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Abstract

In this work, fixed point results using generalized weakly contractive conditions on partial metric
spaces are presented. These results generalize many previously obtained results. Some examples are also
given to show the usability of these results.
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1. Introduction

The concept of partial metric spaces was given by Steve Matthews [1, 2] in 1992 to study the
denotational semantics of data flow network. He presented partial metric space as a generalization of
metric space in the sense that the self distance of any point need not be zero. Recently many authors have
focused on the fixed point results in partial metric spaces (see e.g.[3-9]).

The notion of ¢ -contraction was introduced by Boyd and Wong [10] and the weak ¢ -contraction was
introduced by Alber and Guerre-Delabriere [11] as a generalization of ¢ -contraction. Later on ¢ -
contractions and weak ¢ -contractions have been studied by many authors (see e.g. [5-9, 12, 14]) in
metric spaces as well as in partial metric spaces.

Consistent with Matthews [1, 2], Karapinar [3] and Altun and Erduron [4] some important definitions
and results which are used in this paper are given in the following.
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Definition 1.1 [1, 2] A partial metric " p" on X is a function from X x X to R™ such that for every
element X,y and z of X it satisfies following axioms.

p,:0< p(x,x)< p(x, y)
P, : p(x,x)= p(x,y)= p(y,y) ifand only if x=y.
ps : p(X,y)= p(y, X). (symmetry)

P, P(x z) < p(x, y)+ p(y,z)—- p(y, y). (triangular inequality)

If " p" is a partial metricon X then (X, p) is called a partial metric space (PMS).

For a partial metric p on X, the function dp :XxX —>R" defined by
d,(x, y)=2p(x,y)— p(x,x)— p(y, y) forall x,y,ze X isametricon X. Each partial metric " p" on
X generates a T, topology 7z, on X for which the collection (Bp(x,g): XxeX,e> O} of all open balls

forms a base. Where B, (x,&)=1{y e X : p(x, y) < p(x, x)+ &} for each & >0 and x € X.
Definition 1.2 [1, 2, 4]
1. Asequence {yn} in a partial metric space (X, p) converges to the limit y € X ifand
only if lim p(y, y) = p(y. ).

2. A sequence {yn} in a partial metric space (X, p) is called Cauchy if and only if
lim p(ym, yn) exists and is finite.

3. A partial metric space (X, p) is said to be complete if every Cauchy sequence {yn} in
X converges, with respect to 7, to a point y € X such that lim p(ym,yn): p(y, y).

4. The mapping f : X — X issaid to be continuous at y, € X , if for every ¢ >0, there
exists & > 0 such that (B, (y,,))< B, (f (Yo ) &)

The following lemma will be frequently used in the proofs of the main results.

Lemma 1.3 [1, 4] A sequence {yn} is a Cauchy sequence in a partial metric space (X , p) if and only if

it is a Cauchy sequence in the metric space (X ,d 0 )

I. A partial metric space (X, p) is complete if and only if the metric space (X , dp) is
complete. Moreover, |im dp(y, yn)= 0, ifand only if
n—ow

p(x,x)=lim P(Y,¥,)= lim P(Y,, Y, ) Where y is the limit of {y, } in (X,d)
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Il.  Let X beacomplete partial metric space. Then
@) If p(x,y)=0, then x=y.

(b) If x =y, then p(x,y)>0.

Let X be a partial metric space. Assume that the sequence {yn} is converging to z as

1.
n — oo, such that p(z,z)= 0. Then lim p(yn, y): p(z, y) for all elements y of X.

2. Main results
In the following theorem a generalized form of weak ¢ -contraction is used.

Theorem 2.1 Let (X, p) be a complete partial metric space and T : X — X be a self map such that for

all x,yeX
P(TX,Ty) <M (X, ¥)—d(M(x,y)) (1)

where

[p(x,Ty)+ p(y,TX)]}

N~

[p(x, T%)+ p(y.Ty)}

N |~

M (x,y) = max{ p(x, y),

and ¢:[0,00)— [0,00) is continuous non-decreasing function with ¢(t)=0 if and only if t = 0. Then
T has a unique fixed point.

