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   Abstract 

 In this work, fixed point results using generalized weakly contractive conditions on partial metric 

spaces are presented. These results generalize many previously obtained results. Some examples are also 

given to show the usability of these results. 
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1. Introduction 

    The concept of partial metric spaces was given by Steve Matthews [1, 2] in 1992 to study the 

denotational semantics of data flow network. He presented partial metric space as a generalization of 

metric space in the sense that the self distance of any point need not be zero. Recently many authors have 

focused on the fixed point results in partial metric spaces (see e.g.[3-9]). 

     The notion of  -contraction was introduced by Boyd and Wong [10] and the weak  -contraction was 

introduced by Alber and Guerre-Delabriere [11] as a generalization of  -contraction. Later on  -

contractions and weak  -contractions have been studied by many authors (see e.g. [5-9, 12, 14]) in 

metric spaces as well as in partial metric spaces. 

     Consistent with Matthews [1, 2], Karapinar [3] and Altun and Erduron [4] some important definitions 

and results which are used in this paper are given in the following. 
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Definition 1.1 [1, 2] A partial metric "" p  on X  is a function from XX   to 
R  such that for every 

element yx,  and z  of X  it satisfies following axioms. 

    .,,0:1 yxpxxpp   

     ),(=,=,:2 yypyxpxxpp  if and only if .= yx  

    .,=,:3 xypyxpp  (symmetry) 

      .,,,),(:4 yypzypyxpzxpp   (triangular inequality) 

If "" p  is a partial metric on X  then  pX ,  is called a partial metric space (PMS). 

     For a partial metric p  on ,X  the function 
 RXXd p :  defined by 

       yypxxpyxpyxd p ,,,2=,   for all Xzyx ,,  is a metric on .X  Each partial metric "" p  on 

X  generates a 0T  topology p  on X  for which the collection   0>,:,  XxxBp   of all open balls 

forms a base. Where         xxpyxpXyxBp ,<,:=,  for each 0>  and .Xx   

Definition 1.2 [1, 2, 4]  

1. A sequence  ny  in a partial metric space  pX ,  converges to the limit Xy  if and 

only if    yypyyp n
n

,=,lim


. 

2. A sequence  ny  in a partial metric space  pX ,  is called Cauchy if and only if 

 nm
nm

yyp ,lim
, 

 exists and is finite. 

3.  A partial metric space  pX ,  is said to be complete if every Cauchy sequence  ny  in 

X  converges, with respect to ,p  to a point Xy  such that    .,=,lim
,

yypyyp nm
nm 

 

4. The mapping XXf :  is said to be continuous at Xy 0 , if for every 0,>  there 

exists 0>  such that      .,, 00  yfByBf pp    

 

     The following lemma will be frequently used in the proofs of the main results. 

Lemma 1.3 [1, 4]  A sequence  ny  is a Cauchy sequence in a partial metric space  pX ,  if and only if 

it is a Cauchy sequence in the metric space  
pdX , . 

I. A partial metric space  pX ,  is complete if and only if the metric space  
pdX ,  is 

complete. Moreover,    0,=,lim np
n

yyd


 if and only if  

     .,lim=,lim=,
,

mn
mn

n
n

yypyypxxp


 Where y  is the limit of  ny  in  ., pdX  
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II. Let X  be a complete partial metric space. Then 

    (a) If   0,=, yxp  then .= yx  

    (b) If ,yx   then   0.>, yxp  

III. Let X  be a partial metric space. Assume that the sequence  ny  is converging to z  as 

.n  such that   0.=, zzp  Then    yzpyyp n
n

,=,lim


 for all elements y  of .X  

2. Main results 

     In the following theorem a generalized form of weak  -contraction is used. 

Theorem 2.1  Let  pX ,  be a complete partial metric space and XXT :  be a self map such that for 

all Xyx ,   

          )),((),(),( yxMyxMTyTxp   (1) 

 where  

            








 TxypTyxpTyypTxxpyxpyxM ,,
2

1
,,,

2

1
,,max=),(  

 and     0,0,:  is continuous non-decreasing function with   0=t  if and only if 0.=t  Then 

T  has a unique fixed point. 

