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Abstract

A reaction diffusion equation with a Caputo fractional derivative in time and with time-varying delays is considered.
Stability properties of the solutions are studied via the direct Lyapunov method and arbitrary Lyapunov functions (usually
quadratic Lyapunov functions are used). In this paper we give a brief overview of the most popular fractional order derivatives
of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of
reaction-diffusion fractional neural network with variable coefficients and time-varying delays. We show the quadratic Lyapunov
functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some
sufficient conditions for stability are obtained and we illustrate our theory on a particular nonlinear Caputo reaction-diffusion
fractional neural network with time dependent delays.
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1. Introduction

Neural networks have a wide range of applications in pattern recognition, associative memory, com-
binatorial optimization, etc.. Delays are incorporated into the model equations of the networks because
of the finite speeds of the switching and the transmission of signals in a network and this leads to time
delays in a working network. It was observed both experimentally and numerically in [18] that time
delay could induce instability, causing sustained oscillations which may be harmful to a system. Addi-
tionally, when one considers memory and hereditary properties of various materials and processes ([9])
it is natural to consider fractional derivatives in the model. Neural networks in biology, coupled lasers,

∗Corresponding author
Email address: Ravi.Agarwal@tamuk.edu (R. P. Agarwal)

doi: 10.22436/jmcs.018.03.08

Received: 2017-11-05 Revised: 2018-03-12 Accepted: 2018-04-20

http://dx.doi.org/10.22436/jmcs.018.03.08
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.018.03.08&domain=pdf


R. P. Agarwal, S. Hristova, D. O’Regan, J. Math. Computer Sci., 18 (2018), 328–345 329

wireless communication, and power-grid networks in physics and engineering ([19, 27, 29]) are modeled
by fractional order differential equations.

In controlling nonlinear systems, the Lyapunov second method provides a way to analyze the stability
of the system without explicitly solving the differential equations. Stability results concerning integer-
order neural networks can be found in [11, 15, 31] and recently Lyapunov stability theory for fractional
order systems was discussed (see [1, 3–5, 13, 14]). Fractional order Lyapunov stability theory was studied
for various types of fractional neural networks using quadratic Lyapunov functions (see, for example, [33])
and stability analysis of fractional-order delay neural networks can be found in for example, [6–8, 30, 32]
and the references therein. Space-time fractional reaction-diffusion equations with Riemann-Liouville
fractional Derivative is studied in [23].

In this paper we consider Caputo fractional derivatives with order q ∈ (0, 1) defined by (see, for
example, [20])

C
t0
D
q
tm(t) =

1
Γ (1 − q)

t∫
t0

(t− s)−qm′(s)ds, t ∈ (t0, t0 + T), (1.1)

where Γ(.) denotes the Gamma function, t0 > 0, ∆ ⊂ Rn, 0 ∈ ∆, 0 < T 6 ∞ and the Riemann–Liouville
fractional derivative of order q ∈ (0, 1) is given by (see, for example, [20])

RL
t0
D
q
tm(t) =

1
Γ (1 − q)

d

dt

t∫
t0

(t− s)−qm(s)ds, t > t0.

Similar to (1.1) for any continuously differentiable function u(t, x), t ∈ [t0, t0 + T), x ∈ ∆, the time
Caputo fractional derivatives with order q ∈ (0, 1) are defined by

C
t0
D
q
t u(t, x) =

1
Γ (1 − q)

t∫
t0

(t− s)−q
∂u(s, x)
∂s

ds, t ∈ (t0, t0 + T), x ∈ ∆.

Remark 1.1. Note in some papers the time Caputo fractional derivatives with order q ∈ (0, 1) is denoted
by ∂qu(t,x)

∂tq .

Lemma 1.2 ([10]). Let P ∈ Rn×n be constant, symmetric, and positive definite matrix and m(t) : R+ → Rn be a
function with the Caputo fractional derivative existing. Then 1

2
C
0 D

q
t

(
mT (t)Pm(t)

)
6 mT (t)P C0 D

q
tm(t), t > 0.

In this paper we present various definitions of fractional order derivatives of Lyapunov functions
among Caputo fractional differential equations with variable delays, and we compare their application
on several examples and demonstrate their advantages and disadvantages (Section 2). Then fractional
order Lyapunov stability theory is proposed to Caputo reaction-diffusion fractional neural networks with
time-varying delays. Some stability sufficient criteria using the appropriate fractional derivative of Lya-
punov functions are provided and illustrated with examples on several types of Caputo reaction-diffusion
fractional neural network with time-varying delays (Section 3).

2. Fractional derivatives of Lyapunov functions

2.1. Brief overview of the derivative of Lyapunov functions among the delay Caputo fractional differential equations

We first consider the derivative of Lyapunov functions among the nonlinear Caputo fractional delay
differential equation (FrDDE)

C
t0
D
q
t x(t) = f(t, xt) for t ∈ [t0, t0 + T), x(t0 +Θ) = ψ(Θ), Θ ∈ [−r, 0], (2.1)
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where x ∈ Rn, f ∈ C[[t0, t0 + T)×Rn,Rn], t0 ∈ R+ is the initial time, ψ ∈ C([−r, 0],Rn) is the initial
function, T 6∞, and for any t ∈ [t0, t0 + T) the notation xt(Θ) = x(t+Θ), Θ ∈ [−r, 0] is used.

Let x(t), t ∈ [t0 − r, t0 + T), be a solution of the IVP for the FrDDE (2.1) and let V(t, x) be a Lyapunov
function, i.e., V(t, x) : [t0 − r, t0 + T)×∆ → R+ is continuous and locally Lipschitzian with respect to its
second argument, where ∆ ⊂ Rn, 0 ∈ ∆.

In the literature there are three types of derivatives of Lyapunov functions among solutions of frac-
tional differential equations used to study stability properties:
First type: Let x(t) be a solution of IVP for FrDDE (2.1). Then the Caputo fractional derivative of the
Lyapunov function V(t, x(t)) is defined by

C
t0
D
q
t V(t, x(t)) =

1
Γ (1 − q)

t∫
t0

(t− s)−q
d

ds

(
V(s, x(s))

)
ds, t ∈ (t0, t0 + T). (2.2)

This type of derivative is applicable for continuously differentiable Lyapunov functions. It is used mainly
for quadratic Lyapunov functions to study several stability properties of fractional differential equations
(see, for example, [14]).
Second type: This type of derivative of V(t, x) among FrDDE (2.1) was introduced in [22, Definition 4.4]
and later given in [26, Definition 1.12]:

D+
(2.1)V(t,φ(0)) = lim sup

h→0

1
hq

[
V(t,φ(0)) − V(t− h,φ(0) − hqf(t,φ0))

]
, t ∈ (t0, t0 + T), (2.3)

where φ ∈ C([−r, 0],Rn) and the notation φ0(Θ) = φ(0 +Θ), Θ ∈ [−r, 0] is used.
Note the operator defined by (2.3) has no memory (memory is typical for fractional derivatives).

Remark 2.1. Let x(t) be a solution of FrDDE (2.1) and for a fixed t > t0 : φ(s) = x(t+ s), s ∈ [−r, 0]. Then
in general D+

(2.1)V(t, x(t)) 6=
C
t0
D
q
t V(t, x(t)) where x(t) is a solution of (2.1).

