Improved bounds for the spectral norms of r-circulant matrices with k-Fibonacci and k-Lucasnumbers

Lele Liu

College of Science, University of Shanghai for Science and Technology,Shanghai 200093, China
ahhylau@163.com
Article history:
Received June 2014
Accepted July 2014
Available online July 2014

Abstract

We are concerned with the spectral norms of r-circulant matrices with the k-Fibonacci and k-Lucas numbers. By using Abel transformation and some identities, weobtain some new lower bounds for the spectral norms of r-circulant matrices. Havingcompared some known results, the obtained bounds are more precise. Keywords: k-Fibonacci number, k-Lucas number, r-circulant matrix, Spectral norm.

1. Introduction

For any integer number $k \geqslant 1$, the k-Fibonacci and k-Lucas sequences $\left\{F_{k, n}\right\}$ and $\left\{L_{k, n}\right\}$ are defined by the following recursive relations

$$
F_{k, n+1}=k F_{k, n}+F_{k, n-1}(1.1)
$$

with conditions $F_{k, 0}=0, F_{k, 1}=1$, and

$$
L_{k, n+1}=k L_{k, n}+L_{k, n-1}
$$

with $L_{k, 0}=2, L_{k, 1}=k$.
In particular, if $k=1$ the classical Fibonacci and Lucas sequences, denote by abbreviation $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$, are obtained. There are a large number of properties on the k-Fibonacci and k-Lucas sequences are discussed [1-3]. Here some of theproperties that we will need later are summarized below [2].

- $F_{k, i-1} F_{k, i+1}-F_{k, i}^{2}=(-1)^{i}$;
- $L_{k, i}^{2}=\left(k^{2}+4\right) F_{k, i}^{2}+4(-1)^{i}$;
- $L_{k, i} L_{k, i+1}=\left(4+k^{2}\right) F_{k, i} F_{k, i+1}+2 k(-1)^{i}$.

There are many works concerning estimates for spectral norms of special matrices, which have connections with numerical analysis. For example, Zhou [4]investigated the explicit formulae of spectral norms for g-circulant matrices. Solak [5] established some bounds for the circulant matrix $\left[F_{(\bmod (j-i, n))}\right]_{i, j=1}^{n}$ and $\left[L_{(\bmod (j-i, n))}\right]_{i, j=1}^{n}$ on the spectral and Euclidean norms. Bani-Domi and Kittaneh[6] established two general norm equalities for circulant and skew circulant operator matrices.We refer the readers to references $[7,8]$.

Recently, ShenandCen[9]giventheboundsofthespectralnormsof $r \quad$-circulantmatrices $C_{r}\left(F_{0}, F_{1}, \cdots, F_{n-1}\right) \operatorname{and} C_{r}\left(L_{0}, L_{1}, \cdots, L_{n-1}\right)$. In [10] they generalized the topic and found the upper and lower bounds for the norms of r-circulantmatrices with the k-Fibonacci and k-Lucas numbers. In the present paper, we proceed to study the topic in [10]. More precisely, we consider the bounds for the spectralnormsofmatrices $\quad A=C_{r}\left(F_{k, 0}, F_{k, 1}, \cdots, F_{k, n-1}\right) \quad$ and $\quad B=C_{r}\left(L_{k, 0}, L_{k, 1}, \cdots, L_{k, n-1}\right)$, andobtainsomeimprovedlowerboundsrecurringtoAbeltransformationand some identities. The main results in this paper also generalize and improve theresults in $[5,9]$.

