Asymptotically Polynomial Type Solutions for Some 2-Dimensional Coupled Nonlinear ODEs

B. V. K. Bharadwaj ${ }^{1, *}$, Pallav Kumar Baruah ${ }^{1,+}$
${ }^{1}$ Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning Prasanthinilayam - 515134, INDIA.
"bvkbharadwaj@sssihl.edu.in
+pkbaruah@sssihl.edu.in

Article history:

Received November 2014
Accepted December 2014
Available online December 2014
Abstract
In this paper we have considered the following coupled system of nonlinear ordinary differential equations.

$$
\begin{align*}
& x_{1}^{x_{1}^{1}}(t)=f_{1}\left(t, x_{2}(t)\right) \\
& x_{2}^{n_{2}}(t)=f_{2}\left(t, x_{1}(t)\right) \tag{1}
\end{align*}
$$

where $f_{1} f_{2}$ are real valued functions on $\left[t_{0}, \infty\right) \times R, t \geq t_{0}>0$. We have given sufficient conditions on the nonlinear functions f_{1}, f_{2}, such that the solutions pair x_{1}, x_{2} asymptotically behaves like a pair of real polynomials.

Keywords: Nonlinear Coupled Ordinary Differential Equations, Fixed-point Theorem, Assymptotically Polynomial like solutions

1. Introduction

There are many physical phenomena where systems of differential equations arise, in fact the fact that any two variables of the physical world are mutually dependent, makes us realize the importance and need for the study of these systems of differential equations. Some such studies can be found in [9]. The authors have worked on the existential analysis of certian generalized systems in [Error! Reference source not found., Error! Reference source not found., 6], in the recent past. Equally important is to find out the
qualitative nature of solutions to these systems. In literature we find lot of work done on the qualitative behavior of solutions for ordinary differential equations. we can find a lot of work done in $[3,8]$ on the second order nonlinear differential equations. The same problem for higher order nonlinear differential equations was treated in [7]. We specifically mention [2], in which sufficient conditions for every solution of a $n^{\text {th }}$ order nonlinear differential equation to be asymptotic to a real polynomial of at most degree $n-1$ at ∞. In this paper we have extended these type of results to 2 -dimensional systems of nonlinear coupled ordinary differential equations. This kind of work would be helpful in analyzing the systems where the coefficient matrices are anti-diagonal.

In this paper we investigated the solutions of the coupled system (1), which behave asymptotically at ∞ like real polynomials in t. We have given sufficient conditions for the solution pair x_{1}, x_{2} to behave like real polynomial pair of at most degree m_{1}, m_{2} respectively, where $1 \leq m_{1} \leq n_{1}-1,1 \leq m_{2} \leq n_{2}-1$. We mention here that the nonlinear terms in the system are explicitly dependent on only one variable, this gives a scope for further findings where these nonlinear terms could be dependent on both the vaiables.

2. Main Result

We investigate the solutions of (1) which are defined for large t i.e on the interval $\left[T, \infty\right.$), where $T \geq t_{0}$ may depend on the solution.

Before we prove our main result, we give some preliminaries which we use in the proof.

Schauder's Fixed Point Theorem

Let E be a Banach Space and X any nonempty convex and closed subset of E. If S is a Continuous mapping into itself and $S X$ is relatively compact, then the mapping S has at least one fixed point.

Definition

A set of real-valued functions H defined on $[T, \infty)$ is called equiconvergent at ∞ if all functions in H are convergent in R at the point ∞ and for every $\varepsilon>0$, there exists $T \geq T$ such that for all $h \in H$
$\left|h(t)-\lim _{s \rightarrow \infty} h(s)\right|<\varepsilon$
for all $t \geq T_{0}$

Compactness Criterion

Let H be a equicontinuous and uniformly bounded subset of the Banach space $B([T, \infty))($ Banach space of all continuous and bounded real valued functions on $[T, \infty)$). If H is equiconvergent at ∞, then it is also relatively compact.

