
Journal of mathematics and computer science 12 (2014), 51-64

Efficient Implementation of RNS Montgomery Multiplication Using Balanced

RNS Bases

Sakineh Sharifi

1
, Mohammad Esmaeildoust

2
, Mohammad Reza Taheri

3
, Keivan Navi

4

1
Department of Information Technology Engineering, Qom University, Qom, Iran

2
Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Iran

3
 Nanotechnology and Quantum Computing Laboratory, Shahid Beheshti University, GC, Tehran, Iran

4
Faculty of Electrical and Computer Engineering, Shahid Beheshti University GC, Tehran, Iran

m_doust@kmsu.ac.ir

Article history:

Received June 2014

Accepted July 2014

Available online August 2014

Abstract
Point multiplication is the most important part of elliptic curve cryptography which consumes

remarkable time of implementation. Therefore efficiency enhancement of entire system is depending on

efficiency of this part. Increasing the efficiency of the modular multiplication improve overall

performance of the cryptographic system as it frequency used in some application such as Elliptic Curve

Cryptography. By applying Residue Number System (RNS) to Montgomery multiplication as a method

for modular multiplication, delay of modular multiplication will be reduced. Appropriate RNS moduli

sets replace time consuming operation of multiplication by smaller operations. In this paper two balanced

moduli set with proper dynamic range is presented and the efficiency of conversion from RNS to RNS

which is the most time consuming part of the Montgomery modular multiplication will be increased.

Keywords: residue number system (RNS), RNS Montgomery, reverse converter, elliptic curve

cryptography

1. Introduction

One of the best public key cryptography systems are RSA [1] and Elliptic curves cryptography [2] [3].

ECC can provide security equivalent RSA with smaller key and a fewer calculations. ECC systems are

mailto:m_doust@kmsu.ac.ir

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

52

face with several problems. As well as we know the important operation in ECC is point multiplication

that include two basic operations are on field P: point doubling (P.D) and point addition (P.A). In order

to improving performance of operation on P, Montgomery multiplication [4] can be employed.

Montgomery multiplication performs modulo reduction without division. So as to increase efficiency

of Montgomery, RNS Montgomery presented [5] [6]. RNS is a non-weighted number system and

operations on large numbers are done over small moduli. As described in [5], two RNS bases are

required to perform RNS Montgomery multiplication and conversion from one basis to another is

needed in this process. In [7], RNS bases in the form of 2
n
-ci where 0 ≤ ci <2

k/2
 are considered. In

[8],[9], in one bases efficient RNS moduli set such as {2
n
, 2

n
-1, 2

n
+1, 2

n-2(n+1)/2
+1, 2

n+2(n+1)/2
+1} [10],

{2
n
-1, 2

n
 , 2

n
 +1, 2

2n
+1 -1} [11] and {2

n
-1, 2

n
 , 2n +1, 2

2n
+1} [12] are considered and for first bases the

moduli set in the form of 2
n
-ci [7] are considered. Although in [7] it is proved that in the special case of

2
n
-ci where 0≤ ci <2

k/2
, modulo reduction can be efficiently implemented, but using well formed moduli

such as 2
n
-1, 2

n
+1, 2

n
, 2

n
-3, 2

n
+3, where efficient modulo adder [13-15], multiplier and residue to

binary converter and binary to residue converter are presented for these moduli by researcher [16-21],

can leads to more efficient RNS Montgomery implementation.

In this paper, two efficient RNS bases {2
n
, 2

n
+1, 2

n-1
-1} and {2

n
+3, 2

n
-1, 2

n
-3} are selected for RNS

Montgomery multiplication and required conversions are efficiently implemented. The selected RNS

bases are balanced and this lead to modulo channel with approximately same delay. Fast and efficient

implementation of RNS Montgomery multiplication leads to meliorate the performance of P.A and

P.D.

This paper organized as follow: Section 2 provides the related background of RNS and RNS

Montgomery. In section 3, the RNS bases and efficient design of required conversions in RNS

Montgomery regarding to proposed bases are presented. Performance of proposed work are evaluated

and compared in section 4 and finally section 5 concludes the paper.