Proof: Let y, € X be fixed. Define a sequence {yn} in X by y,, =Ty,, forall n>0. If there exist a
positive integer n, such that p(ynoﬂ, yno): 0 or p(TynO, yno): 0, then TynO = Yy this shows that Yo
is the fixed point of T . Hence we assume that p(Ty,,y,)= p(Y,...v,)#0, for all n>0 . By

substituting x =y, and y =y, in (1), we have

DY TYo1) = PVt Yor2) S MY, Vo)~ (M (Y, Vo) 2)

where

N

p(yn! yn+1)’ [p(yn' yrH—l)+ p(yn+1’ yn+2 )]’

M (yn’ yn+l) = max 1
E[p(yn' yn+2)+ p(yn+17 yn+l)]

BY Pir P(Yor Yoeo)+ P(Yoas Yoer) < P(Yas Yier )+ PVt Yiiz)
1
If p(yn’ yn+1) < E[p(yn’ yn+1)+ p(yn+1! yn+2 )]’ then
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1
M (Yo Vor) = > P(Yar Var )+ P(Yos Voro )}

From (2) we have

P(Yo ymz)S%[p(yH, Yoe)+ P(Yoers Yoo )] —¢G[p(yn, Yout)+ P(Yots Voo )]j 3)
< %[p(yn, Yoe)+ P(Yors Yoo )]
Which implies
P(Voas Yoz ) € P(Yos Yoo) (@)
If

1
E[p(ym Your)* PVt Yor2))< PV Yior)

then M(y,,V,.,)= P(Y,,Y..,) and again from (2), we have

p(yn+1’ yn+2 ) < p(yn ! yn+l)_ ¢( p(yn ! yn+l )) (5)

< p(ym yn+l)
Hence
p(yn+11 yn+2)S p(ym yn+l) (6)

Thus in both cases we have P(Y,.,,¥,.5)< P(Y,,Y,.,) for all n.Hence {p(y,,Yy,.,)} is monotone

decreasing sequence of non-negative real numbers so there exists a real number r >0, such that

I|m p(yn’ yn+l) =r. (7)

n—o0

Letting n — oo, in (3) or in (5), using (7) and regarding the continuity of ¢ we have r < r—¢(r),
which forces r = 0. Hence, in both cases

I|m p(yn' yn+1) = O (8)

n—oo

Now consider,
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DYt Y1) = PV Yo ) S M V1o Vi) = M (Vs Yins))

= maX{ (Yo, yml)é[p(yml, Yo )+ PV 11 Yim )]}

- ¢(ma><{ (Yo 1 Vs )é[p(yml, Yo )+ P(Yor1 Yin )]}]

= max{P(Y: Y b Pz Yoo )} = AP (Y Yo ) PVt Vo))
= P(Yosr Y )= #(P(Yr 1 V) (BY DY)
Hence, P(Yr: V)< P(Yis V)= #(P(Viss Vo))

Also by P; 0< p(y,, Y. )< P(Yos Vi )= B(P(Ysh ¥, ) Let m—>o0, using (8) and continuity of
¢ we have

lim P(Yp: Ym)= 0. 9)

m—oo

Now, in order to show that {yn} is a Cauchy sequence in the complete metric space, (X,dp) Assume
that {y, } is not Cauchy. Then there exists some & >0 for which we can find the subsequences {ym(k)}

and {y,} of {y,} with n(k) > m(k) >k such that

dp(ym(k)’ Xn(k))Z . (10)

Further, we can choose n(k) corresponding to m(k), in such a way that it is the smallest integer
satisfying (10) hence

o (Vg Vi) < & (11)
From (10)
& < A4 Vit Vo) S8o (Yo Vi) o Vg2 Vi)
<&+, (Va1 Yogo)
Hence,

e<d p(ym(k)’ yn(k)) <g¢+d p(yn(k)—l’ yn(k)) (12)
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We know that,
dp(yn(m—v yn(k)): 2 p(yn<k)—1’ yn(k))— P(yn(w yn(k)) - p(yn<k>—1' Yn(k)—l)

Let k — oo, using (8) and (9), we get

tim d (Vo2 Yo ) = 0. (13)
Using (13) in (12), we have

tim d (Vo Yoo )= & (14)
We, also know that

dp(ym(k), yn(k)): Zp(ymm’ yn(k))— p(ym<k), ym(k))— p(yn(k), yn(k))
Let K — o0, using (9) and (14) we get
mdp(ymw Yot0)= 2lim PV Yoo )

Therefore, we get

lim p(ym(k)’ yn(k)): > (15)