Proof: Let Xy 0  be fixed. Define a sequence  ny  in X  by ,=1 nn Tyy   for all 0.n  If there exist a 

positive integer 0n  such that   0=,
0

1
0

nn yyp   or   0,=,
00

nn yTyp  then ,=
00

nn yTy  this shows that 
0

ny  

is the fixed point of T . Hence we assume that     ,0,=, 1  nnnn yypyTyp  for all 0n . By 

substituting nyx =  and 1= nyy  in (1) , we have  

         11211 ,,,=,   nnnnnnnn yyMyyMyypTyTyp   (2) 

 where  

 

      

    
.

,,
2

1

,,,
2

1
,,

max=),(

112

2111

1



























nnnn

nnnnnn

nn

yypyyp

yypyypyyp
yyM  

 By ,4p         211112 ,,,,   nnnnnnnn yypyypyypyyp  

 If       2111 ,,
2

1
<,   nnnnnn yypyypyyp , then  
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       2111 ,,
2

1
=,   nnnnnn yypyypyyM  

 From (2)  we have  

                  21121 ,,
2

1
,   nnnnnn yypyypyyp     








  211 ,,

2

1
nnnn yypyyp  (3) 

     211 ,,
2

1
<   nnnn yypyyp  

Which implies 

    121 ,,   nnnn yypyyp  (4) 

  If  

       ,,<,,
2

1
1211   nnnnnn yypyypyyp  

then    11 ,=,  nnnn yypyyM  and again from (2) , we have  

       1121 ,,,   nnnnnn yypyypyyp   (5) 

  

  1,< nn yyp  

Hence  

    121 ,,   nnnn yypyyp  (6) 

Thus in both cases we have    121 ,,   nnnn yypyyp  for all .n Hence   1, nn yyp  is monotone 

decreasing sequence of non-negative real numbers so there exists a real number 0r , such that  

   .=,lim 1 ryyp nn
n




 (7) 

Letting ,n  in (3)  or in (5) , using (7)  and regarding the continuity of   we have  ,rrr   

which forces 0.=r  Hence, in both cases  

   0.=,lim 1


nn
n

yyp  (8) 

Now consider, 
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     ),(),(,=, 111111   mmmmmmmm yyMyyMyypTyTyp   

       








  mmmmmm yypyypyyp ,,
2

1
,,max= 1111

 

                 
















  mmmmmm yypyypyyp ,,
2

1
,,max 1111  

 

                       mmmm yypyyp ,,,max= 111       mmmm yypyyp ,,,max 111   

                         111 ,,= pbyyypyyp mmmm    

Hence,       mmmmmm yypyypyyp ,,, 11    . 

Also by P1       .,,,0 11 mmmmmm yypyypyyp    Let m , using (8)  and continuity of 

  we have  

   0.=,lim mm
m

yyp


 (9) 

Now, in order to show that  ny  is a Cauchy sequence in the complete metric space,  ., pdX  Assume 

that  ny  is not Cauchy. Then there exists some 0>  for which we can find the subsequences   kmy  

and   kny  of  ny  with kkmkn >)(>)(  such that  

      ., knkmp xyd  (10) 

Further, we can choose  kn  corresponding to  ,km  in such a way that it is the smallest integer 

satisfying (10)  hence  

      .<, 1 knkmp yyd  (11) 

From (10)  

               knknpknkmpknkmp yydyydyyd ,,, 11    

     .,< 1 knknp yyd   

Hence,  

          .,<, 1 knknpknkmp yydyyd    (12) 
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We know that,  

              knknknknknknp yypyypyyd ,,2=, 11      ., 11  knkn yyp  

Let ,k  using (8) and (9), we get  

      0.=,lim 1 knknp
k

yyd 


 (13) 

Using (13) in (12), we have  

      .=,lim knkmp
k

yyd


 (14) 

We, also know that  

                    knknkmkmknkmknkmp yypyypyypyyd ,,,2=,   

 Let k , using (9)  and (14)  we get  

          .,lim2=,lim knkm
k

knkmp
k

yypyyd


 

 Therefore, we get  

      .
2

=,lim


knkm
k

yyp


 (15) 