2. Related Background

This section in three subsections mathematical background of RNS Montgomery multiplication and

RNS will be discussed, respectively.

2.1 Montgomery in RNS

RNS Montgomery multiplication is presented by [5]. In RNS Montgomery multiplication two RNS

bases (moduli set) are required. Considering X and Y as two large integer number with RNS

representation (x1,…, xm) and (y1, …, ym) in first basis (p1, …, pm) and in the second basis we consider X

and Y as (x´1, …, x´m) and (y´1, …, y´m) in second basis (p´1, …, p´m).

Algorithm 1 shows the RNS Montgomery multiplication [7]. M = p1×p2…×pi and M'= p'1×p'2…×p'i are

the dynamic range for first and second bases, respectively. Consider T which is T < M < M´, so that

gcd (T, M) = gcd (T, M´) = gcd (M, M´) = 1. Montgomery multiplication performs modulo reduction

without division. The most important part of Montgomery algorithm is moduli selection that leads to

design pretty faster converter and efficient arithmetic unit. Choosing moduli set is necessary to provide

these features, so in this approach the RNS basis in order to achieve the high performance of

multiplication is proposed.

According to algorithm 1, in the process of Montgomery multiplication conversion from one basis to

another is required. Figure 1 shows the required conversions.

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

53

Algorithm 1: RNS Montgomery multiplication

n

n

1

n

n n

1

n

n n

1: (in base B

 in base B)

2 : in B

3: in B in B

4: () in B

5: in B in B

i

i

i
i

i
i

i i i m

i i i m

i i m
m

i i

i i i m
m

D X Y d x y

d x y

q d T

q q

r d q N M

r r










   

    

  

 

      

 

Reverse

conversio

n

. . .

q1

q2

qn

Weighted

binary

Forward

conversio

n

. . . .

Operation

Reverse

conversio

n

. . .

Weighted

binary

Forward

conversio

n

 . . .

Residue in first base{2n, 2n+1, 2n-1-1} Residue in second base{2n+3, 2n-1, 2n-3}

r1´

r2´

rn´

q1´ q2´ qn´

r2

r1

rn

Figure 1. Overview of base extension in Montgomery algorithm

Conversion from one basis to another needs the mathematical background of the RNS. Therefore in

the following the related background of the RNS is detailed.

 2.2 Residue Number System

The RNS is an unconventional number system which is defined in terms of relatively-prime moduli set

{m1, m2, …, mn} that is gcd (mi, mj) = 1 for i ≠ j. A weighted number X can be represented as X = (x1,

x2, … , xn), where

ii
i

ii mx
m

XmXx  0, mod (1)

Such a representation is unique for any integer X in the range [0, M-1], where M is the dynamic range

of the moduli set {m1, m2, …, mn} which is equal to the product of mi terms (
1

n

ii
M m


)[22].

RNS includes three main parts: forward converter, reverse converter and arithmetic operation [23].

Several algorithms for reverse conversion can be employed such as Chinese reminder Theorem (CRT),

Mixed Radix Conversion (MRC) or the modified version of these algorithms [23]. Since MRC is used

in the required conversion in this paper, the mathematical details of MRC is discussed in the

following.

In MRC [24], [25], the number X can be calculated from residues by:

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

54

 




1

1
112123...

n

i
in vPvPPvPvX (2)

The coefficients {v1, v2,…, vn} can be obtained from residues as follows:

1 1v x (3)

2
2

1

1122)(
P

P
Pvxv


 (4)

3
33

1

22

1

1133))((
P

PP
PvPvxv


 (5)

In the general case

nPnP
nPnv

nP
Pv

nP
Pvnxnv

1

1)1

1

2)2

1

1)1(((








 (6)

jP
iP

1
denotes the multiplicative inverse of Pi modulus Pj.

3. Selected RNS Bases

In order to increase the efficiency of Montgomery in RNS, efficient RNS bases are required. To

achieve this, for first and second bases {2
n
, 2

n
+1, 2

n-1
-1} and {2

n
+3, 2

n
-1, 2

n
-3} when n is even, are

considered as moduli sets, respectively. As mentioned before, conversion from one base to another is

needed in the process of RNS Montgomery multiplication. In the following, the required conversion

will be detailed.