2. Preliminaries

In this section, we present some known lemmas and results that will be used in thefollowing study.
Definition 2.1.For $c_{0}, c_{1}, \cdots, c_{n-1} \in \mathbb{C}$, the r-circulant matrix C, denoted by $C=C_{r}\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$, is of the form

$$
\left(\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} \\
r c_{n-1} & c_{0} & c_{1} & \cdots & c_{n-2} \\
r c_{n-2} & r c_{n-1} & c_{0} & \cdots & c_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r c_{1} & r c_{2} & r c_{3} & \cdots & c_{0}
\end{array}\right) .
$$

It is obvious that the matrix C_{r} turns into a classical circulant matrix for $r=1$.
For any matrix $A=\left[a_{i j}\right]$ of ordern, it is well-known that the Frobenius (orEuclidean) norm of matrix Ais

$$
\|A\|_{F}=\left[\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right]^{\frac{1}{2}}
$$

and the spectral norm of Ais given by

$$
\|A\|_{2}=\sqrt{\max _{1 \leqslant i \leqslant n} \lambda_{i}\left(A^{H} A\right)},
$$

where A^{H} istheconjugate transposeof A and $\lambda_{i}\left(A^{H} A\right)$ istheeigenvalue of $A^{H} A$.The following inequality holds:

$$
\frac{1}{\sqrt{n}}\|A\|_{F} \leqslant\|A\|_{2} \leqslant\|A\|_{F} .
$$

The following lemmas are the main results in [10].

Lemma 2.1.[10]Let $A=C_{r}\left(F_{k, 0}, F_{k, 1}, \cdots, F_{k, n-1}\right)$ be an r-circulant matrix.
(1)If $|r|>1$, then

$$
\sqrt{\frac{F_{k, n-1} F_{k, n}}{k}} \leqslant\|A\|_{2} \leqslant \frac{|r|-|r|^{n}\left(F_{k, n}+|r| F_{k, n-1}\right)}{1-k|r|-|r|^{2}} .
$$

(2) If $|r|<1$, then

$$
|r| \sqrt{\frac{F_{k, n-1} F_{k, n}}{k}} \leqslant\|A\|_{2} \leqslant \frac{F_{k, n-1}+F_{k, n}-1}{k} .
$$

Lemma 2.2.[10]Let $B=C_{r}\left(L_{k, 0}, L_{k, 1}, \cdots, L_{k, n-1}\right)$ be an r-circulant matrix.
(1) $\operatorname{If}|r| \geqslant 1$, then

$$
\sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}+2\left(1+(-1)^{n-1}\right)} \leqslant\|B\|_{2} \leqslant \delta_{1}(k, r) .
$$

(2) If $|r|<1$, then

$$
|r| \sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}+2\left(1+(-1)^{n-1}\right)} \leqslant\|B\|_{2} \leqslant \delta_{2}(k)
$$

where $\delta_{1}(k, r) \operatorname{and} \delta_{2}(k)$ are given by

$$
\begin{gathered}
\delta_{1}(k, r)=\frac{2-k|r|-|r|^{n}\left[(k+2|r|) F_{k, n}+(2-k|r|) F_{k, n-1}\right]}{1-k|r|-|r|^{2}}, \\
\delta_{2}(k)=\frac{(k+2) F_{k, n}+(2-k) F_{k, n-1}+k-2}{k} .
\end{gathered}
$$

3. Main results

In this section, we assume that $\delta_{1}(k, r)$ and $\delta_{2}(k)$ are defined in (2.6) and (2.7),respectively. We start this section by giving the following lemma.

Lemma 3.1.Suppose that $\left\{F_{k, i}\right\}$ is k-Fibonacci sequence with $F_{k, 0}=0, F_{k, 1}=1$, then the following identities hold:
(1) $\sum_{i=0}^{n} F_{k, i}^{2}=\frac{1}{k} F_{k, n} F_{k, n+1}$;
(2) $\sum_{i=0}^{n} F_{k, i} F_{k, i+1}= \begin{cases}\frac{F_{k, n+1}^{2}}{k}, & n \text { is odd, } \\ \frac{F_{k, n+1}^{2}-1}{k}, & n \text { is even. }\end{cases}$

Proof.(1) According to the recurrence relation (1.1), we have

$$
\begin{aligned}
& k \sum_{i=0}^{n} F_{k, i}^{2}=\sum_{i=0}^{n} F_{k, i}\left(F_{k, i+1}-F_{k, i-1}\right)=\sum_{i=0}^{n} F_{k, i} F_{k, i+1}-\sum_{i=0}^{n} F_{k, i-1} F_{k, i} \\
& =\sum_{i=0}^{n} F_{k, i} F_{k, i+1}-\sum_{i=-1}^{n-1} F_{k, i} F_{k, i+1}=F_{k, n} F_{k, n+1} .
\end{aligned}
$$