N[ ™

From the triangular inequality

Ay (Vo) Yin)) =< A Var Yo+ p Yo Yoo )+ p (Voneroar Yingy)
and

Ao Vo Yintepe2) < D Vieas Yo )+ Vs Yint)#p (Vo Yoy )

Let kK — oo, and using (13) and (14) we get

Ligolod p(yn(k)’ ym(k))S l'LEld p(yn(k)+1’ ym(k)+l)

and
timely (Vs Vo) <8im A (Ve Yo )
Hence,
lmd b (yn(k)+1’ ym(k)+1) =lim d, (yn(k)' ym(k)): & (16)
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By definition of d o
d p(ym(k)+1’ yn(k)+1) =2 p(ym(k)+l' yn(k)+1)_ p(ym(k)+l' ym(k)+l) - p(yn(k)+l1 yn(k)+l)
Let k — oo, and using (9) we get

lmd p (ym(k)+1l yn(k)+1) = 21!!1]0 p(ym(k)+1! yn(k)+1) =&

Which gives
l!ILI;IO p(ym(k)+1’ yn(k)+1) - % (17)
Now, consider
Ao Vinte)» Yot ) < B Vi Yoepa )+ (Yagras Vo)
and
dp(ym(k), yn(k)+1)S dp(ym(k)i yn(k))+dp(yn(k)1 yn(k)+l)
Let k — oo, in the above inequalities and using (13) and (14) we get
s mdp(ymw Yaga)  and mdp(ymw Yapa) < &
Therefore,
l!mdp(ym(k)’ yn(k)+1): & (18)
Similarly, we can show that
1im d (Vo) Y1) = & (19)

k—o0

Again by using the definition of d o» We have

d p(ym(k)7 yn(k)+l): 2 p(ym(k)’ yn(k)+l)_ p(ym(k)’ Ym(k))“ p(yn(k)ﬂ’ yn(k)+l)

Letting k — oo, and using (9) and (18) we get

im ., (Yo Yoo 210 P Yo )

k—o0
which gives
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. &
lim p(ym(k)l yn(k)+1): Py (20)
Similarly, we can show that
. &
lim p(yn(k)! ym(k)+1): Py (21)
Now by substituting X =Y,y and y =y, in (1) we have
1
p(ym(k)l yn(k))’z[p(ym(k)! ym(k)+l)+ p(yn(k)7 yn(k)+l)]'
P(MYin(e)s TYn()) = P(Yimiias Yngea) < MaXy 4
E[p(ym(k)’ yn(k)+l)+ p(yn(k)’ ym(k)+l)]
1
P(ym(k)' yn(k))’ E[p(ym(k)i ym(k)+l)+ p(yn(k)’ Yo )]
4 max4 4
E[p(ym(k)7 yn(k)+1)+ p(yn(k)’ ym(k)+1 )]
Letting kK — oo, and using (8), (15), (17), (20), (21) and using the continuity of ¢ we get
£ < max{f ,O,f} = max{f ,0,5} : hence 8 ¢(£j.
2 2 2 2 2 2 2 2
A contradiction. Thus {yn} is a Cauchy sequence in (X ,d p) Which gives
lim dy (Y, V)= 0. (22)
Since (X ,d p) is complete so there exists z € X such that |im d p(yn, z)=0, ifand only if
. . 1
p(z.2)=1im p(y,,2)= lim Py, ¥) =3 lim dy(y,,¥,)=0.
(by Lemma 1.3(11) and (22)). This gives,
p(z2)=lim p(y,2)= lim p(Yy ¥ )=0. (23)

Now, applying (1) with X =y, and y =z, we have

p(TyrHTZ) = p(yn+l’TZ)
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< max{p(yn, Z)é[p(yn, Your)+ P(2,T2)] %[p(yn,TZ)+ p(z, ym)]}

[p(Ys: Vo) + P(2,T )]é[ (Yo, T2)+ p(z, ym)]})

N |~

—¢(max p(Y,:2),

Letting k — oo, using (8), (23), Lemma 1.3 (IV) and the continuity of ¢ we get

p(z,Tz)s% p(z,Tz)—¢(% p(z,Tz)j < % p(z,Tz).

Which is possible only if p(z,Tz)=0 and hence Tz = z.