3.1 Residue-to-binary conversion in first bases

By using MRC and considering P1 = 2
n
, P2 = 2

n
+1 and P3 = 2

n-1
-1 and residues Z = (x1, x2, x3), we have

1 2 32 (2 1)(2)n n nX v v v    (7)

 Where

v1=x1 (8)

 
2

2

1

2 2 1 1 P
P

v x x P  (9)

 
3 3

3

1 1

3 3 1 1 2 2P P
P

v x x P v P   

 (10)

Theorem 1: Required multiplicative inverses in Eq. (10), are
3

1 2

1 2n

P
P  ,

2

1

1 1
p

P   and

 

3

/2 1

1 2

2

0

2
n

i

P
i

P






  .

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

55

Proof.

2

1

1 2 1 2 1
1 2 (1) 2 1

n n

n n

p
p 

 
       

1 1
3

1 2 2 2 2

1 2 1 2 1
2 2 2 2 1

n n

n n n n

P
P

 

   

 
    

 

 

 

1 13 3 3

3 1 1

/2 1

1 2 1 1

2 2 2
2 1 2 10

/2 1

1 2

2

02 1 2 1

2 2 1 1 3 1

1 2 1
2

3 3

n n

n n

n

i n

P P P
i

nn
i

P
i

P P P

P

 

 



  

 





 

       


   





Using theorem 1, v2 can be calculated as:

2 1
2 1 2

n

v x x


 

 (11)

Based on equation of v3 in MRC we have:

 
3 3

3

1 1

3 3 1 1 2 2P P
P

v x x P v P   

(12)

Using theorem 1, v3 can be calculated as:

   
1

1 0 2 2

3 3 1 2

2 1

2 2 2 ... 2

n

n n

Y K

v x x v



 



     
 

 (13)

Lemma 1: In modulo 2
n
-1, multiplication of n-bit residue number x by 2

k
 is equal to k-bit circular left

shift residue number x [26].

Lemma 2: In modulo 2
n
-1, the negative of residue number x is obtained by one's complement of x,

where 0 ≤ x < 2
n
− 1 [26].

By using Lemma 1 and 2 we have:

13 2 1n
v Y K

 
 

(14)

Where

12 2 2 1
((,0) (, 2)) nK CLS v CLS v n  

   

(15)

CLS (k, p) denotes p-bit left shift of k [27]. For Y calculation we have:

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

56

1

2

3, 2 3,0 1, 1 1,0

2 bit 2 1

.... 00....0 ... 2
n

n

n n

n

Y x x x x




 

 

 
  
 



(16)

Based on Lemma 1 and 2, Y can be rewritten as follows:

OPU 1

 Modulo (2n+1) Subtractor

OPU 2

(n-1) bit CSA1

CSA Tree

 (n-1) bit CSA 2

 (n-1) bit CSA 3

(n-1) bit CPA 1

OPU 3

 3n bit CPA2

x1 x2 x3

x1 x2

 Y3 Y1 Y2

 V2

 V2 V1 V3

K1

X

.

K2

CLS(2,n-2)CLS(2,0)

Y

Figure 2. Hardware implementation of X conversion in first basis

 

1

2

3,0 3, 2 3,1 1, 1 1,0

2(1) bit
2 1

... ... 11...1

n

n

n n

n

Y x x x x x





 




 
  
 
 



(17)

  11 3,0 3, 2 3,1
2 1

...
nnY x x x





(18)

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

57

  12 1, 1 1,1
2 1

...
nnY x x





(19)

  

1

2

3 1,0

2 1

11...1

n

n

Y x







 
 
 
 

(20)

Finally after calculation of coefficients {v1, v2, v3} we came back to general equation of X. Thus:


2

1 2 3 3

 bit

2 2 00...0 2n n n

n

X v v v v   

(21)

 
2

3 1 2 3

2 bit(2 1) bit

2 0...0 2n n

nn

X v v v v



  

(22)




21

(2 1) bit

3 3 1 2 2

n

n

kk

X v v v v

 

 


 (23)

Hardware implementation of X in Eq. (23) is shown in figure 2. Operand preparation unit (OPU) 1, 2

and 3 provides the required negation and shift according to Eq. (18-23). Details report of the required

hardware and considered Carry save adder (CSA) with end around carry (EAC) [27], Modulo adder

[29][30], subtractor [31] and carry propagate adder (CPA) with EAC [32] which used in this paper are

included in section 4 and table 2.