(2) From the recurrence relation (1.1)

$$
\begin{aligned}
k F_{k, i} F_{k, i+1} & =\left(k F_{k, i} F_{k, i+1}+F_{k, i}^{2}\right)-F_{k, i}^{2} \\
& =F_{k, i}\left(F_{k, i}+k F_{k, i+1}\right)-F_{k, i}^{2} \\
& =F_{k, i} F_{k, i+2}-F_{k, i}^{2} .
\end{aligned}
$$

It follows from (1.3) that

$$
F_{k, i} F_{k, i+2}-F_{k, i+1}^{2}=(-1)^{i+1}
$$

Substituting (3.2) into (3.1), we obtain

$$
k F_{k, i} F_{k, i+1}=F_{k, i+1}^{2}-F_{k, i}^{2}+(-1)^{i+1}
$$

Evaluate summation from 0to n, we have

$$
\begin{aligned}
k \sum_{i=0}^{n} F_{k, i} F_{k, i+1} & =\sum_{i=0}^{n} F_{k, i+1}^{2}-\sum_{i=0}^{n} F_{k, i}^{2}+\sum_{i=0}^{n}(-1)^{i+1} \\
& =F_{k, n+1}^{2}+\sum_{i=0}^{n}(-1)^{i+1}
\end{aligned}
$$

It follows from

$$
\sum_{i=0}^{n-1}(-1)^{i+1}= \begin{cases}0, & n \text { is odd } \\ -1, & n \text { is even }\end{cases}
$$

that conclusion (2) holds. This concludes the proof of the lemma. \square
The following lemma can be found in [11].
Lemma 3.2.(Abel transformation) Suppose that $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are two sequences, $S_{i}=a_{1}+$ $a_{2}+\cdots+a_{i}(i=1,2, \cdots)$, then

$$
\sum_{i=1}^{n} a_{i} b_{i}=S_{n} b_{n}-\sum_{i=1}^{n-1}\left(b_{i+1}-b_{i}\right) S_{i} .
$$

The following theorem provides a precise estimate for the spectral norms of r-circulantmatrix $C_{r}\left(F_{k, 0}, F_{k, 1}, \cdots, F_{k, n-1}\right)$.

Theorem 3.1.Suppose that $A=C_{r}\left(F_{k, 0}, F_{k, 1}, \cdots, F_{k, n-1}\right)$ is an r-circulant matrix. Let

$$
\delta(k, r)=\frac{1}{k^{2}}\left[n k|r|^{2} F_{k, n-1} F_{k, n}+\left(1-|r|^{2}\right) F_{k, n}^{2}\right] .
$$

Then the following conclusions hold:
(1) $|r| \geqslant 1$
(i)If n is odd, then

$$
\sqrt{\frac{\delta(k, r)}{n}+\frac{|r|^{2}-1}{n k^{2}}} \leqslant\|A\|_{2} \leqslant \frac{|r|-|r|^{n}\left(F_{k, n}+|r| F_{k, n-1}\right)}{1-k|r|-|r|^{2}} ;
$$

(ii) If n is even, then

$$
\sqrt{\frac{\delta(k, r)}{n}} \leqslant\|A\|_{2} \leqslant \frac{|r|-|r|^{n}\left(F_{k, n}+|r| F_{k, n-1}\right)}{1-k|r|-|r|^{2}}
$$

(2) $|r|<1$
(i) If n is odd, then

$$
\sqrt{\frac{\delta(k, r)}{n}+\frac{|r|^{2}-1}{n k^{2}}} \leqslant\|A\|_{2} \leqslant \frac{F_{k, n}+F_{k, n-1}-1}{k} ;
$$

(ii) Ifnis even, then

$$
\sqrt{\frac{\delta(k, r)}{n}} \leqslant\|A\|_{2} \leqslant \frac{F_{k, n}+F_{k, n-1}-1}{k} .
$$