Now, let us recall the remark in [28] concerning (2.3) where V(t− h,φ(0) − hqf(t,φ0)) is defined by

V(t− h,φ(0) − hqf(t,φ0)) =

[
t−t0
h ]∑
r=1

(−1)r+1
qCrV(t− rh,φ(0) − hqf(t,φ0)),

where qCr =
q(q−1)···(q−r+1)

r! , r is a natural number and [m],m > 0 is the integer part of the number m.
Following this notation the fractional derivative of the Lyapunov function is defined by

D+
(2.1)V(t,φ(0); t0) = lim sup

h→0

1
hq

[
V(t,φ(0)) −

[
t−t0
h ]∑
r=1

(−1)r+1
qCrV(t− rh,φ(0) − hqf(t,φ0))

]
. (2.4)

The derivative (2.4) has memory and it depends on the initial time t0. We will call the derivative (2.4)
the Dini fractional derivative of the Lyapunov function. The Dini fractional derivative is applicable for
continuous Lyapunov functions.
Remark 2.2. In the general case D+

(2.1)V(t,φ(0); t0) 6= D+
(2.1)V(t,φ(0)).

Third type: For any φ ∈ C([−r, 0],Rn) the derivative of the Lyapunov function V(t, x) among IVP for
FrDDE (2.1) with initial point t0 and initial function ψ ∈ C([−r, 0],Rn) is defined by:

c
(2.1)D

q
+V(t,φ(0); t0,ψ)

= lim sup
h→0+

1
hq

{
V(t,φ(0)) − V(t0,ψ(0))

−

[
t−t0
h ]∑
r=1

(−1)r+1
qCr

(
V(t− rh,φ(0) − hqf(t,φ0)) − V(t0,ψ(0))

)}
for t ∈ (t0, t0 + T),

(2.5)
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or its equivalent to

c
(2.1)D

q
+V(t,φ(0); t0,ψ) = lim sup

h→0+

1
hq

{
V(t,φ(0)) +

[
t−t0
h ]∑
r=1

(−1)r qCrV(t− rh,φ(0) − hqf(t,φ0))

}
−

V(t0,ψ(0))
(t− t0)qΓ(1 − q)

for t ∈ (t0, t0 + T).

(2.6)

The derivative (2.6) depends significantly on both the fractional order q and the initial data (t0,ψ) of
IVP for FrDDE (2.1) and this type of derivative is close to the idea of the Caputo fractional derivative of a
function.

We call the derivative given by (2.5) or its equivalent (2.6) the Caputo fractional Dini derivative. This
type of derivative is applicable for continuous Lyapunov functions (see, for example, [1, 3, 5]).

Remark 2.3. The equality c
(2.1)D

q
+V(t,φ(0); t0,ψ) = D+

(2.1)V(t,φ(0); t0) −
V(t0,ψ(0))

(t−t0)qΓ(1−q) holds for any t ∈
(t0, t0 + T), φ ∈ C([−r, 0],Rn) and for any initial data (t0,ψ) ∈ R+ ×C([−r, 0],Rn) :

c
(2.1)D

q
+V(t,φ(0); t0,ψ) = D+

(2.1)V(t,φ(0); t0), if V(t0,ψ(0)) = 0,
c
(2.1)D

q
+V(t,φ(0); t0,ψ) < D+

(2.1)V(t,φ(0); t0), if V(t0,ψ(0)) > 0.
(2.7)

Remark 2.4. Note that in the case of delays in the differential equations the derivative of the Lyapunov
function is considered for functions φ ∈ C([−r, 0],Rn) and points t such that V(t,φ(0)) = sups∈[−r,0] V(t+

s,φ(s)). This condition is called the Razumikhin condition.
We will illustrate the application of the above given derivatives on a particular Lyapunov function.

Example 2.5. Let n = 1 and the Lyapunov function V(t, x) = g(t)x2 where g ∈ C1([t0,∞),R+).

Case 1. Let x(t) be a solution of the IVP for FrDDE (2.1). Then applying Eq. (2.2) the Caputo fractional
derivative of the Lyapunov function is

C
t0
D
q
t V(t, x(t)) =

1
Γ (1 − q)

t∫
t0

(t− s)−q
d

ds

(
g(s)x2(s)

)
ds.

In the general case the above integral is difficult to solve and also obtaining upper bounds might not
be possible.

In the special case g(t) ≡ 1, i.e., we consider the quadratic Lyapunov function, we could apply Lemma
1.2 and obtain

C
t0
D
q
t V(t, x(t)) 6 2x(t) Ct0

D
q
t x(t) = 2x(t)f(t, xt).

Case 2. Second type of derivative.

Case 2.1: Let the function φ ∈ C([−r, 0],Rn). From formula (2.3) we obtain

D+
(2.1)V(t,φ(0)) = lim sup

h→0

1
hq

[
g(t)

(
φ(0)

)2
− g(t− h)

(
φ(0) − hqf(t,φ0)

)2]
= lim sup

h→0

1
hq

[(
g(t) − g(t− h)

)
φ2(0)

+ 2hq(g(t− h)φ(0)f(t,φ0) − h
2q(g(t− h)

(
f(t,φ0)

)2
]

= φ2(0) lim sup
h→0

g(t) − g(t− h)

h
h1−q

+ 2φ(0)f(t,φ0) lim sup
h→0

g(t− h) −
(
f(t,φ0)

)2 lim sup
h→0

hqg(t− h) = 2φ(0)g(t)f(t,φ0).

The derivative D+
(2.1)V(t,φ(0)) does not depend on the order q of the fractional derivative.
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Case 2.3: Dini fractional derivative. For any function φ ∈ C([−r, 0],R) we apply formula (2.4) and obtain

D+
(2.1)V(t,φ(0); t0) = lim sup

h→0

1
hq

[
g(t)φ2(0) −

[
t−t0
h ]∑
r=1

(−1)r+1
qCrg(t− rh)

(
φ(0) − hqf(t,φ0)

)2]

= φ2(0) lim sup
h→0

1
hq

[
t−t0
h ]∑
r=0

(−1)r qCrg(t− rh) + 2φ(0)g(t)f(t,φ0)

− 2φ(0)f(t,φ0) lim sup
h→0

[
t−t0
h ]∑
r=0

(−1)r qCrg(t− rh)

−
(
f(t,φ0)

)2 lim sup
h→0

hq
[
t−t0
h ]∑
r=1

(−1)r qCrg(t− rh)

= φ2(0) RLt0
D
q
t g(t) + 2φ(0)g(t)f(t,φ0).

In the case when the function g(t) ≡ 1, i.e., the quadratic Lyapunov function, we get

D+
(2.1)V(t,φ(0); t0) = 2φ(0)f(t,φ0) +

(
φ(0)

)2

(t− t0)qΓ(1 − q)
.

The Dini fractional derivative depends on both the fractional order q and initial time. Similar to
fractional derivatives it has a memory.

Case 2.4: Caputo fractional Dini derivative . According to Remark 2.3 and Case 2.3 we get

c
(2.1)D

q
+V(t,φ(0); t0,ψ) = φ2(0) RLt0

D
q
t g(t) + 2g(t)φ(0)f(t,φ0) −

g(t0)ψ
2(0)

(t− t0)qΓ(1 − q)
.

In the special case g(t) ≡ 1, i.e. we consider the quadratic Lyapunov function, we obtain

c
(2.1)D

q
+V(t,φ(0); 0,ψ) = 2φ(0)f(t,φ0) +

(
φ(0)

)2
−
(
ψ(0)

)2

(t− t0)qΓ(1 − q)
.

The Caputo fractional Dini derivative depends on both the fractional order q and initial data which is
typical for the Caputo fractional operator.

From the literature we note that one of the sufficient conditions for stability is connected with the sign
of the derivative of the Lyapunov function of the equation.

Example 2.6. Consider the IVP for the scalar linear FrDDE with q ∈ (0, 1)

C
0 D

q
t x(t) = −

(
0.5

RL
0 Dq

(
sin2(t) + 0.1

)
sin2(t) + 0.1

+ 0.1
)
x(t) + 0.1x(t− π) for t > 0, x(s) = 1 for s ∈ [−π, 0]. (2.8)

Denote G(t) = −
(

0.5
RL
0 D

q
(

sin2(t)+0.1
)

sin2(t)+0.1
+ 0.1

)
.