3.2 binary-to-Residue conversion in second bases

Calculation of number X from moduli set of {2
n
+3, 2

n
-1, 2

n
-3} can be done with two MRC levels as

shown in figure 3:

MRC 1

MRC 2

x1 x2

x3

X

Y

Figure 3. Two MRC levels of conversion in second basis

As mentioned before the coefficients {v1, v2, v3} have to be obtained. Assume P1 = 2
n
+3, P2 = 2

n
-1,

P3 = 2
n
-3 and Z = (x1, x2, x3). Thus:

1 1v x (24)

 1 2 2 3nY v v  

(25)

 

2
2

1

2 2 1 1 P
P

v x x P 

(26)

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

58

 Theorem 2: Required multiplicative inverse in Eq. (26), is

1 2

1 2 1
2

n

nP 




Proof.

 1 1 2

1 1 2 12 1
2 3 1 2

nn

n nP P  


   

Then Eq. (26) can be rewritten as follow:

  2

2 2 1 2 1
2

n

nv x x 


 

(27)

 By using Lemma 1 and 2 we have:


2

2 2, 1 2,0 ,1 0,1

1 bit
 bit 1 bit 2 1

(..... 00..0) 2

n

n

n n

n
n n

v x x x x 




 

  
 

 (28)

2 2,1 2,0 2, 1 2,2 ,1 0,1

1 bit
 bit 1 bit 2 1

..... 0 00..0

n

n n

n
n n

v x x x x x x


 

 
 

(29)

2 3,1 3,0 3, 1 3,2 ,1 2,1 1,1 0,1

 bit bit bit 2 1

..... 1 111....1

n

n n

n n n

v x x x x x x x x



 
 

(30)

2 3,1 3,0 3, 1 3,2 ,1 2,1 1,1 0,1

 bit bit bit 2 1

..... 1 111....1

n

n n

n n n

v x x x x x x x x



  
  

(31)

2 1 2 3 2 1nv K K K


   (32)

Where

1 3,1 3,0 3, 1 3,2.....nK x x x x

(33)

2 ,1 2,11nK x x

(34)

3 1,1 0,1111....1K x x

(35)

At the end of MRC1, Y can be computed by:

 1 22 3nY v v  

(36)

 
21 22

1 2 2 1 2 2 1 2 2 22 3 3 0n

v v

Y v v v v v v v v v v       

(37)

Hardware implementation of Y in Eq. (37) in first level of MRC conversion is shown in figure 4.

For implementation of second level of MRC conversion as shown in figure 3 we used Eq. (40) as

follows:

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

59

1v Y

(38)

1 2 3X v v P 
(39)

 
3

3

1

2 3 1,2 P
P

v x Y P  

(40)

Theorem 3: Required multiplicative in Eq. (40) is
   

3

1
1

1,2
(2 3)

2 3 2 1
n

n n

P
P






  

Proof.

  

 
 

3 3

3

1 1

1,2 1,2
(2 3) (2 3)

1 2 4

1,2
(2 3) (2 3)

(2 3)

2 3 2 1 1 12 1

2 41
12 1 2 ... 2

12 12

n n

n
n

n

n n

P P

n

n

P

P P

P

 

 

 

 


    

 
       

x1

 V2

Y

 k3

 V1

 V2 V2 2 V2 1

k2 k1

 x2

OPU 3

x3

LS(Y,0) LS(Y,n-4) LS(3,0) LS(3 ,n-4)

3n+1 bit CPA4

X1 X2

1

1

X

.