Proof.According to Lemma 2.1, we need only to prove the left parts " \leqslant ". Thematrix Ais of the form

$$
A=\left(\begin{array}{ccccc}
F_{k, 0} & F_{k, 1} & F_{k, 2} & \cdots & F_{k, n-1} \\
r F_{k, n-1} & F_{k, 0} & F_{k, 1} & \cdots & F_{k, n-2} \\
r F_{k, n-2} & r F_{k, n-1} & F_{k, 0} & \cdots & F_{k, n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r F_{k, 1} & r F_{k, 2} & r F_{k, 3} & \cdots & F_{k, 0}
\end{array}\right) .
$$

Therefore

$$
\|A\|_{F}^{2}=\sum_{i=0}^{n-1}(n-i) F_{k, i}^{2}+|r|^{2} \sum_{i=1}^{n-1} i \cdot F_{k, i}^{2}=n \sum_{i=0}^{n-1} F_{k, i}^{2}+\left(|r|^{2}-1\right) \sum_{i=1}^{n-1} i \cdot F_{k, i}^{2} .
$$

Using Abel transformation, we have

$$
\sum_{i=1}^{n-1} i \cdot F_{k, i}^{2}=(n-1) \sum_{i=1}^{n-1} F_{k, i}^{2}-\sum_{i=1}^{n-2} \sum_{j=1}^{i} F_{k, j}^{2}
$$

Combining (3.4) and (3.5) gives

$$
\|A\|_{F}^{2}=\left[(n-1)|r|^{2}+1\right] \sum_{i=0}^{n-1} F_{k, i}^{2}+\left(1-|r|^{2}\right) \sum_{i=1}^{n-2} \sum_{j=1}^{i} F_{k, j}^{2}
$$

By Lemma 3.1(1), one can obtain that

$$
\begin{aligned}
\|A\|_{F}^{2} & =\frac{(n-1)|r|^{2}+1}{k} F_{k, n-1} F_{k, n}+\frac{\left(1-|r|^{2}\right)}{k} \sum_{i=1}^{n-2} F_{k, i} F_{k, i+1} \\
& =\frac{1}{k}\left[n|r|^{2} F_{k, n-1} F_{k, n}+\left(1-|r|^{2}\right) \sum_{i=0}^{n-1} F_{k, i} F_{k, i+1}\right]
\end{aligned}
$$

If n is odd, by direct calculation, together with Lemma 3.1(2), we can obtain that

$$
\begin{aligned}
& \|A\|_{F}^{2}=\frac{1}{k}\left[n|r|^{2} F_{k, n-1} F_{k, n}+\left(1-|r|^{2}\right) \cdot \frac{F_{k, n}^{2}-1}{k}\right] \\
& =\frac{1}{k^{2}}\left[n k|r|^{2} F_{k, n-1} F_{k, n}+\left(1-|r|^{2}\right)\left(F_{k, n}^{2}-1\right)\right] \\
& \quad=\delta(k, r)+\frac{|r|^{2}-1}{k^{2}}
\end{aligned}
$$

It follows from (2.1) that

$$
\|A\|_{2} \geqslant \sqrt{\frac{\delta(k, r)}{n}+\frac{|r|^{2}-1}{n k^{2}}}
$$

Similarly, if n is even, then

$$
\begin{aligned}
& \|A\|_{F}^{2}=\frac{1}{k}\left[n|r|^{2} F_{k, n-1} F_{k, n}+\left(1-|r|^{2}\right) \cdot \frac{F_{k, n}^{2}}{k}\right] \\
= & \frac{1}{k^{2}}\left[n k|r|^{2} F_{k, n-1} F_{k, n}+\left(1-|r|^{2}\right) F_{k, n}^{2}\right]=\delta(k, r)
\end{aligned}
$$