From the triangular inequality  

                    kmkmpkmknpknknpkmknp yydyydyydyyd ,,,, 1111    

and  

                    .,,,, 1111   kmkmpkmknpknknpkmknp yydyydyydyyd  

Let ,k  and using (13)  and (14)  we get 

          11,lim,lim 


 kmknp
k

kmknp
k

yydyyd  

and  

          kmknp
k

kmknp
k

yydyyd ,lim,lim 11





  

Hence,  

           .=,lim=,lim 11 kmknp
k

kmknp
k

yydyyd





 (16) 
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By definition of ,pd  

                              111111 ,,2=,   kmkmknkmknkmp yypyypyyd     ., 11  knkn yyp  

 Let ,k  and using (9)  we get  

           .=,lim2=,lim 1111 





knkm
k

knkmp
k

yypyyd  

 Which gives  

      .
2

=,lim 11





knkm

k

yyp  (17) 

Now, consider  

               knknpknkmpknkmp yydyydyyd ,,, 11    

and  

               .,,, 11   knknpknkmpknkmp yydyydyyd  

Let ,k  in the above inequalities and using (13)  and (14)  we get 

           .,lim,lim 11   





knkmp
k

knkmp
k

yydandyyd  

Therefore,  

      .=,lim 1 


knkmp
k

yyd  (18) 

 

Similarly, we can show that  

      .=,lim 1 


kmknp
k

yyd  (19) 

Again by using the definition of ,pd  we have  

                    1111 ,,,2=,   knknkmkmknkmknkmp yypyypyypyyd  

Letting ,k  and using (9)  and (18)  we get  

          ,,lim2=,lim 11 





knkm
k

knkmp
k

yypyyd  

which gives  



M. Akram, W. Shamaila / J. Math. Computer Sci.    12 (2014), 85-98 
 

92 
 

      .
2

=,lim 1





knkm

k

yyp  (20) 

Similarly, we can show that  

      .
2

=,lim 1





kmkn

k

yyp  (21) 

Now by substituting  kmyx =  and  knyy =  in (1)  we have 

        ),(=),( 11  knkmknkm yypTyTyp
               

           
























11

11

,,
2

1

,,,
2

1
,,

max

kmknknkm

knknkmkmknkm

yypyyp

yypyypyyp
 

                 

               

          













































11

11

,,
2

1

,,,
2

1
,,

max

kmknknkm

knknkmkmknkm

yypyyp

yypyypyyp

  

Letting ,k  and using (8) , (15) , (17) , (20) , (21)  and using the continuity of   we get  

 .
222

,
2

,0,
2

max
2

,0,
2

max
2













































hence  

A contradiction. Thus  ny  is a Cauchy sequence in  ., pdX  Which gives  

   0.=,lim
,

mnp
nm

yyd


 (22) 

Since  
pdX ,  is complete so there exists Xz  such that   0,=,lim zyd np

n 

 if and only if  

         0.=,lim
2

1
=,lim=,lim=,

,,
mnp

nm
mn

nm
n

n

yydyypzypzzp


 

(by Lemma 1.3(II) and (22)). This gives, 

       0.=,lim=,lim=,
,

mn
nm

n
n

yypzypzzp


 (23) 

Now, applying (1)  with nyx =  and zy = , we have 

),(=),( 1 TzypTzTyp nn    
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11

11

,,
2

1
,,,

2

1
,,max

,,
2

1
,,,

2

1
,,max

nnnnn

nnnnn

yzpTzypTzzpyypzyp

yzpTzypTzzpyypzyp



 

Letting ,k  using (8) , (23) , Lemma 1.3 (IV) and the continuity of   we get  

        .,
2

1
<,

2

1
,

2

1
, TzzpTzzpTzzpTzzp 








   

Which is possible only if   0=,Tzzp  and hence .= zTz  

     To show the uniqueness of z  consider 
*z  as another fixed point of T  then by (1), 

        








 **** ,,
2

1
,,max),( zzpzzpzzpzzp        .,,

2

1
,,max ***


















 zzpzzpzzp  (24) 

By using 1P  we have    *,, zzpzzp   and    .,, *** zzpzzp   

Adding above two inequalities, we get 

      .,2,, *** zzpzzpzzp  . (25) 