Note: The Banach space $B([T, \infty))$ is endowed with the sup-norm $\|$.
$\|f\|=\sup _{\mathrm{t} \geq \mathrm{T}}|\mathrm{f}(\mathrm{t})|$ for $h \in B([T, \infty))$

This compactness criterion is a corollary of the Ascoli-Arzella Theorem and is an adaptation of a lemma due to Avramescu [1].

Theorem 1

Let m_{1}, m_{2} be integers with $1 \leq m_{1} \leq n_{1}-1,1 \leq m_{2} \leq n_{2}$ and assume that

$$
\begin{align*}
& \left\lvert\, f_{1}(t, z) \not p_{1}(t) g\left(\frac{|z|}{t^{m_{1}}}\right)+q_{1}(t)\right. \\
& \left\lvert\, f_{2}(t, z) \not p_{2}(t) g\left(\frac{|z|}{t^{m_{2}}}\right)+q_{2}(t)\right. \tag{2}
\end{align*}
$$

for all $(t, z) \in\left[t_{0}, \infty\right) \times R$,
where p and q are nonnegative continuous real-valued functions on $\left[t_{0}, \infty\right)$ such that

$$
\begin{align*}
& \int_{t_{0}}^{\infty} t^{n} 1^{-1} p_{1}(t) d t<\infty \\
& \int_{t_{0}}^{\infty} t^{n} 1^{-1} q_{1}(t) d t<\infty \\
& t_{0}^{\infty} t^{n} 2^{-1} p_{2}(t) d t<\infty \\
& t_{0} \\
& \int_{t_{0}}^{\infty} t^{n-1} q_{2}(t) d t<\infty \\
& t_{0}
\end{align*}
$$

and g is a nonnegative continuous real-valued function on $[0, \infty)$ which is not identically zero.
Let $c_{10}, c_{11}, \ldots, c_{1 m_{1}}$ and $c_{20}, c_{21}, \ldots, c_{2 n_{1}}$ be real numbers and T be a point with $T \geq t_{0}$, and suppose that there exists positive constants K_{1}, K_{2} such that

$$
\begin{gather*}
\int_{T}^{\infty} \frac{(s-T)^{n_{1}-1}}{\left(n_{1}-1\right)!} p_{1}(s) d s \sup \left\{g(z): 0 \leq z \leq \frac{K_{2}}{T^{m_{2}}}+\sum_{i=0}^{m} \frac{\left|c_{2 i}\right|}{T^{m_{2}-i}}\right\} \\
+\int_{T}^{\infty} \frac{(s-T)^{n_{1}-1}}{\left(n_{1}-1\right)!} q_{1}(s) d s \leq K_{1} \tag{4}
\end{gather*}
$$

and

$$
\begin{gather*}
\int_{T}^{\infty} \frac{(s-T)^{n_{2}-1}}{\left(n_{2}-1\right)!} p_{2}(s) d s \sup \left\{g(z): 0 \leq z \leq \frac{K_{1}}{T^{m_{1}}}+\sum_{i=0}^{m} \frac{\left|c_{1 i}\right|}{T^{m_{1}-i}}\right\} \\
+\int_{T}^{\infty} \frac{(s-T)^{n}-1}{\left(n_{2}-1\right)!} q_{2}(s) d s \leq K_{2} \tag{5}
\end{gather*}
$$

Then the system (1) has a solution pair $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ on the interval $[7, \infty]$ such that

$$
\begin{align*}
& x_{1}=c_{10}+c_{11} t+\ldots+c_{1 m_{1}} t^{m_{1}} \\
& x_{2}=c_{20}+c_{21} t+\ldots+c_{2 m_{2}} t^{m_{2}} \tag{6}
\end{align*}
$$