Case 1: Consider the quadratic Lyapunov function, i.e., V(t, x) = x2 (it is used for fractional-order neural
networks with multiple time delays in [33]). Let x(t) be a solution of IVP for FrDDE (2.8) and t > 0 be
such that V(t, x(t)) = x2(t) = sups∈[−π,t] x

2(s) = sups∈[−π,t] V(s, x(s)). According to Case 1 in Example
2.5 we get

C
0 D

q
t V(t, x(t)) 6 2x(t) C0 D

q
t x(t) = 2(x(t))2G(t) + 0.2x(t)x(t− π) 6 2x2(t)(0.1 +G(t)).

The sign of C
0 D

q
t V(t, x(t)) is changeable (the graph of the function G(t) + 0.1 for various values of q

is given on Figure 1).
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Figure 1: Example 2.6. Graph of the function G(t) + 0.1
for various values of q.

Figure 2: Example 3.5. Graph of the function f(t) =√
2 erf−1(2t− 1).

Case 2: Consider the function V(t, x) = (sin2(t) + 0.1)x2.

Case 2.1: Caputo fractional derivative. According to Case 1 in Example 2.5 the fractional derivative of this
function V is difficult to obtain so it is difficult to discuss its sign.

Case 2.2: According to Case 2.1 in Example 2.5 for any function φ ∈ C([−π, 0],R) and any point t > 0
such that V(t,φ(0)) = (sin2(t)+ 0.1)φ2(0) = sups∈[−π,0](sin2(t+ s)+ 0.1)φ2(s) = sups∈[−π,0] V(t+ s,φ(s))
we obtain

D+
(2.8)V(t,φ(0)) = 2φ(0)(sin2(t) + 0.1)(φ(0)G(t) + 0.1φ(−π))

6 2φ2(0)(sin2(t) + 0.1)G(t) + 0.2φ(0)φ(−π)(sin2(t) + 0.1)

6 2φ2(0)(sin2(t) + 0.1)G(t) + 0.1φ2(0)(sin2(t) + 0.1) + 0.1φ2(−π)(sin2(t− π) + 0.1)

6 2φ2(0)(sin2(t) + 0.1)(G(t) + 0.1),

i.e., the sign of the derivative D+
(2.8)V(t,φ) is changeable.

Case 2.3: Dini fractional derivative. According to Case 2.2 in Example 2.5 for any function φ∈C([−π, 0],R)
and t > 0 such that V(t,φ(0))=(sin2(t)+ 0.1)φ2(0)=sups∈[−π,0](sin2(t+ s)+ 0.1)φ2(s)=sups∈[−π,0] V(t+

s,φ(s)) we apply formula (2.4) and obtain

D+
(2.8)V(t,φ(0); 0) 6 2φ2(0)(G(t) + 0.1)(sin2(t) + 0.1) +φ2(0) RL0 Dq

(
sin2(t) + 0.1

)
= 0.

Case 2.4: Caputo fractional Dini derivative . According to Remark 2.3 and Case 2.3 of Example 2.5 the
inequality

c
(2.8)D

q
+V(t,φ(0); 0,ψ) = D+

(2.8)V(t,φ(0); 0) −
0.1ψ2(0)
tqΓ(1 − q)

= −
0.1ψ2(0)
tqΓ(1 − q)

6 0

holds.
Therefore, for (2.8) both the Dini fractional derivative and the Caputo fractional Dini derivative seem

to be more applicable than the Caputo fractional derivative of the Lyapunov function.

Remark 2.7. The above example notes that the quadratic function for studying stability properties of neu-
ral network might not be successful (especially when the right hand side depends directly on the time
variable). Formula (2.3) is not appropriate for applications to fractional equations. The most general
derivatives for non-homogenous fractional differential equations are Dini fractional derivatives and Ca-
puto fractional Dini derivatives.

2.2. Remarks on some applications of derivatives of Lyapunov functions to FrDDE.
Some authors use the derivative defined by (2.3) to study stability properties of delay fractional differ-

ential equations ([22, 24, 26]) and delayed reaction-diffusion cellular neural networks of fractional order
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([25]). The proofs are based on the following comparison result (we will give it with appropriate technical
corrections).

Lemma 2.8 (Corollary 1.1 in [26]). Assume that the function V ∈ C0 = {V ∈ C([t0,∞)×∆,R+), V is locally
Lipschitzian in x ∈ ∆} and for t > t0 and φ ∈ C([−r, 0],∆) the inequality

D+
(2.1)V(t,φ(0)) 6 BV(t,φ(0))

is valid whenever V(t+Θ,φ(Θ)) 6 V(t,φ(0)) for −r 6 Θ 6 0 where ∆ ⊂ Rn, 0 ∈ ∆. Then V(t, x(t; t0,φ0)) 6
max−r6Θ60 V(t0 +Θ,φ0(Θ))Eq(B(t− t0)

q), t ∈ [t0,∞), where x(t; t0,φ0) is the solution of (2.1) with initial
data (t0,φ0) ∈ R+ ×C[[−r, 0],∆].

The claim of Lemma 2.8 is not true. We will give a counterexample.

Example 2.9. Consider the IVP for FrDDE (2.1) with n = 1, t0 = 0, r = 0, and f(t, xt) = 2x(t), ψ(0) = x0.
Then the solution of (2.1) is x(t) = x0Eq(2tq).

Consider the Lyapunov function V(t, x) = g(t)x2 where g ∈ C([0,∞),R+), g(0) = 0 is a nondecreasing
function (for example g(t) = t

t+1 ). For any point φ(0) ∈ R according to Case 2.1 in Example 2.5 we get

D+
(2.1)V(t,φ(0)) = 2g(t)φ(0)f(t,φ0) = 4g(t)(φ(0))2 = 4V(t,φ(0)). Then V(0,φ(0)) = g(0)

(
φ(0)

)2
= 0 and

the inequality

V(t, x(t)) = g(t)x2
0

(
Eq(2tq)

)2
6 V(0,φ(0))Eq(4tq) = 0

is not true for t > 0. Therefore, the claim of Lemma 2.8 is not true in this particular case.

Remark 2.10. Note a similar result like in Lemma 2.8 is obtained in Theorem 4.4 [22] when the functional
method is used instead of the Razumikhin method.

According to the above, the application of the derivative D+
(2.1)V(t,φ(0)) defined by (2.3) is not ap-

propriate in studying stability properties of neural networks of fractional order (as presented in [25]).
We will consider fractional neural networks with delays and using Lyapunov functions and their Caputo
fractional derivative, Dini fractional derivative or Caputo fractional Dini derivative, we study stability.

2.3. Stability results by Lyapunov functions for Caputo fractional differential equations.

We will give some results for fractional derivatives of Lyapunov functions among Caputo fractional
differential equations which will be used for our main results concerning the stability of neural networks.
Recall the point x∗ ∈ Rn is an equilibrium point of (2.1) iff 0 = f(t, x∗), t > t0.

Definition 2.11. The equilibrium point x∗ of (2.1) is uniformly stable if for any ε > 0 there exists δ > 0
such that any ψ ∈ C([−r, 0],Rn) : sups∈[−r,0]||ψ(s) − x

∗|| < δ implies ||x(t) − x∗|| < ε for t > t0 where x(t)
is a solution of the IVP for FrDDE (2.1) with the initial function ψ.

Lemma 2.12 ([8, Theorem 3.1]). Let w1,w2 ∈ C(R+,R+) be nondecreasing functions, wi(s) > 0, i = 1, 2 for
s > 0, wi(0) = 0, i = 1, 2, w2(s) is strictly increasing, and there exists a continuously differentiable Lyapunov
function V(t, x) ∈ R+ ×Rn → R+ such that

(i) w1(||x||) 6 V(t, x) 6 w2(||x||), t > 0, x ∈ Rn;
(ii) for any t > 0 such that supΘ∈[−r,t] V(Θ, x(Θ)) = V(t, x(t)), the inequality

C
0 D

β
t V(t, x(t)) 6 0

holds, where x(t) is a solution of (2.1) with t0 = 0.