CSA Tree1 CSA Tree2

OPU 4

Y1 Y24n bit 4n bit

n bit CSA3

 n bit n bit n bit n bit

n bit CSA4

 n bit n bit

n bit CSA8 n bit CSA7

n bit CSA9

n bit CSA11

n bit CSA12

OPU 5

3n+1 bit CSA14

n bit CSA1

n bit CPA1

OPU 2

n bit CSA2

2n+1 bit CPA2

OPU 1

 V2

2n bit 2n bit

 n bit n bit n bit n bit n bit n bit

n bit CSA5 n bit CSA6

n bit CSA10

n bit CSA13

n bit CPA3

Figure 4. Hardware implementation of X conversion in second basis

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

60

Based on Theorem 3 and Lemma 1 and 2 Eq. (40) can be written as the following equation:

  2 4

2 3, 1 3,0
(2 3)

.... 1 2 ... 2
n

n

nv Y x x 




    

(41)

2

3 3 (2 3)

(,0) (, 4)

(,0) (, 4) n

CLS Y CLS Y n
v

CLS x CLS x n


   


  

(42)

Finally X is calculated as the following:

   2 1

2 2

2 1

2 2 2 2

(2 3) 2 1 2 2 3

2 2 0

n n n n

n n

X Y v Y v

Y v v v v





       

    

(43)

 
2 1

2 2 2 2

2 bit (1) bit

2 0...0 2 0...0 1 2n n

n n

X Y v v v v



  
       

   

(44)


2

1

2 2 2 2

 bit

00....0 1 2
n x

x

X Y v v v v   


(45)

By calculating X in Eq. (45) for second level of MRC conversion, the residue to binary converter for

the moduli set {2
n
+3, 2

n
-1, 2

n
-3} is designed completely and shown in figure 4. Details report of the

required hardware is included in section 4 and table 3.

3.3 Forward conversion

In order to achieve RNS to RNS conversion according to figure 1, Forward conversion in the

considered moduli set is required. Forward converter for the moduli 2
n
, 2

n
+1, 2

n
+3, 2

n
-1 and 2

n
-3 are

designed by researchers [19] [20].

Critical moduli in first and second bases are 2
n
+1 and 2

n
+3, respectively. Forward conversion for (3n)-

bit word in moduli 2
n
+1 and (3n+1)-bit word in critical moduli 2

n
+3 in second bases have been

calculated and show in table 1 as follow:

Table 1.Delay of critical channel of forward conversion in 2
n
+1 and 2

n
+3

 Critical moduli Hardware cost Delay for conversion

First bases {2
n
+1} (4n+10)tFA (2n+5)tFA [19]

Second bases {2
n
+3} (5n+19)tFA (3n+10)tFA [20]

4. Performance evaluation

In this section, in order to evaluate the performance of the proposed conversion for comparison with

[7], we are going to calculate the hardware cost and conversion delay of two proposed sets {2
n
, 2

n
+1,

2
n-1

-1} and {2
n
+3, 2

n
-1, 2

n
-3} when tNOT, tFA, tXNOR/OR and tXOR/OR are delay represented of NOT gate, a

full adder (FA), a pairs of XNOR/OR and a pairs of XOR/OR, respectively. As shown in figure 2 for

first set, for calculating Eq. (18-20), (2n-2) NOT gates in OPU1 is used, so delay OPU1 equals to tNOT.

In Eq. (11) for calculating v2 is used a modulo (2n+1) subtractor which has (2n+2)-bit delay [30].

Hence, for obtaining Eq. (14) from Eq. (15) and Eq. (17-20) is used from (n+1) NOT gates in OPU2

and a 4- operand modulo (2
n-1

-1) adder is required which include three (n-1)-bit CSA with EAC

following by (n-1)-bit CPA with EAC. Each CSA with EAC has the delay of FA, and the delay of a

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

61

CPA with EAC is twice the delay of a regular CPA. Since Eq. (19) and Eq. (20) have constant value of

1 then FAs in CSA1 reduced to pairs of XNOR/OR gates. Area for CSA Tree is (n-3)(n-1)-bit CSA

with EAC tree which arranged in l levels. Delay of circular shifting or bits rearrangement in OPU3 is

ignored, since it is a rearrangement of wires. Realization of Eq. (23) required (3n)-bit CPA. Finally

total delay and hardware cost for first set are calculated in table 2.