Proof: By substituting

$$
\begin{aligned}
& y_{1}(t)=x_{1}(t)-\left(c_{10}+c_{11} t+\ldots+c_{1 m_{1}} t^{m_{1}}\right) \\
& y_{2}(t)=x_{2}(t)-\left(c_{20}+c_{21} t+\ldots+c_{2 m_{2}} t^{m_{2}}\right)
\end{aligned}
$$

the system (1) gets transformed in to

$$
\begin{align*}
& y_{1}^{n_{1}^{1}(t)=f_{1}}\left(t, y_{2}(t)+\sum_{i=0}^{m_{2}} c_{2 i} t^{i}\right) \\
& y_{2}^{n^{2}}(t)=f_{2}\left(t, y_{1}(t)+\sum_{i=0}^{m_{1}} c_{1 i} t^{i}\right) \tag{7}
\end{align*}
$$

Therefore we can clearly see that it is sufficient to prove that the system (7) has a solution pair y_{1}, y_{2} on the interval $[T, \infty]$ with

$$
\begin{align*}
& \lim _{t \rightarrow \infty} y_{1}^{\varrho_{1}}(t)=0 \\
& \lim _{t \rightarrow \infty} y_{2}^{\varrho_{2}}(t)=0 \tag{8}
\end{align*}
$$

where $\varrho_{1}=0,1, \ldots, n_{1}-1$

$$
\text { and } \varrho_{2}=0,1, \ldots, n_{2}-1
$$

Now consider the Banach Space $E=B([T, \infty])$ with the sup-norm $|$.$| , and define$

$$
\begin{aligned}
Y_{1} & =\left\{y_{1} \in E:\left\|y_{1}\right\| \leq K_{1}\right\} \\
Y_{2} & =\left\{y_{2} \in E:\left\|y_{2}\right\| \leq K_{2}\right\}
\end{aligned}
$$

Clearly Y_{1}, Y_{2} are non-empty closed convex subsets of E. Let y_{1} and y_{2} be arbitrary functions in Y_{1} and Y_{2} respectively. Then for every $t \geq T$

$$
\frac{\left|y_{1}(t)+\sum_{i=0}^{m_{1}} c_{1} t^{i}\right|}{t^{m_{1}}} \leq \frac{\left|y_{1}(t)\right|}{t^{m_{1}}}+\sum_{i=0}^{m_{1}} \frac{\left|c_{1 i}\right|}{t_{1}-i} \leq \frac{K_{1}}{T^{m}}+\sum_{i=0}^{m_{1}} \frac{\left|c_{1 i}\right|}{T^{m_{1}-i}}
$$

and

$$
\frac{\left|y_{2}(t)+\sum_{i=0}^{m_{2}} c_{2 i} i^{i}\right|}{t^{m_{2}}} \leq \frac{\left|y_{2}(t)\right|}{t^{m_{2}}}+\sum_{i=0}^{m_{2}} \frac{\left|c_{2 i}\right|}{t^{m_{2}-i} \leq} \frac{K_{2}}{T^{m_{2}}}+\sum_{i=0}^{m_{2}} \frac{\left|c_{2 i}\right|}{T^{m_{2}-i}}
$$

So

$$
\left.\begin{array}{l}
g\left(\frac{\left|y_{1}(t)+\sum_{i=0}^{m_{1} c_{1} t^{i}}\right|}{t^{m_{1}}}\right) \leq \tau_{1} \\
g\left(\frac{\mid y_{2}(t)+\sum_{i=0}^{m_{2}} c_{2 i} t^{i}}{} t^{m_{2}}\right.
\end{array}\right) \leq \tau_{2} .
$$

where τ_{1}, τ_{2} are defined as

$$
\begin{aligned}
& \theta_{1}=\theta_{1}\left(c_{10}, c_{11}, \ldots ., c_{1 m_{1}}: T: K_{1}\right)=\sup \left\{g(z): 0 \leq z \leq \frac{K_{1}}{T^{m_{1}}}+\sum_{i=0}^{m_{1}} \frac{\left|c_{1 i}\right|}{T^{m_{1}-1}}\right\} \\
& \theta_{2}=\theta_{2}\left(c_{20}, c_{21}, \ldots, c_{2 m_{2}}: T: K_{2}\right)=\sup \left\{g(z): 0 \leq z \leq \frac{K_{2}}{T^{m_{2}}}+\sum_{i=0}^{m_{2}} \frac{\left|c_{22}\right|}{T^{m_{2}-1}}\right\}
\end{aligned}
$$