To show the uniqueness of z consider z" as another fixed point of T then by (1),
p(z,z") < max{ p(z, z*),%[p(z, )+ p(z*, z)]} —¢(max{ p(z, z*),%[p(z, z)+ p(z*, z)]}] (24)

By using P, we have p(z,z)< p(z,z*) and p(z*,z*)s p(z,z*)

Adding above two inequalities, we get
p(z,2)+ p(z*,z*)SZp(z,z*). (25)

Using (25) in (24), we have p(z,z*)s p(z,z*)—¢(p(z,z*)) Further by using the property of ¢ we
deduce that p(z, z*): 0 and hence, z=2". Thus z is the unique fixed point of T.

Example 2.2 Suppose X =R" and p(x, y): max{x, y}; Then (X, p) is a complete partial metric

2

space. Let T: X —> X be defined by Tx = —— forall xe X and ¢:[0,00)— [0, 00) is such that

1+ X

t . .
¢(t)= ——. Assume that X > y. Then from the contractive condition of Theorem 3.1, we have

1+t

y<rmfoon x5 oo i s )
s ol 5 oo )
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2 2

X x> y? X X
As =p , < X—¢(X): X———= . All the conditions of Theorem 3.1 are true,
1+ X 1+x 1+y 1+x 1+X

thus T has a unique fixed point namely, 0.

In the following theorem we shall obtain a fixed point theorem on partial metric space for a
generalized weak contractive type mapping.

Theorem 2.3 Let (X, p) be a complete partial metric space and T : X — X be a self-mapping such
that for all x,y e X,

w(p(Tx Ty))< l//(maX{ p(x, y)é[p(x,TX)+ p(y,Ty)]

N |~

[p(x, Ty)+ p(y,TX)]H

—g(max{p(x, y), p(x, Tx)}). (26)

where ¢:[0,00)— [0,00) is a continuous function with #(t)=0ifandonlyif t =0, y: [O,oo)—) [0,0)
is monotone non-decreasing and continuous function with y/(t): Oifandonly if t=0.Then T hasa
unique fixed point.

Proof: Let y, € X be fixed. Define a sequence of iterates {y,} in X, by y,, =Ty, for all n>0. If
for some positive integer m, p(ym+l, ym)= 0, then by p, and p,, Y, is the fixed point of T. Hence,
assume that p(yn+l, yn);tO forall n>0. Put x=y,, Y=Y, in (26) we have

PV Vou = [PVas Yo )+ P(Vaots Vo))

l//(p(ym—l’ yn+2 ))S |4 max

N |~

E[p(yn’ yn+2)+ p(yn+1’ yn+l)]

— @(max{p(¥y. Your ) PV Yor)})- 27)

From p4’ we have p(yn' yn+2)+ p(yrH—l’ yn+1)S p(yn' yn+1)+ p(yn+1’ yn+2 )"

therefore (27) becomes

N| B~

W (P(Ynerr Yaeo)) < vx(maX{ (Y Yo = [PV Vi) + P(Voss Yoo )]}j —d(P(Yn: Yna)) (28)
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1f p(Y,, Vo)< = [P(Vas Yous)+ P(Yoas Va2 )] Then (28) becomes

N |-

Y (P(Ynirr Ynez)) < w(%[p(yn, Your)+ P(Yous yn+2)])—¢(p(yn, )

<w(§[p<yn,ym>+ p(ywymz)]j (because  4(p(y,. o)) 0)

Since y is monotone increasing so P(Y, ., Voo )< = [P(Y,, Yoy )+ P(Yiass Virso )], Which gives

N |~

p(yn+11 yn+2)S p(ym yn+l) (29)
1
If E[p(yn’ yn+1)+ p(ym—l’ yn+2 )]S p(yn’ yn+1)

then (28) becomes W(p(ynﬂ’ yn+2 ))S l//( p(yrﬂ yn+l))_¢( p(yn’ yn+1))

<y(p(Yo Vo) (- #(P(Yor Yn))>0)

Hence, we get

p(yn+1’ yn+2 ) < p(yn ' yn+1) (30)

Since y is monotone non-decreasing, so in both cases {p(yn, yn+1)} is monotone decreasing sequence

of non-negative real numbers. Hence, there exists a real number r >0 such that

tim {p(Yn Yous)f = - (31)

N |-

If maX{ (Yo Vot ) =[PV Yo )+ P(Yoos, ymz)]} = (Yo Yor )

Then from (28) we have

V(D1 Yoo ) SV (P(Yas Your )= B(P(Yir Yon)) (32)