According to (2.1), we have

$$
\|A\|_{2} \geqslant \sqrt{\frac{\delta(k, r)}{n}}
$$

Therefore the conclusions hold.
Remark 3.1.Here we make a comparison to the lower bounds between Theorem3.1 and Lemma 2.1. We shall illustrate that our results in Theorem 3.1 are strongerthan Lemma 2.1. For $|r| \geqslant 1$, it can be verified easily that

$$
\begin{cases}\sqrt{\frac{\delta(k, r)}{n}+\frac{|r|^{2}-1}{n k^{2}} \geqslant \sqrt{\frac{F_{k, n-1} F_{k, n}}{k}},} & n \text { is odd } \\ \sqrt{\frac{\delta(k, r)}{n}} \geqslant \sqrt{\frac{F_{k, n-1} F_{k, n}}{k}}, & n \text { is even }\end{cases}
$$

and if $|r|<1$, we deduce that

$$
\sqrt{\frac{\delta(k, r)}{n}}>\sqrt{\frac{\delta(k, r)}{n}+\frac{|r|^{2}-1}{n k^{2}}} \geqslant|r| \sqrt{\frac{F_{k, n-1} F_{k, n}}{k}}
$$

which show that the lower bounds in Theorem 3.1 are more precise than (2.2) and(2.3).
If we let $k=1$ in Theorem 3.1, then we easily derive the following corollarywhich improve the results in [9].

Corollary 3.1. Let $A=C_{r}\left(F_{0}, F_{1}, \cdots, F_{n-1}\right)$ be an r-circulant matrix, and F_{i} bethe i-thFibonacci number. Let

$$
\delta(1, r)=n|r|^{2} F_{n-1} F_{n}+\left(1-|r|^{2}\right) F_{n}^{2}
$$

(1) $|r| \geqslant 1$, then

$$
\begin{cases}\sqrt{\frac{\delta(1, r)+|r|^{2}-1}{n}} \leqslant\|A\|_{2} \leqslant \frac{|r|-|r|^{n}\left(F_{n}+|r| F_{n-1}\right)}{1-|r|-|r|^{2}}, & n \text { odd } \\ \sqrt{\frac{\delta(1, r)}{n}} \leqslant\|A\|_{2} \leqslant \frac{|r|-|r|^{n}\left(F_{n}+|r| F_{n-1}\right)}{1-|r|-|r|^{2}}, & n \text { even. }\end{cases}
$$

(2) $|r|>1$, then

$$
\begin{cases}\sqrt{\frac{\delta(1, r)+|r|^{2}-1}{n}} \leqslant\|A\|_{2} \leqslant F_{n+1}-1, & n \text { odd } \\ \sqrt{\frac{\delta(1, r)}{n}} \leqslant\|A\|_{2} \leqslant F_{n+1}-1, & n \text { even. }\end{cases}
$$

Let $r=1$ in Theorem 3.1, then we have the following result.
Corollary 3.2.Let $A=C_{1}\left(F_{k, 0}, F_{k, 1}, \cdots, F_{k, n-1}\right)$ be a circulant matrix. Then

$$
\sqrt{\frac{F_{k, n-1} F_{k, n}}{k}} \leqslant\|A\|_{2} \leqslant \frac{F_{k, n}+F_{k, n-1}-1}{k}
$$

The following corollary improve the lower bounds in [5].
Corollary 3.3.Let $A=C_{1}\left(F_{0}, F_{1}, \cdots, F_{n-1}\right)$ be a circulant matrix. Then

$$
\sqrt{F_{n-1} F_{n}} \leqslant\|A\|_{2} \leqslant F_{n+1}-1
$$

Now we consider the spectral norms of r-circulantmatrices $B=C_{r}\left(L_{k, 0}, L_{k, 1}, \cdots, L_{k, n-1}\right)$. The following lemma are needed.