From (2) we get

$$
\begin{align*}
& \left|f_{1}\left(t, y_{2}(t)+\sum_{i=0}^{m_{2}} c_{2 i} t^{i}\right)\right| \leq \tau_{2} p_{1}(t)+q_{1}(t) \\
& \left|f_{2}\left(t, y_{1}(t)+\sum_{i=0}^{m_{1}} c_{1 i} t^{i}\right)\right| \leq \tau_{1} p_{2}(t)+q_{2}(t) \tag{9}
\end{align*}
$$

for every $t \geq T$
Thus, from (3) we can conclude that

$$
\begin{aligned}
& \int_{T}^{\infty} \frac{(s-T)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) d s \\
& \int_{T}^{\infty} \frac{(s-T)^{n_{2}-1}}{\left(n_{2}-1\right)!} f_{2}\left(s, y_{1}(s)+\sum_{i=0}^{m_{1}} c_{1 i} s^{i}\right) d s
\end{aligned}
$$

exist in R.
Now, by using (9) for every $t \geq T$ we get that

$$
\begin{array}{r}
\left\lvert\, \begin{array}{l}
\left\lvert\, \int_{t}^{\infty} \frac{(s-T)^{n-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i} d s \mid\right.\right. \\
\leq \tau_{2} \int_{T}^{\infty} \frac{(s-T)_{1}^{n-1}}{\left(n_{1}-1\right)!} p_{1}(s) d s+\int_{T}^{\infty} \frac{(s-T)^{n_{1}-1}}{\left(n_{1}-1\right)!} q_{1}(s) d s
\end{array}\right.,
\end{array}
$$

$$
\left\lvert\, \int_{t}^{\infty} \frac{(s-T)^{n}-1}{\left(n_{2}-1\right)!} f_{2}\left(s, y_{1}(s)+\sum_{i=0}^{m_{1}} c_{1 i} s^{i} d s \mid\right.\right.
$$

$$
\leq \tau_{1} \int_{T}^{\infty} \frac{(s-T)^{n_{2}-1}}{\left(n_{2}-1\right)!} p_{2}(s) d s+\int_{T}^{\infty} \frac{(s-T)^{n_{2}-1}}{\left(n_{2}-1\right)!} q_{2}(s) d s
$$

From (4) and (5) we get

$$
\left|\int_{t}^{\infty} \frac{(s-T)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) d s\right| \leq K_{1}
$$

$$
\begin{equation*}
\left|\int_{t}^{\infty} \frac{(s-T)^{n-1}}{\left(n_{2}-1\right)!} f_{2}\left(s, y_{1}(s)+\sum_{i=0}^{m_{1}} c_{1 i} s^{i}\right) d s\right| \leq K_{2} \tag{10}
\end{equation*}
$$

for every $t \geq T$. As this is true for any pair y_{1}, y_{2}, we now define mappings S_{1} and S_{2} on Y_{1} and Y_{2} respectively as
with

$$
y_{2}(s)=\int_{s}^{\infty} \frac{(r-T)^{n_{2}-1}}{\left(n_{2}-1\right)!} f_{2}\left(r, y_{1}(r)+\sum_{i=0}^{m_{1}} c_{1} r^{i}\right) d r
$$