Then the equilibrium point of (2.1) with t0 = 0 is uniformly stable.
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For the Caputo fractional Dini derivative we have the following.

Lemma 2.13 ([2, Theorem 6]). Assume x∗ ∈ Rn is an equilibrium point for (2.1) with T =∞ and there exists a
Lyapunov function V(t, x) : V(t, 0) = 0, t > 0, such that

(i) α1(||x||) 6 V(t, x) 6 α2(||x||) for t > 0, x ∈ ∆, where αi ∈ C([0,∞), [0,∞)), i = 1, 2 are strictly increasing
and αi(0) = 0;

(ii) for any initial data (t0,ψ) ∈ R+ ×C([−r, 0],∆) and any function φ ∈ C([−r, 0],∆) such that if for a point
t > t0 we have V(t+Θ,φ(Θ)) 6 V(t,φ(0)) for Θ ∈ [−r, 0), then the inequality

c
(2.1)D

q
+V(t,φ(0); t0,ψ) 6 0

holds.

Then the equilibrium point of (2.1) is uniformly stable.

3. Stability for Caputo reaction-diffusion fractional neural network with time-varying delays.

3.1. System description.
Consider the general model of Caputo reaction-diffusion fractional neural network with time-varying

delays (RDFrDNN)

C
0 D

q
t ui(t, x) = −ci(t)ui(t, x) +

m∑
j=1

∂

∂xj

(
Dij

∂ui(t, x)
∂xj

)
+

n∑
j=1

aij(t)fj(uj(t, x))

+

n∑
j=1

bij(t)gj(uj(t− τj(t), x)) + Ii(t) for t > 0, i = 1, 2, . . . ,n,

(3.1)

where q ∈ (0, 1), n represents the number of units in the network, ui(t, x), i = 1, 2, . . . ,n is the state
of the i-th unit at time t in space x of master system, x = [x1, x2, . . . , xm]T , ci(t) > 0, i = 1, 2, . . . ,n
representing the reset rate of the i-th neuron is the self-feedback term , aij(t),bij(t), i, j = 1, 2, . . . ,n
correspond to the connection of the i-th neuron to the j-th neuron at times t and t− τj(t) respectively,
fj and gj denote the activation functions of the neurons at time t and t − τj(t), respectively, f(u) =
[f1(u1), f2(u2), . . . , fn(un)]T , g(u) = [g1(u1),g2(u2), . . . ,gn(un)]T and I = [I1, I2, . . . , In]T is an external
bias vector, τj(t) ∈ C(R+, [0, r]), j = 1, 2, . . . ,n, are the transmission delays, and the smooth functions
Dij = Dij(t, x) > 0 are the diffusion operators along the i-th neuron.

Further we will assume that

Assumption 3.1. The diffusion operators along the i-th neuron Dij = Dij(t, x) > 0 are smooth functions
and there exist constants dij > 0 such that Dij(t, x) > dij for t > 0, x ∈ ∆.

The initial value and boundary value conditions associated with the neural network (3.1) are listed as

ui(s, x) = ψi(s, x) for (s, x) ∈ [−r, 0]×∆, i = 1, 2, . . . ,n,
ui(t, x) = 0 for (t, x) ∈ [−r,∞)× ∂∆, i = 1, 2, . . . ,n,

(3.2)

where ψi ∈ C([−r, 0]×∆,R), i = 1, 2, . . . ,n.
Let C = C([−r, 0]×∆,Rn) and for ψ ∈ C, ψ = (ψ1,ψ2, . . . ,ψn) we define a norm

||ψ||C = max
s∈[−r,0]

n∑
i=1

[ ∫
∆

ψ2
i(s, x)dx

] 1
2
.

Let u ∈ C([0,∞)×∆,Rn), u = (u1,u2, . . . ,un). For any t > 0 we define

||ui(t, .)||∆ =
[ ∫
∆

u2
i(t, x)dx

] 1
2
, ||u(t, .)||∆ =

n∑
i=1

‖|ui(t, .)||∆.

Also, denote by |.| the absolute value of a scalar, and ‖.‖ is a norm in Rn.
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Remark 3.2. Reaction-diffusion neural network with time-varying delays of integer order are studied in
[16, 17].

Remark 3.3. The problem of existence and uniqueness of equilibrium of fractional-order neural networks
is investigated by several authors (see, for example, [7] for constant delays).

Definition 3.4. A vector u∗ ∈ Rn, u∗ = (u∗1 ,u∗2 , . . . ,u∗n) is an equilibrium point of RDFrDNN (3.1) , iff the
equalities 0 = −ci(t)u

∗
i +
∑n
j=1 aij(t)fj(u

∗
j ) +

∑n
j=1 bij(t)gj(u

∗
j ) + Ii(t) hold for all t > 0, i = 1, 2, . . . ,n.

We will discuss the equilibrium points on some RDFrDNN-s with various activation functions. It will
be useful for further stability analysis.

Example 3.5. Let n = m = 1, c is a constant, Ii(t) ≡ I and consider the scalar equation which is a special
case of RDFrDNN (3.1):

C
0 D

q
t u(t, x) = −cui(t, x) +

∂

∂x

(
D
∂u(t, x)
∂x

)
+ a(t)f(u(t, x)) + b(t)g(u(t− τ(t), x)) + I (3.3)

Case 1. Let I = 0.5πc and the activation function be the cosine function f(u) = g(u) = cos(u) (see [21]).
The point u∗ = 0.5π is an equilibrium point of RDFrDNN (3.3) because for all t > 0 the equality

−0.5π c+ a(t) cos(0.5π) + b(t) cos(0.5π) + 0.5πc = 0 holds.

Case 2. Let I = 0.5c and the activation function be the Probit function f(u) = g(u) =
√

2 erf−1(2u− 1) (see
Figure 2) where erf(u) = 2√

π

∫u
0 e

−t2
dt is the error function. Then erf−1(0) = 0.

The point u∗ = 0.5 is an equilibrium point of RDFrDNN (3.3) because −c0.5+a(t)f(0.5)+b(t)g(0.5)+
0.5c = 0 for all t > 0.

Case 3. Let I = 0.5c and the activation function be the Logit function f(u) = g(u) = log
(
u

1−u

)
(see Figure

3). Then f(0.5) = 0.

Figure 3: Example 3.5. Graph of the function f(t) =

log
(
t

1−t

)
.

Figure 4: Example 3.21. Graph of the functions
xf(x + 0.5) = x

√
2 erf−1(2(x + 0.5) − 1), xf(x + 0.5) =

x log
(

x+0.5
1−(x+0.5)

)
and x2, x ∈R.

The point u∗ = 0.5 is an equilibrium point of RDFrDNN (3.3) because −c0.5+a(t)f(0.5)+b(t)g(0.5)+
0.5c = 0 for all t > 0.

Consider the following assumption.

Assumption 3.6. Let the RDFrDNN (3.1) have an equilibrium point u∗ ∈ Rn.

If Assumption 3.6 is satisfied then we can shift the equilibrium point u∗ of system (3.1) to the origin.
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The transformation y(t, x) = u(t, x) − u∗ is used to put system (3.1) in the following form:

C
0 D

q
t yi(t, x) = −ci(t)yi(t, x) +

m∑
j=1

∂

∂xj

(
Dij

∂yi(t, x)
∂xj

)
+

n∑
j=1

aij(t)Fj(yj(t, x))

+

n∑
j=1

bij(t)Gj(yj(t− τj(t), x)) for t > 0, x ∈ ∆, i = 1, 2, . . . ,m,

(3.4)

where Fj(v) = fj(v+ u∗j ) − fj(u
∗
j ),Gj(v) = gj(v+ u

∗
j ) − gj(u

∗
j ), v ∈ R, j = 1, 2, . . . ,n.