Lemma 3.3.Suppose that $\left\{L_{k, i}\right\}$ is a k-Lucas sequence with $L_{k, 0}=2, L_{k, 1}=k$,then
(1) $\sum_{i=0}^{n} L_{k, i}^{2}=\frac{1}{k} L_{k, n} L_{k, n+1}+2$.
(2) $\sum_{i=0}^{n} L_{k, i}^{2}= \begin{cases}\left(k+\frac{4}{k}\right) F_{k, n} F_{k, n+1}, & n \text { is odd, } \\ \left(k+\frac{4}{k}\right) F_{k, n} F_{k, n+1}+4, & n \text { is even. }\end{cases}$
(3) $\sum_{i=0}^{n} L_{k, i} L_{k, i+1}= \begin{cases}\left(k+\frac{4}{k}\right) F_{k, n+1}^{2}, & n \text { is odd, } \\ \left(k+\frac{4}{k}\right) F_{k, n+1}^{2}+k-\frac{4}{k}, & n \text { is even. }\end{cases}$

Proof.(1) According to the recurrence relation (1.2), we have

$$
\begin{aligned}
k \sum_{i=0}^{n} L_{k, i}^{2} & =\sum_{i=0}^{n} L_{k, i}\left(L_{k, i+1}-L_{k, i-1}\right)=\sum_{i=0}^{n} L_{k, i} L_{k, i+1}-\sum_{i=0}^{n} L_{k, i-1} L_{k, i} \\
& =\sum_{i=0}^{n} L_{k, i} L_{k, i+1}-\sum_{i=-1}^{n-1} L_{k, i} L_{k, i+1}=L_{k, n} L_{k, n+1}+2 k .
\end{aligned}
$$

(2) It follows from (1.5) and (1).
(3) In the light of (1.5), we have

$$
\sum_{i=0}^{n} L_{k, i} L_{k, i+1}=\left(4+k^{2}\right) \sum_{i=0}^{n} F_{k, i} F_{k, i+1}+2 k \sum_{i=0}^{n}(-1)^{i} .
$$

If n is odd, it follows from Lemma 3.1(2), together with $\sum_{i=0}^{n}(-1)^{i}=0$ that

$$
\sum_{i=0}^{n} L_{k, i} L_{k, i+1}=\left(k+\frac{4}{k}\right) F_{k, n+1}^{2}
$$

Similarly, ifnis even, then

$$
\begin{gathered}
\sum_{i=0}^{n} L_{k, i} L_{k, i+1}=\frac{4+k^{2}}{k}\left(F_{k, n+1}-1\right)+2 k \\
=\left(k+\frac{4}{k}\right) F_{k, n+1}^{2}+k-\frac{4}{k}
\end{gathered}
$$

This completes the proof.
Theorem 3.2.Suppose that $B=C_{r}\left(L_{k, 0}, L_{k, 1}, \cdots, L_{k, n-1}\right)$ ber-circulant matrix. Let

$$
\mu(k, r)=\left(k+\frac{4}{k}\right)\left[\left((n-1)|r|^{2}+1\right) F_{k, n-1} F_{k, n}+\frac{1-|r|^{2}}{k} F_{k, n-1}^{2}\right]
$$

Then the following conclusions hold:
(1) $|r| \geqslant 1$
(i) If n is odd, then

$$
\sqrt{\frac{\mu(k, r)+2\left(1-|r|^{2}\right)}{n}+2\left(1+|r|^{2}\right)} \leqslant\|B\|_{2} \leqslant \delta_{1}(k, r)
$$

(ii) If n is even, then

$$
\sqrt{\frac{\mu(k, r)+\left(1-|r|^{2}\right)\left(2 n-1-4 / k^{2}\right)}{n}} \leqslant\|B\|_{2} \leqslant \delta_{1}(k, r)
$$

(2) $|r|<1$
(i) If n is odd, then

$$
\sqrt{\frac{\mu(k, r)+2\left(1-|r|^{2}\right)}{n}+2\left(1+|r|^{2}\right)} \leqslant\|B\|_{2} \leqslant \delta_{2}(k)
$$

(ii) If n is even, then

$$
\sqrt{\frac{\mu(k, r)+\left(1-|r|^{2}\right)\left(2 n-1-4 / k^{2}\right)}{n}} \leqslant\|B\|_{2} \leqslant \delta_{2}(k)
$$

Proof.It is clear that

$$
\|B\|_{F}^{2}=n \sum_{i=0}^{n-1} L_{k, i}^{2}+\left(|r|^{2}-1\right) \sum_{i=1}^{n-1} i \cdot L_{k, i}^{2}
$$