and

$$
\left(S_{2} y_{2}\right)^{(t)=(-1)^{n}} \int_{t}^{\infty} \frac{(s-T)^{n-1}}{\left(n_{2}-1\right)!} f_{2}\left(s, y_{1}(s)+\sum_{i=0}^{m_{1}} c_{1 i} s^{i}\right) d s
$$

with

$$
y_{1}(s)=\int_{s}^{\infty} \frac{(r-T)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(r, y_{2}(r)+\sum_{i=0}^{m_{2}} c_{2 i} r^{i}\right) d r
$$

for every $t \geq T$.
Clearly we can see that S_{1} maps Y_{1} into itself and are valid. Now we shall show that these mappings have fixed points using the Schauder's fixed point theorem. We will do this for S_{1} and similar proof follows for S_{2} also, which we exclude.

Since $S_{1} Y_{1} \subseteq Y_{1}$ and Y_{1} is closed, convex, S_{1} is uniformly bounded. As $t \rightarrow \infty, S_{1} Y_{1} \rightarrow 0$. So $S_{1} Y_{1}$ is convergent in R. Moreover for some $t \geq T^{\prime}>T$, we have

$$
\left|S_{1} y_{1}(t)-0\right|=\left\lvert\, \begin{aligned}
& \int_{t}^{\infty} \frac{(s-T)^{n} 1^{-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0} c_{2 i} s^{i}\right) d s| | .|l|
\end{aligned}\right.
$$

$$
\begin{align*}
& \leq \int_{t}^{\infty} \frac{(s-T)^{n_{1}-1}}{\left(n_{1}-1\right)!}\left|f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right)\right| d s \\
& \leq \tau_{2} \int_{t}^{\infty} \frac{(s-t)^{n-1} 1_{1}}{\left(n_{1}-1\right)!} p_{1}(s) d s+\int_{t}^{\infty} \frac{(s-t)^{n_{1}-1}}{\left(n_{1}-1\right)!} q_{1}(s) d s \\
& \leq K_{1}-\tau_{2} \int_{T}^{T} \frac{(s-t)^{n_{1}-1}}{\left(n_{1}-1\right)!} p_{1}(s) d s+\int_{T}^{T} \frac{(s-t)^{n_{1}-1}}{\left(n_{1}-1\right)!} q_{1}(s) d s \tag{11}
\end{align*}
$$

So, by using (3) and suitably choosing T, we can easily see that $S_{1} Y$ is equiconvergent at ∞.
Now by using (9) for any $y_{1} \in Y_{1}$ and for every t_{1}, t_{2} with $T \leq t_{1}<t_{2}$, we get

$$
\begin{aligned}
& \left\lvert\, \int_{t_{2}}^{\infty} \frac{\left(s-t_{2}\right)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) \phi s\right. \\
& \left.-\int_{t_{1}}^{\infty} \frac{\left(s-t_{1}\right)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) \phi s \right\rvert\, \\
& =\left\lvert\, \int_{t_{2}}^{\infty}\left[\int_{r}^{\infty} \frac{(s-r)^{n_{1}-2}}{\left(n_{1}-2\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) d s\right] r\right. \\
& \left.-\int_{t_{1}}^{\infty}\left[\int_{r}^{\infty} \frac{(s-r)^{n_{1}-2}}{\left(n_{1}-2\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) \phi s\right] r \right\rvert\,
\end{aligned}
$$

$$
=\left\lvert\,-\int_{t_{1}}^{t_{2}}\left[\left.\int_{r}^{\infty} \frac{(s-r)^{n_{1}-2}}{\left(n_{1}-2\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right) d s d r \right\rvert\,\right.\right.
$$

$$
\leq \int_{t_{1}}^{t_{2}}\left[\int_{r}^{\infty} \frac{(s-r)^{n_{1}-2}}{\left(n_{1}-2\right)!}\left|f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{2}} c_{2 i} s^{i}\right)\right| d s\right] r
$$

$$
\leq \tau_{2} \int_{t_{1}}^{t_{2}}\left[\int_{r}^{\infty} \frac{(s-r)^{n_{1}-2}}{\left(n_{1}-2\right)!} p_{1}(s) d s\right] d r+\int_{t_{1}}^{t_{2}}\left[\int_{r}^{\infty} \frac{(s-r)^{n_{1}-2}}{\left(n_{1}-2\right)!} q_{1}(s) d s\right] d r
$$