Table 2. Hardware and delay specification of reverse converter for the moduli set {2
n
, 2

n
+1, 2

n-1
-1}

Parts FA

NOT

XNOR/OR

pairs

Delay

OPU1 2n-2 tNOT

CSA1 1 n-2 tFA

Modulo subtractor

[28]

2n+2 (n+1)tFA

OPU2 n+1 tNOT

CSA Tree n
2
-4n-3 *l.tFA

CSA2 n-1 tFA

CSA3 n-1 tFA

CPA1 n-1 (2n-2)tFA

CPA2 3n (3n)tFA

Total delay n
2
+4n-3 3n-1 n-2 (6n+2+l) tFA+2tNOT

*Here l is the number of levels of CSA tree with (n-1) input

In second set, required hardware for convert from Residue to binary in Eq. (29) is (2n) NOT gates in

OPU1 following by n-bit CSA with EAC and n-bit CPA with EAC are used. Since Eq. (34) and Eq.

(35) have constant value of 1 then FAs in CSA1 reduced to pairs of XNOR/OR. For calculating the

Eq. (37) need to n-bit CSA that following by (2n+1)-bit CPA with EAC has been used. In Eq. (41)

OPU3 has n NOT gates and two CSA Trees which one of them consists of (n-5)(4n)-bit CSA with

EAC tree area which arranged in k levels for calculation of Y into two (4n)-bit parts which has

constant value of 0 then FAs in CSA tree reduced to pairs of XOR/AND gates and following by

OPU4, eleven n-bit CSA with EAC and n-bit CPA with EAC. As mention before delay of circular

shifting or bits rearrangement in OPU4 was ignored, since it is a rearrangement of wires. Another CSA

Tree for x3 calculation has (n-5)(2n)-bit CSA with EAC tree area which arranged in I levels which has

constant value of 1 then FAs in CSA tree reduced to pairs of XNOR/OR gates. Finally for operations

of Eq. (45) OPU5 with (n+1) NOT gates, one (3n+1)-bit CSA and (3n+1)-bit CPA has been applied.

Since Eq. (45) has constant values of 0 then full adders in CSA9 reduced to pairs of XOR/AND gates.

Total delay for second set is calculated in table 3.

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

62

Table 3. Hardware and Delay Specification of Reverse Converter for the moduli set {2
n
+3, 2

n
-1, 2

n
-3}

Parts

FA

NOT

XOR/AND

pairs

XNOR/OR

Pairs

Delay

OPU1 2n tNOT

CSA1 1 n-1 tFA

CPA1 n (2n) tFA

CSA 2 2n+1 tFA

CPA2 2n+1 (2n+1) tFA

OPU3 n tNOT

CSA Tree1 4n
2
-20n 2n

2
-7n+3 *k.tFA

CSA Tree2 2n
2
-10n n

2
-3n *I tFA

CSA 3-13 n×11 (1×11) tFA

CPA3 n (2n) tFA

OPU 5 n+1 tNOT

CSA9 2n+1 n tFA

CPA3 3n+1 (3n+1)tFA

Total delay 6n
2
-8n+5 4n+1 2n

2
-6n+3 n

2
-2n-1 (9n+16+k+ I)tFA+3tNOT

*Here I and k are the number of levels of two CSA trees with (n-3) input

Total delay and hardware cost for RNS to RNS conversion from first to second basis and inverse are

computed in table 4.

Table 4. Total delay and hardware cost for two proposed sets

 Hardware cost Delay

RNS to RNS conversion from

first to second basis

(n
2
+8n+7)tFA+(3n-1)tNOT+(n-2)tXNOR/OR (8n+7+l)tFA +2tNOT

RNS to RNS conversion from

second to first basis

(6n
2
-3n+24)tFA+(4n+1)tNOT+(2n

2
-

6n+3)tNOR/AND+(n
2
-2n-1) tXNOR/OR

(12n+26+k+I)tFA

+3tNOT

For p = 192-b implementation according to NIST report [33], p = 2
192

- 2
64

-1 is considered. By the

proposed RNS bases, moduli sets {2
66

, 2
66

+1, 2
65

-1} and {2
66

+3, 2
66

-1, 2
66

-3} when n = 66 are

achieved. In table 5 delay and hardware cost of proposed sets with [7] has been compared. Before

beginning, in order to have a better comparison to obtain total area and delay estimation, the unit gate

model is considered [14]. According to this model [14], time and area requirements for each of the

following components are explained as follows: each two-input monotonic gate (e.g., AND, NAND)

counts as one gate in area and delay, an XOR/XNOR gate has two gates in area and delay and a FA

counts as seven gates in area and has four gates in delay.