By applying Abel transformation, together with Lemma 3.3(1), we have

$$
\begin{aligned}
& \sum_{i=1}^{n-1} i \cdot L_{k, i}^{2}=(n-1) \sum_{i=1}^{n-1} L_{k, i}^{2}-\sum_{i=1}^{n-2} \sum_{j=1}^{i} L_{k, j}^{2} \\
& =(n-1) \sum_{i=1}^{n-1} L_{k, i}^{2}-\frac{1}{k} \sum_{i=1}^{n-2}\left(L_{k, i} L_{k, i+1}-2 k\right)
\end{aligned}
$$

Substituting (3.7) into (3.6), we obtain

$$
\|B\|_{F}^{2}=\left[(n-1)|r|^{2}+1\right] \sum_{i=0}^{n-1} L_{k, i}^{2}+\frac{1-|r|^{2}}{k} \sum_{i=1}^{n-2} L_{k, i} L_{k, i+1}+2 n\left(1-|r|^{2}\right)
$$

If n is odd, by direct calculation, together with Lemma 3.3, we derive that

$$
\|B\|_{F}^{2}=\left(k+\frac{4}{k}\right)\left[\left((n-1)|r|^{2}+1\right) F_{k, n-1} F_{k, n}+\frac{1-|r|^{2}}{k} F_{k, n-1}^{2}\right]+2\left(n+n|r|^{2}+1-|r|^{2}\right)
$$

Similarly, if n is even, then

$$
\begin{aligned}
& \|B\|_{F}^{2}=\left(k+\frac{4}{k}\right)\left[(n-1)|r|^{2}+1\right] F_{k, n-1} F_{k, n}+\frac{1-|r|^{2}}{k}\left(k+\frac{4}{k}\right)\left(F_{k, n-1}^{2}-1\right)+2 n\left(1-|r|^{2}\right) \\
& \quad=\left(k+\frac{4}{k}\right)\left[\left((n-1)|r|^{2}+1\right) F_{k, n-1} F_{k, n}+\frac{1-|r|^{2}}{k} F_{k, n-1}^{2}\right]+\left(1-|r|^{2}\right)\left(2 n-1-\frac{4}{k^{2}}\right)
\end{aligned}
$$

By (2.1) and Lemma 2.2 we get the conclusions hold.
Remark 3.2.Now we illustrate that our results in Theorem 3.2 are more betterthan Lemma 2.2. For $|r| \geqslant 1$, it can be verified easily that

$$
\begin{cases}\sqrt{\frac{\mu(k, r)+2\left(1-|r|^{2}\right)}{n}+2\left(1+|r|^{2}\right)} \geqslant \sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}+4}, & n \text { odd } \\ \sqrt{\frac{\mu(k, r)+\left(1-|r|^{2}\right)\left(2 n-1-4 / k^{2}\right)}{n}} \geqslant \sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n},} & n \text { even. }\end{cases}
$$

and if $|r|<1$, we deduce that

$$
\begin{cases}\sqrt{\frac{\mu(k, r)+2\left(1-|r|^{2}\right)}{n}+2\left(1+|r|^{2}\right)} \geqslant|r| \sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}+4}, & n \text { odd } \\ \sqrt{\frac{\mu(k, r)+\left(1-|r|^{2}\right)\left(2 n-1-4 / k^{2}\right)}{n}}>|r| \sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}}, & n \text { even. }\end{cases}
$$

which show that the lower bounds in Theorem 3.2 are more precise than (2.4) and(2.5).
If we let $k=\operatorname{lin}$ Theorem 3.2, then we derive the following corollary whichgives more better lower bounds than [9].