Using (25)  in (24),  we have       .,,, *** zzpzzpzzp   Further by using the property of   we 

deduce that   0=, *zzp  and hence, .= *zz  Thus z  is the unique fixed point of .T  

Example 2.2 Suppose 
RX =  and    ;,max=, yxyxp  Then  pX ,  is a complete partial metric 

space. Let XXT :  be defined by 
x

x
Tx

1
=

2

 for all Xx  and     0,0,:  is such that 

  .
1

=
t

t
t


  Assume that .yx   Then from the contractive condition of Theorem 3.1, we have 

       TyTxp ,  




















































y

y
xp

y

y
yp

x

x
xpyxp

1
,

2

1
,

1
,

1
,

2

1
,,max

222























x

x
yp

1
,

2

 

 

        



























































y

y
xp

y

y
yp

x

x
xpyxp

1
,

2

1
,

1
,

1
,

2

1
,,max

222































x

x
yp

1
,

2
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As   .
1

=
1

=
1

,
1

=
1

2222

x

x

x

x
xxx

y

y

x

x
p

x

x













  All the conditions of Theorem 3.1 are true, 

thus T  has a unique fixed point namely, 0. 

 

     In the following theorem we shall obtain a fixed point theorem on partial metric space for a 

generalized weak contractive type mapping. 

Theorem 2.3  Let  pX ,  be a complete partial metric space and XXT :  be a self-mapping such 

that for all ,, Xyx   

               
















 TxypTyxpTyypTxxpyxpTyTxp ,,
2

1
,,,

2

1
,,max,   

      Txxpyxp ,,,max , (26) 

where     0,0,:  is a continuous function with   0=t  if and only if 0,=t      0,0,:  

is monotone non-decreasing and continuous function with   0=t  if and only if 0=t . Then T  has a 

unique fixed point. 

Proof: Let Xy 0  be fixed. Define a sequence of iterates  ny  in ,X  by nn Tyy =1  for all 0.n  If 

for some positive integer   0,=,, 1 mm yypm   then by 1p  and ,2p  my  is the fixed point of .T  Hence, 

assume that   0,1  nn yyp  for all 0.n  Put nyx = , 1= nyy  in (26)  we have 

  
      

     












































112

2111

21

,,
2

1

,,,
2

1
,,

max,

nnnn

nnnnnn

nn

yypyyp

yypyypyyp
yyp    

      11 ,,,max  nnnn yypyyp . (27) 

 

From ,4p  we have        .,,,, 211112   nnnnnnnn yypyypyypyyp , 

therefore (27)  becomes  

              
















  211121 ,,
2

1
,,max, nnnnnnnn yypyypyypyyp    1,  nn yyp  (28) 
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 If       2111 ,,
2

1
,   nnnnnn yypyypyyp . Then (28)  becomes 

          121121 ,,,
2

1
,  








 nnnnnnnn yypyypyypyyp    

                   0>,,,
2

1
< 1211  








 nnnnnn yypbecauseyypyyp   

Since   is monotone increasing so       21121 ,,
2

1
,   nnnnnn yypyypyyp , which gives  

    121 ,,   nnnn yypyyp  (29) 

If       1211 ,,,
2

1
  nnnnnn yypyypyyp  

then (28)  becomes         1121 ,,,   nnnnnn yypyypyyp    

                    0>,,< 11   nnnn yypyyp   

Hence, we get  

    121 ,,   nnnn yypyyp  (30) 

     Since   is monotone non-decreasing, so in both cases   1, nn yyp  is monotone decreasing sequence 

of non-negative real numbers. Hence, there exists a real number 0r  such that  

    .=,lim 1 ryyp nn
n




 (31) 

If         .,=,,
2

1
,,max 12111 









 nnnnnnnn yypyypyypyyp  

Then from (28)  we have  

         .,,, 1121   nnnnnn yypyypyyp   (32) 

Taking limit as ,n  using (31)  and the continuity of   and   we get, 

      ,rrr    which is a contradiction unless 0.=r  

 If  
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            ,,,
2

1
=,,

2

1
,,max 2112111  









 nnnnnnnnnn yypyypyypyypyyp  

 then from (28)  we have  

           .,,,
2

1
, 121121  








 nnnnnnnn yypyypyypyyp   (33) 