3.2. Stability analysis
We will study stability properties of several different types of RDFrDNN (3.1) using different types of

Lyapunov functions and their fractional derivatives given in Section 2.
Following the definitions given in Sections 2.1 we will use different types of fractional derivatives of

Lyapunov functions among RDFrDNN (3.1) and its equivalent (3.4). Also, considering case 2.1 in Example
2.5 as well as Example 2.9 we will not use the definition given by Eq. (2.3).

For any t > 0, x ∈ ∆,u ∈ C(R+ × ∆,Rn), u = (u1,u2, . . . ,un), and v ∈ C([−r,∞)× ∆,Rn), v =
(v1, v2, . . . , vn) we introduce the notation

F(t, x,u, v) = (F1(t, x,u, v),F2(t, x,u, v), . . . ,Fn(t, x,u, v)) :

Fi(t, x,u, v) = −ci(t)ui +

m∑
j=1

∂

∂xj

(
Dij

∂ui
∂xj

)
+

n∑
j=1

aij(t)fj(uj) +

n∑
j=1

bij(t)gj(vj) + Ii(t).

Example 3.7.

Case 1. Let V(t, x) =
∑n
i=1 x

2
i. Let u(t, x) be a solution of IVP for RDFrDNN (3.1), (3.2), and let Ui(t) =

||ui(t, .)||∆ ∈ C(R+,Rn). Applying Lemma 1.2 we have

C
0 D

q
t V(t,U(t)) =

C
0 D

q
t

n∑
i=1

||ui(t, .)||2∆ =

n∑
i=1

∫
∆

C
0 D

q
t u

2
i(t, x)dx 6 2

n∑
i=1

∫
∆

ui(t, x) C0 D
q
t ui(t, x)dx

= 2
n∑
i=1

∫
∆

ui(t, x)Fi(t, x,u(t, x),u(t− τ(t), x))dx,

where u(t− τ(t), x) = (u1(t− τ1(t), x),u2(t− τ2(t), x), . . . ,un(t− τn(t), x)).

Case 2. Let V(t, x) = p(t)
∑n
i=1 x

2
i where p ∈ C([−r,∞),R+ : α 6 p(t) 6 β for t > −r where α,β > 0 are

constants, x = (x1, x2, . . . , xn).
Let φ ∈ C([−r, 0]× ∆,Rn) and let Φi(t) = ||φi(t, .)||∆ ∈ C([−r, 0],R), Φ = (Φ1,Φ2, . . . ,Φn). Let the

point t > 0 : supΘ∈[t−r,t] V(t+Θ,Φ(Θ)) = supΘ∈[t−r,t] p(t+Θ)
∑n
j=1 ||φj(Θ, .)||2∆ = p(t)

∑n
j=1 ||φj(0, .)||2∆

= V(t,Φ(0)). Then from formula (2.4) we obtain for the Dini fractional derivative:

D+
(2.1)V(t,Φ(0); 0) = lim sup

h→0

1
hq

[
p(t)

n∑
i=1

∫
∆

φ2
i(0, x)dx

−

[ th ]∑
r=1

(−1)r+1
qCrp(t− rh)

n∑
i=1

∫
∆

(
φi(0, x) − hqFi(t, x,φi(0, x),φi(−τi(0), x))

)2
dx
]

= 2p(t)
n∑
i=1

∫
∆

φi(0, x)F(t, x,φi(0, x),φi(−τi(t), x))dx+
( n∑
i=1

||φi(0, .)||2∆
)
RL
0 Dqp(t).

Definition 3.8. The equilibrium point u∗ of RDFrDNN (3.1) is uniformly stable if for any ε > 0 there
exists δ > 0 such that any t0 > 0 and ψ ∈ C : ||ψ− x∗||C < δ implies ||u(t, .) − x∗||∆ < ε for t > t0, where
u(t, x) is a solution of the IVP for RDFrDNN (3.1), (3.4).
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3.2.1. Lipschitz activation functions and quadratic Lyapunov functions
Stability analysis of the fractional-order neural networks with constant delays and Lipschitz active

functions was studied in [12] and the argument was based on topological degree theory, nonsmooth
analysis and a nonlinear measure method. We will apply the Lyapunov method to derive some sufficient
conditions for stability in the case of variable delays.

The reaction-diffusion cellular neural networks of fractional-order with delays is also studied in [25]
in the case of Lipschitz activation functions. Unfortunately there are several inaccuracies in [25]:

- the domain of the defined function F in Definition 6 [25] contradicts its application in the Caputo
fractional differential equation;

- the proofs of the main Theorems 11 and 16 [25] are based on the application of Lemma 2.8 whose
claim is not true (see Example 2.9);

- the incorrect inequality
∑m
j=1 maxs∈[−r,0] ||ϕ̃i(s, .)||2 6 maxs∈[−r,0]

∑m
j=1 ||ϕ̃i(s, .)||2 is used in the

proof of Theorems 11 and 16 in [25].

We will state the result in the case of Lipschitz activation functions and variable bounded coefficients.
The case of multiple time constant delays and constant functions of the connection of the i-th neuron to
the j-th neuron in RDFrDNN (3.1) is studied using the quadratic Lyapunov function in [33].

We will assume the following.

Assumption 3.9. The neuron activation functions are Lipschitz, i.e., there exist positive numbers Li,Hi,
i = 1, 2, . . . ,n such that |fi(u)− fi(v)| 6 Li|u− v| and |gi(u)−gi(v)| 6 Hi|u− v|, i = 1, 2, . . . ,n for u, v ∈ R.

Assumption 3.10. There exists positive numbers Mi,j, Ci,j, i, j = 1, 2, . . . ,n such that |ai,j(t)| 6 Mi,j,
|bi,j(t)| 6 Ci,j for t > 0.

Assumption 3.11. The inequality

2
(

min
i=1,n

ci + min
i=1,n

m∑
j=1

d̃ij

)
>

n∑
i=1

(max
j=1,n

MijLj + max
j=1,n

CijHj) + max
i=1,n

(

n∑
j=1

(MijLj +CijHj)

holds.

Remark 3.12. If Assumption 3.9 is satisfied then the functions F,G in RDFrDNN (3.1) satisfy |Fj(u)| 6
Lj|u|, |Gj(u)| 6 Hj|u|, j = 1, 2, . . . ,n for any u ∈ R.

Theorem 3.13. Let ∆ = {x ∈ Rm : |xi| 6 li, i = 1, 2, . . . ,m}, li, i = 1, 2, . . . ,m are positive constants,
cj(t) > cj > 0, j = 1, 2, . . . ,n, and ssumptions 3.1, 3.6, 3.9, 3.10, and 3.11 are satisfied with d̃ij =

dij
l2
j

. Then the

equilibrium point x∗ of RDFrDNN (3.1) is uniformly stable.