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

63

Table 5. Total delay of required RNS to RNS conversion for 192 bit key length

 Delay Unit gate delay

proposed (1298) tFA 5192

[7] (5376) tFA 21504

Table 5 shows the delay comparison with three moduli RNS bases proposed in [7]. As the result

shows, noticeable improvement in RNS to RNS conversion in RNS Montgomery multiplication is

achieved. Besides, using well formed RNS moduli results arithmetic operation in RNS Montgomery

multiplication with higher efficiency [23].

5. CONCLUSION

Montgomery modular multiplication in RNS is an efficient way to achieve higher speed of modular

multiplication. Conversion from RNS to RNS is the critical part of this approach. In this paper,

efficient RNS bases are selected to achieve high speed operation and the required RNS to RNS

conversions are designed in efficient way. The proposed design enjoys efficient bases with suitable

arithmetic unit as well as high speed RNS to RNS conversion that is proper for ECC. The results

shows noticeable improvements in terms of delay of conversions are achieved compared to state-of-

the-art-work in literature.

References

[1] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems,”Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in Lecture notes in computer sciences; 218 on Advances in

cryptology—CRYPTO 85. New York, NY, USA: Springer-Verlag New York, Inc., 1986, pp. 417–426.

[3] N. Koblitz, “Elliptic Curve Cryptosystem,” J. Cryptology Math. Comp., vol. 48, pp. 203–209, 1987.

[4] P. Montgomery, “Modular Multiplication without Trial Division,” Mathematics of Computation, vol. 44, no. 170, pp. 519-

521, Apr. 1985.

[5] J. Bajard, L. Didier, and P. Kornerup, “An RNS Montgomery’s Modular Multiplication Algorithm,” IEEE Trans.

Computers, vol. 47, no. 2, pp. 167-178, Feb. 1998.

[6] J. Bajard, L. Didier, and P. Kornerup, “Modular Multiplication and Base Extensions in Residue Number Systems,” Proc. 15th

IEEE Symp. Computer Arithmetic (ARITH’01), pp. 59-65, 2001.

[7] J. C. Bajard, M. Kaihara, T. Plantard, “Selected RNS Bases for Modular Multiplication,” In 19th IEEE International

Symposium on Computer Arithmetic, pp. 25-32, 2009.

[8] M. Gerami, M. Esmaeildoust, Sh. Rezaie, K. Navi and O. Hashemipour, “Four Moduli RNS Bases for Efficient Design of

Modular Multiplication,” Journal of Computations & Modelling, vol. 1, no. 2, pp 73-96, 2011.

[9] Sh. Rezaie, M. Esmaeildoust, M. Gerami, K. Navi and O. Hashemipour, “High Dynamic Range RNS Bases for Modular

Multiplication,” IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011.

[10] A. A. Hiasat, “VLSI implementation of New Arithmetic Residue to Binary decoders,” IEEE Transactions on VLSI systems,

vol. 13, no. 1, pp. 153-158, 2005.

[11] A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei and S. Timarchi, “Efficient Reverse Converter Designs for the new 4-

Moduli Set {2n-1, 2n,2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs, ” IEEE Transactions on Circuits and

Systems-I, 57(4), (2010), 823-835.

[12] B. Cao, C. Chang and T. Srikanthan, “An Efficient Reverse Converter for the 4-Moduli Set {2n-1, 2n, 2n+1, 22n+1} Based on

the New Chinese Remainder Theorem,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications,

50(10), (October, 2003), 1296-1303.