Taking limitas n — oo, using (31) and the continuity of  and ¢ we get,

w(r)<w(r)—@(r), which is a contradiction unless r = 0.
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(4 Yo 3 [P0 Yo PO Yo I =S[00 Y0) PO Y]

then from (28) we have

W (P(Ynirr Yiez)) < WG [P(Ya: Yot )+ P(Yots Yoso )]J—¢( P(Y: Vo)) (33)

Taking the limit as n — oo, using (31) and the continuity of  and ¢ we get

w(r)<w(r)—¢(r), which is a contradiction unless r = 0. Thus lim p(Y,,¥,.,)=0. (34)

n—

Also from p;, we get

lim (Y, y,)=0. (35)

n—o

Next, we prove that {yn} is a Cauchy sequence in the complete metric space (X : dp)

Following the steps (10—21) in the proof of Theorem 3.1 and applying (26) with x =y, and

Y = Ym(k) We obtain

1
p(yn(k)’ ym(k))’E [p(y”(k)’ y'1(k)+1)Jr p(ym(k)’ ym(k)ﬂ)]’
l//(p(yn(k)ﬂl ym(k)+1)) < | max 1

. [p(yn(k)' ym(k)+1)+ p(ym(k)' yn(k)+l)]

N

— ¢(max {p(yn(k) ) ym(k>). p(yn(k) ) yn(k)+l )}) (36)

Taking limit as k —>oo, in (36) we have W(%)Sw[gj—gé(%), which is impossible since

4’{%) > 0. Hence, {y, } is a Cauchy sequence in the complete metric space (X,dp) So there exists

some z € X such that |im dp(yn, Z): 0 ifand only if
nN—oo

1
p(z,2) =lim p(y,, )= lim p(yn,ym)=5 lim d,(Y,,Yn)=0.

n—oo m,n—o m,n—>o

Hence

p(z,2)= lim p(Y,, Z):m"nrl‘w p(Y,, Yn)=0. (37)

n—oo
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To show that z is the fixed pointof T put Xx=1Yy, and y =2z in (26).

N |-

00T < {0, ) [0, 3,.)+ TN 2000 T2 (3,1

—(max{p(y,, 2), P(Yn: Vo)) (38)

Letting n — oo, in (38) we have w(p(z,Tz))< y/(% p(z,Tz)} Which forces p(z,Tz)=0 and hence

Tz =1z. Thus z is the fixed point of T. In order to prove the uniqueness of z consider z* as another
fixed point of T then for taking X =2z and y =2z  in (26) we have

ol )= plole ) 2| mar] e ) Slote 20+ ol )3 lole ) o 2
~dmax(ole ') iz 2)

Thus w(p(z,z*))s z//(p(z,z*))—¢(p(z,z*)) Which is possible only if p(z,z*):O. By using p, and
p, we get z = z". Thus T has a unique fixed point.

Now, we consider an example to support the usability of Theorem 2.3.

Example 2.4 In Example 2.2 if we define y :[0,00) —[0,00) by w(t)=t, forall t €[0,0). Then the
contractive condition of Theorem 2.3 is satisfied and we have 0 as the unique fixed point of T .

Corollary 2.5 Let X be a complete partial metric space. Let T: X — X be a self-mapping such that all
elements x,y of X, satisfy

p(x, y)é[p(x1T”‘X)+ ply.T"y)]

w(p(me,Tmy))Sw max %[p(X,Tmy)Jr p(y,TmX)]
—g{max{p(x, y), p(x, 7)) (39)

where m is a positive integer and ¢, y are as defined in Theorem 2.3. Then T has a unique fixed point
in X.

Proof: Put S=T™ in (39) we have,
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[p(x, Sy)+ p(y,SX)]}j

N |

1
op5x9) < max ) 290550+ oy, )
~ ¢(max{p(x, y), p(x, 5x)})
Hence by Theorem 2.3, S has a unique fixed point z that is, Sz =z since S=T" so T"z = z which
gives T(T"z)=T™z =T™(Tz)= S$(Tz) =Tz, which shows that Tz is also a fixed point of S. Since S

has a unique fixed point so Tz =z. Hence, z is the fixed point of T. Condition (39) implies the
uniqueness of z.

Conclusion: We have generalized the theorem proved by Rhoades[13] for a self map on a complete
partial metric space and we obtain Matthews’ generalization of Banach’s contraction principle as a special
case of the Theorem 3.1. Moreover, a fixed point theorem for a self map defined for partial metric space

satisfying a generalized (1//, ¢)—Weak contractive conditions is also proved.
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