right]_{Z} \left(\Delta_{u}^{r}, E\right).$$

3. $\hat{S_{\lambda}}(\Delta_{u}^{r}, E)$ -Statistical Convergence

In this section we establish a relation between the sets $\hat{S}_{\lambda}(\Delta_{u}^{r}, E)$ and \hat{V}, λ, f, p (Δ_{u}^{r}, E) The idea of statistical convergence was introduced by Fast [5], and latter studied by various authors like Fridy [6], Kolk[8], Mursaleen [13], Et and Nurry [4], Savas [15], Arani et al. [1] and many others.

Definition 2.9. A sequence $x = (x_k)$ is said to be $\lambda_E^r - statistically convergent to a number <math>l$ if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{\lambda_{n}} \left| \left\{ k \in I_{n} : \left\| \Delta_{u}^{r} x_{k+m} - l \right\| \geq \varepsilon \right\} \right| = 0, \text{ uniformly in m.}$$

In this case we write $\hat{S_{\lambda}}\left(\Delta_{u}^{r},E\right)-\lim x=l \ or \ x_{k} \to l \ \hat{S_{\lambda}}\left(\Delta_{u}^{r},E\right).$ If $\lambda_{n}=n$, and l=0 we shall write $\hat{S}\left(\Delta_{u}^{r},E\right)$ and $\hat{S_{\lambda_{0}}}\left(\Delta_{u}^{r},E\right)$ instead of $\hat{S_{\lambda}}\left(\Delta_{u}^{r},E\right)$.

We establish a relation between the sets $\hat{S}_{\lambda}(\Delta_u^r, E)$ and $\hat{V}, \lambda, f, p \left[(\Delta_u^r, E) \right]$.

Theorem 2. 10. The inclusion $\hat{S_{\lambda}}(\Delta_u^r, E) \subset [\hat{V}, \lambda, f, p]_1(\Delta_u^r, E)$ holds if and only if f is bounded.

Proof: We assume that f is bounded and $x \in \hat{S_{\lambda}} \left(\Delta_u^r, E \right)$. Then there exists a constant M such that $f(x) \leq M$ for all $x \geq 0$. Let $s \in > 0$ be given. We choose η and $\delta > 0$ such that $M \delta + f(\eta) < \varepsilon$. Since $x \in \hat{S_{\lambda}} \left(\Delta_u^r, E \right)$, there are $l \in C$ and $n_0 = n_0(\eta, \gamma) \in N$

 $\text{such that} \quad \frac{1}{\lambda_{_{n}}} \, \left| \, \left\{ \, k \, \in I_{_{n}} : \left\| \, \Delta_{_{u}}^{r} \, x_{_{k \, + \, m}} \, - l \, \, \right\| \geq \eta \, \right\} \, \right| < \mathcal{S} \, \, , \quad \text{for all } \, n \geq n_{_{0}} \, \, \text{and for all } \, m.$

Therefore $\frac{1}{\lambda} \sum_{l=1}^{\infty} f\left(\left\| \Delta_{u}^{r} x_{k+m} - l \right\| \right)^{p_{k}} =$

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f\left(\left\| \Delta_{u}^{r} x_{k+m} - l \right\|\right)^{p_{k}} + \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f\left(\left\| \Delta_{u}^{r} x_{k+m} - l \right\|\right)^{p_{k}}$$

$$\leq M \frac{1}{\lambda_{n}} \left| \left\{ k \in I_{n} : \left\| \Delta_{u}^{r} x_{k+m} - l \right\| \geq \eta \right\} \right| + f(\eta)$$

 $< M \, \delta + f \, \left(\, \eta \, \, \right) < \varepsilon \, \, {
m for \, all} \, \, \, n \geq n_{\, 0} \, \, {
m and \, for \, all} \, \, m \, \, .$

Hence
$$x \in [\hat{V}, \lambda, f, p]_{1} (\Delta^{r}, E)$$
.

Conversely we assume that f is unbounded. Then there exists a positive sequence (t_k) of positive numbers with $f(t_k) = k^2$, for k = 1, 2, ... If we choose

$$\Delta_{u}^{r} x_{i} = \begin{cases} t_{k} &, i = k^{2}, i = 1, 2, \dots \\ 0 &, otherwise. \end{cases}$$

Then we have

$$\frac{1}{\lambda_n} \left| \left\{ k \in I_n : \left\| \Delta_u^r x_{k+m} \right\| \ge \varepsilon \right\} \right| \le \frac{\sqrt{\lambda_{n-1}}}{\lambda_n} \quad \text{ for all } n \text{ and } m \text{, and so } x \in \mathring{S}_{\lambda} \left(\Delta_u^r, E \right) \text{ but } x \notin \left[\mathring{V}, \lambda f, p \right] \left(\Delta_u^r, E \right) \text{ for } E = C.$$

References

- [1] F. M. Arani, M.E. Gordji, S. Talebi, "Stastical convergence of dooble sequence in paranormed spaces", The J. Math. and Com. Sci., 10 (2014) 47-53.
- [2] M.Et, M. Basarir, "On some new generalized difference sequence spaces", Periodica Mathematica Hungarica, 35 (3) (1997) 169-175.
- [3] M.Et, R. Colak, "On some generalized difference sequence spaces", Soochow J. of Math. 21 (1995) 377-386.
- [4] M. Et, F. Nurry, " Δ^m Statistical convergence", Indian J. Pure and Appld. Math, 32(2001) 961-969.
- [5] H. Fast, "Sur la convergence statistique", Colloq. Math., 2(1951) 241-244.
- [6] J.A. Fridy, "On statistical convergence", Analysis 5(1985) 301-313.
- [7] H. Kizmaz, "On certain sequence spaces", Canad. Math. Bull., 24(1981) 169-176.
- [8] E. Kolk, "The statistical convergence in Banach spaces", Acta. Comment. Univ. Tatru, 928 (1991), 41-52.
- [9] L. Leindler, "Über die la Vallee-Pousinsche Summierbarkeit Allgemeiner Orthogonal- reihen", Acta. Math. Acad. Sci. Hungar, 16 (1965) 375-387.
- [10] I. J. Maddox, "Elements of Functional Analysis", Cambridge Univ. Press. (1970).
- [11] I. J. Maddox, "Sequence spaces defined by a modulus" Math. Proc. Camb. Phil. Soc., 100 (1986) 161-166.
- [12] E. Malkowsky, S. D. Parashar, "Matrix transformations in spaces of bounded and convergent difference sequence spaces of order m", Analysis, 17(1997) 87-97.
- [13] Mursaleen," λ statistical convergence", Math. Slovaca, 50 (2000), 111-115.
- [14] W. H. Ruckle, "FK spaces in which the sequence of coordinate vectors is bounded", Canad. J. Math., 25 (1973) 973-978.
- [15] E. Savas, "Some sequence spaces and statistical convergence", Int. J. Math. & Math. Sci., 29(5) (2002) 303-306.
- [16] A. Wilansky, "Functional Analysis", Blasdell Publishing Company, (1964).