Corollary 3.4.Suppose that $B=C_{r}\left(L_{0}, L_{1}, \cdots, L_{n-1}\right)$ is an r-circulant matrix, and L_{i} is the i-th Fibonacci number. Let

$$
\mu(1, r)=5\left[\left((n-1)|r|^{2}+1\right) F_{n-1} F_{n}+\left(1-|r|^{2}\right) F_{n-1}^{2}\right]
$$

(1) $|r| \geqslant 1$, then

$$
\begin{cases}\sqrt{\frac{\mu(1, r)+2\left(1-|r|^{2}\right)}{n}+2\left(1+|r|^{2}\right)} \leqslant\|B\|_{2} \leqslant \delta_{1}(1, r), & n \text { odd } \\ \sqrt{\frac{\mu(1, r)+\left(1-|r|^{2}\right)\left(2 n-1-4 / k^{2}\right)}{n}} \leqslant\|B\|_{2} \leqslant \delta_{1}(1, r), \quad n \text { even }\end{cases}
$$

(2) $|r|<1$, then

$$
\begin{cases}\sqrt{\frac{\mu(1, r)+2\left(1-|r|^{2}\right)}{n}+2\left(1+|r|^{2}\right)} \leqslant\|B\|_{2} \leqslant 2 F_{n}+F_{n+1}-1, & n \text { odd } \\ \sqrt{\frac{\mu(1, r)+\left(1-|r|^{2}\right)\left(2 n-1-4 / k^{2}\right)}{n}} \leqslant\|B\|_{2} \leqslant 2 F_{n}+F_{n+1}-1, & n \text { even. }\end{cases}
$$

If we let $r=1$ in Theorem 3.2, then we have the following result.
Corollary 3.5. Let $B=C_{1}\left(L_{k, 0}, L_{k, 1}, \cdots, L_{k, n-1}\right)$ be a circulant matrix. Then

$$
\begin{cases}\sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}+4} \leqslant\|B\|_{2} \leqslant \delta_{2}(k), & n \text { odd } \\ \sqrt{\left(k+\frac{4}{k}\right) F_{k, n-1} F_{k, n}} \leqslant\|B\|_{2} \leqslant \delta_{2}(k), & n \text { even }\end{cases}
$$

The following corollary improve the result in [5].
Corollary 3.6. Let $B=C_{1}\left(L_{0}, L_{1}, \cdots, L_{n-1}\right)$ be a circulant matrix. Then

$$
\begin{cases}\sqrt{5 F_{k, n-1} F_{k, n}+4} \leqslant\|B\|_{2} \leqslant 2 F_{n}+F_{n+1}-1, & n \text { odd } \\ \sqrt{5 F_{k, n-1} F_{k, n}} \leqslant\|B\|_{2} \leqslant 2 F_{n}+F_{n+1}-1, & n \text { even }\end{cases}
$$

References

[1] S. Falcona, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos,Solitons and Fractals, 33 (2007)38-49.
[2] S. Falcon, On the k-Lucas numbers, International Journal of Contemporary Mathematical Sciences, 6 (2011) 1039-1050.
[3] S. Falcon, A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation ,208 (2009) 180-185.
[4] J. Zhou, The spectral norms of g-circulant matrices with classical Fibonacci andLucas numbers entries, Applied Mathematics and Computation, 233 (2014) 582-587.
[5] S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers,Applied Mathematics and Computation, 160 (2005) 125-132.
[6] W. Bani-Domi, F. Kittaneh, Norm equalities and inequalities for operator matrices,Linear Algebra and its Applications, 429 (2008) 57-67.
[7] HamedAzami, MiladMalekzadeh and SaeidSanei, Optimization of Orthogonal PolyphaseCoding Waveform for MIMO Radar based on Evolutionary Algorithms, The Journal of mathematics and computer Science, 6 (2013) 146 -153.
[8] AbolfazlTaleshian, DordiMohamadSaghali, The Randers β-Change of More Generalized m-th Root Metrics, The Journal of mathematics and computer Science, 6 (2013) 305-310.
[9] S. Shen, J. Cen, On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation 216 (2010),2891-2897.
[10] S. Shen, J. Cen, On the spectral norms of r-circulant matrices with the k-Fibonacciand k-Lucas numbers, International Journal of Contemporary Mathematical Sciences 5 (2010), 569-578.
[11] W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, 1976.

Copyright:

Manuscript submitted to TJMCS. has not been published previously, has not been copyrighted, is not being submitted for publication elsewhere. By submitting a manuscript, the authors agree that thecopyright for their article is transferred to the publisher, if and when, the paper is accepted for publication.