Proof. Consider the quadratic functions V(t,u) =
∑n
i=1 u

2
i, u ∈ Rn. Let u(t, x) be a solution of IVP

for RDFrDNN (3.1), (3.2) and let Ui(t) = ||ui(t, .)||∆ ∈ C(R+,Rn). Let the point t > 0 be such that
supΘ∈[−r,t] V(Θ,U(Θ)) = supΘ∈[−r,t]

∑n
j=1 ||uj(Θ, .)||2∆ =

∑n
j=1 ||uj(t, .)||2∆ = V(t,U(t)). Then since τi(t) ∈

[0, r] we have
∑n
j=1 ||uj(t, .)||2∆ >

∑n
j=1 ||uj(t− τj(t), .)||2∆, t > 0. According to Eq. (2.7) we get

C
0 D

q
t V(t,U(t)) 6 2

n∑
i=1

∫
∆
ui(t, x)Fi(t, x,u(t, x),u(t− τ(t), x))dx

6 −2
n∑
i=1

ci

∫
∆
u2
i(t, x)dx+ 2

n∑
i=1

m∑
j=1

∫
∆

∂

∂xj

(
Dij

∂ui(t, x)
∂xj

)
ui(t, x)dx

+ 2
n∑
i=1

n∑
j=1

|aij(t)|

∫
∆
|Fj(uj(t, x))||ui(t, x)|dx
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+ 2
n∑
i=1

n∑
j=1

|bij(t)|

∫
∆
|Gj(uj(t− τ(t), x))||ui(t, x)|dx

6 −2
n∑
i=1

ci

∫
∆
u2
i(t, x)dx− 2

n∑
i=1

m∑
j=1

∫
∆

dij

l2j
u2
i(t, x)dx

+ 2
n∑
i=1

n∑
j=1

Mij

∫
∆
Lj|uj(t, x)||ui(t, x)|dx

+ 2
n∑
i=1

n∑
j=1

Cij

∫
∆
Hj|uj(t− τ(t), x)||ui(t, x)|dx

6 −2(min
i
ci + min

i

m∑
j=1

dij

l2j
)||u(t, .)||2∆ +

( n∑
i=1

(max
j
MijLj + max

j
CijHj)

)
||u(t, .)||2∆

+
(

max
i

(

n∑
j=1

(MijLj +CijHj)
)
||u(t, .)||2∆ 6 0,

where u(t− τ(t), x) = (u1(t− τ1(t), x),u2(t− τ2(t), x), . . . ,un(t− τn(t), x)).
The above inequality and Lemma 2.12 prove the claim.

Remark 3.14. Note in this case the sufficient conditions for stability do not depend on the order q of the
Caputo fractional derivative.
Example 3.15. Consider the system of RDFrDNN (3.1) with n = 3,m = 2, ci(t) ≡ ci, i = 1, 2, 3, li =
2, i = 1, 2, with the activation functions fj(s) = gj(s) = 0.5 tanh(s), j = 1, 2, 3, the delay τ(t) ≡ 1 and
|aij(t)| 6Mij, |bij(t)| 6 Cij, i, j = 1, 2, 3, t > 0, where M = {Mij},C = {Cij} are given by

M =

−0.1 0.5 0.3
−0.2 0.3 0.2
0.4 −0.2 −0.1

 , C =

 0.1 −0.1 −0.2
0.3 0.2 −0.1
−0.2 0.5 0.3

 ,

and (
Dij
)

3×2 =

3 + sin t 0
sin2 t cos2t

0 4 + cost

 ,
(
dij
)

3×2 =

2 0
0 0
0 3

 .

The point x∗ = (0, 0, 0) is an equilibrium point of Caputo FODNN (3.1) if Ii(t) ≡ 0, i = 1, 2, 3 (see
Example 3.5).

Then Li = Hi = 0.5 and
∑3
i=1(maxj=1,3MijLj + maxj=1,3CijHj) = (0.25 + 0.1) + (0.15 + 0.15) + (0.2 +

0.25) = 1.1, maxi=1,3(
∑3
j=1(MijLj +CijHj) = 0.85, mini=1,3

∑2
j=1 d̃ij = 0.25.

Therefore, if ci > 1.95
2 − 0.25 = 0.725, i = 1, 2, 3 then according to Theorem 3.13 the zero equilibrium is

uniformly stable.

3.2.2. Non-Lipschitz activation functions and quadratic Lyapunov functions
There are many types of activation functions which are not Lipschitz (see Example 3.5, Cases 2 and

3). In this case we assume:
Assumption 3.16. There exists a function ξ ∈ C(R+,R) such that for any solution u(t, x) of RDFrDNN
(3.1) and any point t > 0 such that supΘ∈[−r,t]

∑n
j=1 ||uj(Θ, .)||2∆ =

∑n
j=1 ||uj(t, .)||2∆ the inequalities

n∑
j=1

aij(t)

∫
∆
(fj(uj(t, x) + u∗j ) − fj(u

∗
j ))ui(t, x)dx

+

n∑
j=1

bij(t)

∫
∆
(gj(uj(t− τj(t), x) + u∗j ) − gj(u

∗
j ))ui(t, x)dx 6 ξ(t)

∫
∆
u2
i(t, x)dx for i = 1, 2, . . . ,n

hold.
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Assumption 3.17. There exists a function η ∈ C(R+, (0,∞)) such that the inequalities ci(t) > η(t), i =
1, 2, . . . ,n, t > 0 hold.

Remark 3.18. Note that, if the functions fj,gj, j = 1, 2, . . . ,n are Lipschitz then condition 3.16 is satisfied.

Theorem 3.19. Let ∆ = {x ∈ Rm : |xi| 6 li, i = 1, 2, . . . ,m}, and Assumptions 3.1, 3.6, 3.16, and 3.17 be
satisfied with ξ(t) 6 η(t) + mini=1,n

∑m
j=1

dij
l2
j

, t > 0. Then the equilibrium point u∗ of RDFrDNN (3.1) is

uniformly stable.

Proof. Consider the quadratic functions V(t,u) =
∑n
i=1 u

2
i, u ∈ Rn. Let u(t, x) be a solution of IVP for

RDFrDNN (3.1) and let Ui(t)= ||ui(t, .)||∆ ∈ C(R+,R). Let the point t > 0 be such that

sup
Θ∈[−r,t]

V(Θ,U(Θ)) = sup
Θ∈[−r,t]

n∑
j=1

||uj(Θ, .)||2∆ =

n∑
j=1

||uj(t, .)||2∆ = V(t,U(t)).

Then since τj(t) ∈ [0, r], j = 1, 2, . . . ,n, we have

n∑
j=1

||uj(t, .)||2∆ >
n∑
j=1

||uj(t− τj(t), .)||2∆, t > 0.

According to Eq. (2.7), Assumptions 3.16 and 3.17, and Lemma 1.2 we get for the Caputo fractional
derivative

C
0 D

q
t V(t,U(t)) 6 2

n∑
i=1

∫
∆

ui(t, x)Fi(t, x,u(t, x),u(t− τ(t), x))dx

= −2
n∑
i=1

ci

∫
∆

u2
i(t, x)dx+ 2

n∑
i=1

m∑
j=1

∫
∆

∂

∂xj

(
Dij

∂ui(t, x)
∂xj

)
ui(t, x)dx

+ 2
n∑
i=1

n∑
j=1

aij(t)

∫
∆

Fj(uj(t, x))ui(t, x)dx

+ 2
n∑
i=1

n∑
j=1

bij(t)

∫
∆

Gj(uj(t− τ(t), x))ui(t, x)dx

6 −2
(
η(t) + min

i=1,n

m∑
j=1

dij

l2j
− ξ(t)

) n∑
i=1

||ui(t, .)||2∆,

(3.5)

where u(t− τ(t), x) = (u1(t− τ1(t), x),u2(t− τ2(t), x), . . . ,un(t− τn(t), x)).
From inequality (3.5) and Lemma 2.12 the claim follows.

Remark 3.20. Note that, in this case the sufficient conditions for stability depend indirectly on the order q
of the Caputo fractional derivative.