[13] P. M. Matutino, R. Chaves, and L. Sousa, “Arithmetic units for RNS moduli {2n − 3} and {2n + 3} operations,” in 13th

EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools, 2010.

 S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci. 12 (2014), 51-64

64

[14] R. Zimmermann, “Efficient vlsi implementation of modulo (2n ± 1) addition and multiplication,” in 14th IEEE Symposium

on Computer Arithmetic, 1999.

[15] S. B. R.A. Patel, M. Benaissa and N. Powell, “Power-delay-area efficient modulo 2n + 1 adder architecture for rns,”

Electronics Letters, 2005.

[16] R. Zimmermann, “Binary adder architectures for cell-based VLSI and their synthesis,” Ph.D. dissertation, Swiss Federal

Institute of Technology (ETH) Zurich, Hartung-Gorre Verlag, 1998.

[17] R. Chaves and L. Sousa, “Improved 2n + 1 multipliers,” Technical Report RT/14/2003, INESC-ID, July

2003.

[18] R. Chaves and L. Sousa, “2n + 1, 2n+k, 2n − 1: A new RNS moduli set extension,” in EUROMICRO Systems on Digital

System Design, 2004.

[19] P. M. Matutino, R. Chaves, and L. Sousa, “Binary-to-RNS conversion units for moduli {2n±3},” in 14th EUROMICRO

Conference on Digital System Design: Architectures, Methods and Tools, 2011.

[20] F. J. Taylor, “Residue arithmetic: A tutorial with examples,” Computer,vol. 17, pp. 50–62, May 1984.

[21] M. Esmaeildoust, A. Kaabi, “High Speed Reverse Converter for the Five Moduli Set {2n, 2n-1, 2n+1, 2n-3, 2n-1-1}”, TJMCS,

pp. 438-450, 2009.

[22] K. Navi, A. S. Molahosseini, and M. Esmaeildoust, “How to teach residue number system to computer scientists and

engineers?” IEEETrans. Edu., vol. 54, no. 1, pp. 156–163, Feb. 2011.

[23] B. Parhami, Computer Arithmetic: Algorithms and Hardware Design.Oxford, U.K.: Oxford Univ. Press, 2000.

[24] B. Cao, C. H. Chang, and T. Srikanthan, “Adder based residue to binary converters for a new balanced 4-moduli set,” in

Proc. 3rd IEEE Symp.Image, Signal Process. Anal., 2003, vol. 2, pp. 820–825.

[25] N Keivan, M Esmaeildoust, AS Molahosseini, “A General Reverse Converter Architecture with Low Complexity and High

Performance”, IEICE TRANSACTIONS on Information and Systems 94 (2), (2011) 264-273.

[26] B. Cao, T. Srikanthan, C.H. Chang, “Efficient reverse converters for the four-moduli sets {2n–1, 2n, 2n+1, 2n+1–1} and

{2n–1, 2n, 2n+1, 2n–1–1},” IEE Proc. Comput. Digit.Tech., vol. 152, 687–96, 2005.

[27] K. Hwang, “Computer Arithmetic: Principle, Architecture and Design”, New York: Wiley, 1979.

[28] S.J. Piestrak, “Design of residue generators and multioperand modular adders using carry-save adders”, IEEE Trans.

Comput., Vol. 423, pp. 68–77, 1994.

[29] S.J. Piestrak, “A high speed realization of a residue to binary converter”, IEEE Trans. Circuits Syst. II, Analog.Digit. Signal

Process., Vol. 42, pp. 661–663, Oct. 1995.

[30] D.Younes, P.Steffan, “Novel Modulo 2n+1 Subtractor and Multiplier ”, ICONS: The Sixth International Conference on

Systems, pp.36-38, 2011.

[31] Reto Zimmermann, “Lecture notes on Computer Arithmetic: Principles, Architectures and VLSI Design,” Integrated System

Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Mar, 16, 1999.

[32] D. M. Schinianakis, A. P. Fournaris, H. E. Michail, A. P. Kakarountas, and T. Stouraitis, “An RNS Implementation of an Fp

Elliptic Curve Point Multiplier”, IEEE Transactions on Circuits and Systems—I, VOL. 56, NO. 6, JUNE 2009.