By using condition (3) we can always have a bound on the right hand side of the inequality, so $S_{1} Y$ is equicontinuous. So by the given compactness criterion $S_{1} Y$ is relatively compact.

Now we will show that the mapping S_{1} is continuous. Let $y_{1 v}$ be an arbitrary sequence in Y_{1}, converging to y_{1} under the norm defined before. From (9) we have

$$
\left|f_{1}\left(t, y_{1 v}(t)+\sum_{i=0}^{m_{2}} c_{2 i} t^{i}\right)\right| \leq \tau_{2} p_{1}(t)+q_{1}(t)
$$

for every $t \geq T$ and for all v
Now, by applying the Lebesgue dominated convergence theorem we get

$$
\begin{aligned}
& \lim _{v \rightarrow \infty} \int_{t}^{\infty} \frac{(s-t)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{1 v}(s)+\sum_{i=0}^{m_{1}} c_{2 i} s^{i}\right) d s \\
& =\int_{t}^{\infty} \frac{(s-t)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{1}(s)+\sum_{i=0}^{m_{1}} c_{2 i} s^{i}\right) d s
\end{aligned}
$$

So we have shown the pointwise convergence i.e

$$
\lim _{v \rightarrow \infty}\left(S_{1} y_{1 v}\right)^{(t)=}\left(S_{1} y_{1}\right)^{(t)}
$$

Now, consider an arbitrary subsequence u_{μ} of $S_{1} y_{1 v}$. Since $S_{1} Y$ is relatively compact, there exists a subsequence v_{λ} of u_{μ} and a v in E such that v_{λ} converges uniformly to v. So

$$
\lim _{v \rightarrow \infty}\left(S_{1} y_{1 v}\right)^{(t)=}\left(S_{1} y_{1}\right)^{(t)=v}
$$

for all $t \geq T$ under the sup-norm. So S_{1} is continuous.
Thus we have shown that S_{1} satisfies all the assumptions of Schauder's theorem, So S_{1} has a fixed point $y_{1} \in Y$ such that $S_{1} y_{1}=y_{1}$. That implies

$$
y_{1}(t)=(-1)^{n_{1}} \int_{t}^{\infty} \frac{(s-t)^{n_{1}-1}}{\left(n_{1}-1\right)!} f_{1}\left(s, y_{2}(s)+\sum_{i=0}^{m_{1}} c_{2 i} s^{i}\right) d s
$$

So we can see that

$$
y_{1}^{n_{1}^{1}}(t)=f_{1}\left(t, y_{2}(t)+\sum_{i=0}^{m_{2}} c_{2 i} t^{i}\right)
$$

for all $t \geq T$.
similarly we can show for the other function y_{2} also. Consequently y_{1}, y_{2} satisfy the transformed system (7). It is also easy to verify that y_{1}, y_{2} satisfy the condition (8) This completes the proof of the theorem.