Example 3.21. Let n = 1,m = 1, l = 1 and consider the scalar nonlinear RDFrDNN for t > 0

C
0 D

q
t u(t, x) = −c(t)u(t, x) +

∂

∂x

(
D
∂u(t, x)
∂x

)
+ a(t)f(u(t, x)) + b(t)f(u(t− τ(t), x)) + I(t), (3.6)

where q ∈ (0, 1), c ∈ C([0,∞), (0,∞)), I = 0.5c(t), D > 0, τ ∈ C(R+, [0, r]), r = const > 0, ∆ = {x ∈ R :
|x| 6 l}, the functions a ∈ C([0,∞), (∞, 0]),b ∈ C([0,∞), [0,∞)) are such that a(t) + b(t) = µ(t) 6 0 and
the activation function f(t) is the Probit function or the Logit function. Then the equation (3.6) has an
equilibrium point x∗ = 0.5 (see Cases 2 and 3 in Example 3.5). Both activation functions are not Lipschitz
and Theorem 3.13 cannot be applied.
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Let u(t, x) be a solution of the scalar nonlinear RDFrDNN (3.6) and t > 0 be such that

sup
Θ∈[−r,t]

||u(Θ, .)||2∆ = ||u(t, .)||2∆ or sup
Θ∈[−r,t]

|u(Θ, x)| = |u(t, x)|, x ∈ ∆.

Consider the following possible cases:

Case 1. Let u(t, x) < 0 and u(t− τ(t), x) < −0.5 < 0. Since τ(t) > 0 we obtain u(t− τ(t), x) > u(t, x)
and from the monotonicity property of the function f we get f(u(t− τ(t), x) + 0.5) > f(u(t, x) + 0.5)
and b(t)f(u(t− τ(t), x) + 0.5)u(t, x) 6 b(t)f(u(t, x) + 0.5)u(t, x). Then applying xf(x+ 0.5) > x2 >
0, x ∈ R (see Figure 4) we get

a(t)f(u(t, x) + 0.5)u(t, x) + b(t)f(u(t− τ(t), x) + 0.5)u(t, x)

6
(
a(t) + b(t)

)
f(u(t, x) + 0.5)u(t, x) 6 µ(t)u2(t, x).

Case 2. Let u(t, x) < 0 and u(t− τ(t), x) > −0.5. Then f(u(t− τ(t), x) + 0.5) > 0 and applying xf(x+
0.5) > x2 > 0, x ∈ R we obtain

a(t)f(u(t, x) + 0.5)u(t, x) + b(t)f(u(t− τ(t), x) + 0.5)u(t, x)

6 a(t)f(u(t, x) + 0.5)u(t, x) 6 a(t)u2(t, x) 6 µ(t)u2(t, x).

Case 3. Let u(t, x) > 0. Then |u(t−τ(t), x)| 6 u(t, x) and from the monotonicity property of the function
f it follows that f(u(t− τ(t), x) + 0.5) 6 f(|u(t− τ(t), x)|+ 0.5) 6 f(u(t, x) + 0.5). Therefore,

a(t)f(u(t, x) + 0.5)u(t, x) + b(t)f(u(t− τ(t), x) + 0.5)u(t, x)

6
(
a(t) + b(t)

)
f(u(t, x) + 0.5)u(t, x) 6 µ(t)u2(t, x).

Then the inequality∫
∆

(
a(t)f(u(t, x) + 0.5)u(t, x) + b(t)f(u(t− τ(t), x) + 0.5)u(t, x)

)
dx 6 µ(t)

∫
∆

u2(t, x)dx, t > 0

holds. Therefore, Assumption 3.16 is satisfied.
Then according to Theorem 3.19, the equilibrium point x∗ = 0.5 of RDFrDNN (3.6) is uniformly stable

for all c(t) > 0.

3.2.3. Non-Lipschitz activation functions and time-depended Lyapunov functions.
In the case the function η(t) in Assumption 3.17 is not large enough so we assume:

Assumption 3.22. There exists a continuous positive function p(t) ∈ C([0,∞),R+) such that 0 < α 6
p(t) 6 β and the fractional derivative RL

0 D
q
t p(t) exists for t > 0.

In this case Assumption 3.16 could be weakened to

Assumption 3.23. There exists a function ξ ∈ C(R+,R) such that for any function φ ∈ C([−r, 0],Rn) and
t > 0 be such that supΘ∈[−r,0] p(t+Θ)

∑n
j=1 ||φj(Θ, .)||2∆ = p(t)

∑n
j=1 ||φj(0, .)||2∆ and the inequality

n∑
i=1

n∑
j=1

aij(t)

∫
∆

(fj(φj(0, x) + u∗j ) − fj(u
∗
j ))φi(0, x)dx

+

n∑
j=1

bij(t)

∫
∆

(gj(φj(−τj(0), x) + u∗j ) − gj(u
∗
j ))φi(0, x)dx 6 ξ(t)

n∑
i=1

||φi(0, .)||2∆

holds.
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Theorem 3.24. Let ∆ = {x ∈ Rm : |xi| 6 li, i = 1, 2, . . . ,m}, cj(t) ≡ cj > 0, j = 1, 2, . . . ,n and Assumptions
3.1, 3.6, 3.17, 3.22, and 3.23 be satisfied and

− p(t)
(
η(t) + min

i=1,n

m∑
j=1

dij

l2j
− ξ(t)

)
+ 0.5 RL0 D

q
t p(t) 6 0, t > 0.

Then the equilibrium point u∗ of RDFrDNN (3.1) is uniformly stable.

Proof. In this case the quadratic function V(t,u) =
∑n
i=1 u

2
i, u ∈ Rn does not work.

Consider the Lyapunov function V(t,u) = p(t)
∑n
i=1 u

2
i, u ∈ Rn, where the function p(t) is defined

in Assumption 3.22. Then according to Assumption 3.17, condition (i) of Lemma 2.13 is satisfied with
α1(u) = αu and α2(u) = βu.

Let φ ∈ C([−r, 0]×∆,Rn) and let Φi(t) = ||φi(t, .)||∆ ∈ C([−r, 0],R). Let the point t > 0 be such that
supΘ∈[−r,0] V(t+Θ,Φ(Θ)) = supΘ∈[−r,0] p(t+Θ)

∑n
j=1 ||φj(Θ, .)||2∆ = p(t)

∑n
j=1 ||φj(0, .)||2∆ = V(t,Φ(0)).

Then from formula (2.4) and Eq. (3.5) we obtain for the Dini fractional derivative:

D+
(3.4)V(t,Φ(0); 0)

= 2p(t)
n∑
i=1

∫
∆

φi(0, x)Fi(t, x,φ(0, x),φ(−τ(t), x))dx+
( n∑
i=1

||φi(0, .)||2∆
)
RL
0 Dqp(t)

6 −2p(t)
(
η(t) + min

i=1,n

m∑
j=1

dij

l2j
− ξ(t)

) n∑
i=1

||φi(0, .)||2∆ +
( n∑
i=1

||φi(0, .)||2∆
)
RL
0 Dqp(t)

6
(
− 2p(t)η(t) − 2p(t) min

i=1,n

m∑
j=1

dij

l2j
+ 2p(t)ξ(t) + RL

0 D
q
t p(t)

) n∑
i=1

||φi(0, .)||2∆,

(3.7)

where φ(−τ(t), x) = (φ1(−τ1(t), x),φ2(−τ2(t), x), . . . ,φn(−τn(t), x)).
According to Remark 2.3 and inequality (3.7) we get the inequality

c
(3.4)D

q
+V(t,Φ(0); 0,ψ0) < D+

(3.4)V(t,Φ(0); 0) 6 0,

i.e., condition (ii) of Lemma 2.13 is satisfied. Applying Lemma 2.13 we prove the claim.

Remark 3.25. Note that, in this case the sufficient conditions for stability depend on the order q of the
Caputo fractional derivative.