Taking the limit as ,n  using (31)  and the continuity of   and   we get 

     ,rrr    which is a contradiction unless 0.=r  Thus   0.=,lim 1


nn
n

yyp  (34) 

Also from ,1p  we get  

   0.=,lim nn
n

yyp


 (35) 

Next, we prove that  ny  is a Cauchy sequence in the complete metric space  ., pdX  

     Following the steps 21)(10  in the proof of Theorem 3.1 and applying (26)  with  knyx =  and 

 kmyy =  we obtain 

            11,  kmkn yyp  
               

           










































11

11

,,
2

1

,,,
2

1
,,

max

knkmkmkn

kmkmknknkmkn

yypyyp

yypyypyyp
  

            .,,,max 1 knknkmkn yypyyp  (36) 

 Taking limit as ,k  in (36)  we have ,
222
























 






  which is impossible since 

0.>
2







 
  Hence,  ny  is a Cauchy sequence in the complete metric space  ., pdX  So there exists 

some Xz  such that   0=,lim zyd np
n 

 if and only if  

         0.=,lim
2

1
=,lim=,lim=,

,,
mnp

nm
mn

nm
n

n

yydyypzypzzp


 

Hence  

      0.=,lim=,lim=,
,

mn
nm

n
n

yypzypzzp


 (37) 
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  To show that z  is the fixed point of T  put nyx =  and zy =  in (26).  

  Tzyp n ,1             
















  11 ,,
2

1
,,,

2

1
,,max nnnnn yzpTzypTzzpyypzyp  

      .,,,max 1 nnn yypzyp  (38) 

 Letting ,n  in (38)  we have      .,
2

1
, 








 TzzpTzzp   Which forces   0=,Tzzp  and hence 

.= zTz  Thus z  is the fixed point of .T  In order to prove the uniqueness of z  consider 
*z  as another 

fixed point of T  then for taking zx =  and 
*= zy  in (26)  we have 

        ** ,=, zzpTzTzp              
















 zzpzzpzzpzzpzzp ,,
2

1
,,,

2

1
,,max *****  

                                .,,,max * zzpzzp  

Thus         .,,, *** zzpzzpzzp    Which is possible only if   0.=, *zzp  By using 1p  and 

2p  we get .= *zz  Thus T  has a unique fixed point. 

   Now, we consider an example to support the usability of Theorem 2.3. 

Example 2.4 In Example 2.2 if we define     0,0,:  by   ,= tt  for all  .0,t  Then the 

contractive condition of Theorem 2.3 is satisfied and we have 0  as the unique fixed point of T . 

Corollary 2.5 Let X  be a complete partial metric space. Let XXT :  be a self-mapping such that all 

elements yx,  of ,X  satisfy 

  
      

     






































xTypyTxp

yTypxTxpyxp
yTxTp

mm

mm

mm

,,
2

1

,,,
2

1
,,

max,    

      ,,,,max xTxpyxp m  (39) 

where m  is a positive integer and ,  are as defined in Theorem 2.3. Then T  has a unique fixed point 

in .X  

Proof: Put 
mTS =  in (39)  we have, 
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     Sxxpyxp

SxypSyxpSyypSxxpyxpSySxp

,,,max

,,
2

1
,,,

2

1
,,max,

























 

Hence by Theorem 2.3, S  has a unique fixed point z  that is, zSz =  since 
mTS =  so zzT m =  which 

gives       ,==== 1 TzTzSTzTzTzTT mmm 
 which shows that Tz  is also a fixed point of .S  Since S  

has a unique fixed point so .= zTz  Hence, z  is the fixed point of .T  Condition (39)  implies the 

uniqueness of .z  

Conclusion: We have generalized the theorem proved by Rhoades[13] for a self map on a complete 

partial metric space and we obtain Matthews’ generalization of Banach’s contraction principle as a special 

case of the Theorem 3.1. Moreover, a fixed point theorem for a self map defined for partial metric space 

satisfying a generalized   , -weak contractive conditions is also proved.  
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