Example:Consider the following system of equations

$$
\begin{gather*}
x_{1}^{n}(t)=a(t)\left|x_{2}(t)\right|^{\gamma} \operatorname{sgn} x_{2}(t) \\
\gamma \\
x_{2}^{n}(t)=b(t)\left|x_{1}(t)\right| \operatorname{sgn} x_{1}(t) \tag{12}
\end{gather*}
$$

where a and b are continuous real valued functions on $[0, \infty]$ and γ is a positive real number. Let m be an integer with $1 \leq m \leq n-1$, and assume that

$$
\begin{align*}
& \int_{0}^{\infty} t^{n-1+m \gamma}|a(t)| d t<\infty \\
& \int_{0}^{\infty} t^{n-1+m \gamma}|b(t)| d t<\infty
\end{align*}
$$

and let $c_{0}, c_{1}, c_{2}, \ldots \ldots, c_{m} \quad$ and $d_{0}, d_{1}, d_{2}, \ldots \ldots, d_{m} \quad$ be real numbers and T be a point with $T \geq 0$ and suppose that there exist positive constants K_{1} and K_{2} such that

$$
\begin{align*}
& {\left[\int_{T}^{\infty} \frac{(s-T)^{n-1}}{(n-1)!} s^{m \gamma}|a(s)| d s\right]\left(\frac{K_{1}}{T^{m}}+\sum_{i=0}^{m} \frac{\left|c_{i}\right|}{T^{m-1}}\right)^{\gamma} \leq K_{1}} \\
& {\left[\int_{T}^{\infty} \frac{(s-T)^{n-1}}{(n-1)!} s^{m \gamma}|b(s)| d s\right]\left(\frac{K_{2}}{T^{m}}+\sum_{i=0}^{m} \frac{\left|d_{i}\right|}{T^{m-1}}\right)^{\gamma} \leq K_{2}} \tag{14}
\end{align*}
$$

Then by invoking the main result that we have proved earlier (12) has a pair of solutions x_{1} and x_{2} which asymptotically behave like $m^{\text {th }}$ degree polynomials.

Remark: We note here that these results are simple and hold true only for a special case of coupled systems. The nature of conditions (2) needs to be discussed and analyzed so that more general nonlinearities can be brought under the view of these results. The possibility of such an extension needs to be highlighted.

Acknowledgment and Dedication

We dedicate this work to the Founder Chancellor of Sri Sathya Sai Institute of Higher Learning, BHAGAWAN SRI SATHYA SAI BABA without whose grace this would have been incomplete.

References

[1] C. Avramescu, "Sur l' existence convergentes de systemes d' equations differentielles nonlineaires", Ann.Mat.Pura.Appl.81(1969), 147-168.
[2] Ch.G. Philos, I.K. Purnaras, P.Ch. Tsamatos, "Asymptotic to polynomial solutions for nonlinear differential equations", Nonlinear Analysis 59(2004), 1157-1179
[3] O.Lipovan, "On the Asymptotic behaviour of the solutions to a class of nonlinear differential equations", Glasg.Math.J.45(2003), 179-187.
[4] Pallav Kumar Baruah, B V K Bharadwaj, M venkatesulu, "Characterization of maximal, minimal, inverse operators and an existence theorem for coupled ordinary differential operator", Int. J. Math.and.Analysis, January-June (2008), Vol 6, pg 25-56..
[5] Pallav Kumar Baruah, B V K Bharadwaj, M venkatesulu, "Green's Matrix for Linear Coupled Ordinary Differential Operator", Int. J. Math. and. Analysis, Vol 6, January-June (2008), pg 5782.
[6] Pallav Kumar Baruah, B V K Bharadwaj, M venkatesulu, "Reduction of an Operator Equation in to an Equivalent Bifurcation Equation Through Schauder's Fixed Point Theorem", The Joirnal of Nonlinear Sciences and Applications,Vol 3, No 3, (2010), 164-178.
[7] T.Kusano, W.F. Trench, "Global existence theorems for solutions of nonlinear differential equations with prescribed asymptotic behaviour", J. London Math. Soc. 31(1985), 478-486.
[8] W.F. Trench, "On the asymptotic behaviour of solutions of second order linear differential equations", Proc. Amer. Math. Soc. 14 (1963), 12-14.
[9] N. Nyamoradi, "Existence of positive solutions for third-order boundary value problems", J. Math. Computer Sci., TJMCS, 4, (2012), 8-18.