Example 3.26. Consider scalar RDFrDNN (3.1) with n=1,m = 2, l1 = l2 = 4, c(t)= 0.55
tqΓ(1−q)(Eq(−tq)+0.1) +

0.005
Eq(−tq)+0.1 , I(t) ≡ 0, a,b ∈ C(R+,R+) : a(t) + b(t) =

0.45Eq(−tq)
Eq(−tq)+0.1 , the activation functions are the

Continuous Tan-Sigmoid Function f(u) = g(u) = tanh(u) = eu−e−u

eu+e−u , τ(t) ≡ r > 0, the equilibrium point
u∗ = 0,

(
Dij
)

1×2 =
(
0.2 0.7 0.1

)
, and ∆ = {x ∈ R2 : |xi| 6 4, i = 1, 2}.

Theorem 3.13 is not applicable since the coefficient before x is not bounded by a constant for t > 0.
Let the function u(t, x) be a solution of the scalar RDFrDNN (3.1) and the point t > 0 be such that

supΘ∈[−r,0] ||u(t+Θ, .)||2∆ = ||u(t, .)||2∆, i.e., supΘ∈[−r,0] |u(t+Θ, x)| = |u(t, x)| for x ∈ ∆.
Consider the following possible cases:

Case 1. Let u(t, x) < 0 and u(t− r, x) < 0. Then we obtain u(t− r, x) > u(t, x) and from the monotonicity
property of the function f we get f(u(t− r, x)) > f(u(t, x)) and

b(t)f(u(t− r, x))u(t, x) 6 b(t)f(u(t, x))u(t, x).

Then applying |f(u(t, x))| = −f(u(t, x)) 6 |u(t, x)| = −u(t, x) (see Figure 5) and b(t) > 0 we get

a(t)f(u(t, x))u(t, x) + b(t)f(u(t− r, x))u(t, x) 6
(
a(t) + b(t)

)
u2(t, x).
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Case 2. Let u(t, x) < 0 and u(t− r, x) > 0. Then f(u(t− r, x)) > 0 and note |f(u(t− r, x))| = f(u(t− r, x)) >
|u(t, x)| = −u(t, x) > 0 and f(u(t− r, x))u(t, x) 6 −u2(t, x) 6 0. Then we obtain

a(t)f(u(t, x))u(t, x) + b(t)f(u(t− r, x))u(t, x) 6 a(t)f(u(t, x))u(t, x) 6 a(t)u2(t, x) 6
(
a(t) + b(t)

)
u2(t, x).

Case 3. Let u(t, x) > 0. Then |u(t− r, x)| 6 u(t, x) and from the monotonicity property of the function f it
follows that f(u(t− r, x)) 6 f(|u(t− r, x)|) 6 f(u(t, x)). Therefore,

a(t)f(u(t, x))u(t, x) + b(t)f(u(t− r, x))u(t, x) 6
(
a(t) + b(t)

)
f(u(t, x))u(t, x) 6

(
a(t) + b(t)

)
u2(t, x).

Therefore, Assumption 3.17 is satisfied with ξ(t) ≡ a(t) + b(t). However the inequality ξ(t) = a(t) +
b(t) =

0.45Eq(−tq)
Eq(−tq)+0.1 6 η(t) = c(t) +

∑3
j=1

dj
l2
j

= 0.55
tqΓ(1−q)(Eq(−tq)+0.1) +

0.005
Eq(−tq)+0.1 + 1

16 is not satisfied (see

Figure 6 for q = 0.8). Therefore, Theorem 3.19 cannot be applied.

Figure 5: Example 3.26. Graph of the functions |f(x)| =
| tanh(x)| and |x|.

Figure 6: Example 3.26. Graph of the functions a(t)+b(t)
and η(t) = c(t) +

∑3
j=1

dj

l2
j

for q = 0.8.

Consider the function p(t) = (Eq(−t
q) + 0.1) and let the function φ ∈ C([−r, 0],R) and t > 0 be such

that supΘ∈[−r,0] p(t+Θ)||φ(Θ, .)||2∆ = p(t)||φ(0, .)||2∆, i.e., supΘ∈[−r,0] p(t+Θ)|φ(Θ, x)| = p(t)|φ(0, x)|, x ∈
∆.

Consider the following possible cases:

Case 1. Let φ(0, x) < 0 and φ(−r, x) < 0. Then from the inequality

p(t) sup
Θ∈[−r,0]

|φ(Θ, x)| 6 sup
Θ∈[−r,0]

p(t+Θ)|φ(Θ, x)| = p(t)|φ(0, x)|, x ∈ ∆

we obtain φ(−r, x) > φ(0, x) and from the monotonicity property of the function f we get f(φ(−r, x)) >
f(φ(0, x)) and b(t)f(φ(−r, x))φ(0, x) 6 b(t)f(φ(0, x))φ(0, x). Using inequalities |f(φ(0, x))| = −f(φ(0, x)) 6
|φ(0, x)| = −φ(0, x) (see Figure 5) and b(t) > 0 we get the inequalities b(t)f(φ(0, x))φ(0, x) 6 b(t)φ2(0, x)
and

a(t)f(φ(0, x))φ(0, x) + b(t)f(φ(−r, x))φ(0, x) 6
(
a(t) + b(t)

)
φ2(0, x).

Case 2. Let φ(0, x) < 0 and φ(−r, x) > 0. Then f(φ(−r, x)) > 0 and note |f(φ(−r, x)| = f(φ(−r, x)) >
|φ(−r, x)| = −φ(0, x) > 0 and f(φ(−r, x))φ(0, x) 6 −φ2(0, x) 6 0. Then we obtain

a(t)f(φ(0, x))φ(0, x)+b(t)f(φ(−r, x))φ(0, x)6a(t)f(φ(0, x))φ(0, x) 6 a(t)φ2(0, x) 6
(
a(t)+b(t)

)
φ2(0, x).

Case 3. Let φ(0, x) > 0. Then |φ(−r, x)| 6 φ(0, x) and from the monotonicity property of the function f it
follows that f(φ(−r, x)) 6 f(|φ(−r, x)|) 6 f(φ(0, x)). Therefore,

a(t)f(φ(0, x))φ(0, x) + b(t)f(φ(−r, x))φ(0, x) 6
(
a(t) + b(t)

)
f(φ(0, x))φ(0, x) 6

(
a(t) + b(t)

)
φ2(0, x).
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Therefore, the inequality

a(t)

∫
∆

f(φ(0, x))φ(0, x)dx+ b(t)
∫
∆

f(φ(−r, x))φ(0, x)dx 6 ξ(t)||φ(0, .)||2∆

holds, i.e., Assumption 3.23 is satisfied.
Then we get the inequality

−p(t)η(t) − p(t)

3∑
j=1

dj

l2j
+ p(t)ξ(t) + 0.5 RL0 D

q
t p(t)

= −(Eq(−t
q) + 0.1)

( 0.55
tqΓ(1 − q)(Eq(−tq) + 0.1)

+
0.005

Eq(−tq) + 0.1
+

3∑
j=1

dj

l2j

)
+ (Eq(−t

q) + 0.1)
0.45Eq(−tq)
Eq(−tq) + 0.1

+ 0.5 RL0 D
q
t

(
Eq(−t

q) + 0.1
)

6 −
0.55

tqΓ(1 − q)
− 0.005 + 0.45Eq(−tq) + 0.5

(
− Eq(−t

q) +
1.1

tqΓ(1 − q)

)
= −

0.55
tqΓ(1 − q)

− 0.005 + 0.45Eq(−tq) − 0.5Eq(−tq) +
0.55

tqΓ(1 − q)

= −0.005 − 0.05Eq(−tq) = −0.05
(
Eq(−t

q) + 0.1
)
6 −0.005.

According to Theorem 3.24, the zero equilibrium point of scalar RDFrDNN (3.1) is uniformly stable.

Therefore, in the case the activation functions are not Lipschitz and the coefficients ci are not constants
in RDFrDNN (3.1), we can use Lyapunov function depending directly on the time variable and its Caputo
fractional Dini derivative is applicable to study the stability.
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