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Abstract 

 This paper proposes a numerical method to deal with the integro-differential reaction-diffusion 

equation. In the proposed method, the time variable is eliminated by using finite difference 𝜃 − method to 

enjoy the stability condition. The method benefits from collocation radial basis function method, the 

generallized thin plate splines (GTPS) radial basis functions are used. Therefore, it does not require any 

struggle to determine shape parameter. The obtained results for some numerical examples reveal that the 

proposed technique is very effective, convenient and quite accurate to such considered problems. 

 Keywords: Integro-differential equation, Radial basis functions, Kansa method, Finite 

differences 𝜃 − method. 
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1  Introduction 
 Many problems in science and engineering modelled as differential equations. Solving 

equations by traditional numerical methods such as finite difference (FDM), finite element (FEM) needs 

generation of a regular mesh in the domain of the problem which is computationally expensive 

[1,2,3,4,5]. During the last decade, meshless methods have received much attention. Due to the 

difficulty of the mesh generation problem, meshless methods for simulation of the numerical problems 
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are employed. Radial basis functions (RBFs) interpolation is a technique for representing a function 

starting with data on scattered points [6,7,8,9]. The RBFs can be of various types, such as: polynomials of 

a given degree; linear, quadratic, cubic, etc; thin plate spline (TPS), multiquadrics (MQ), inverse 

multiquadrics (IMQ), Gaussian forms (GA), etc. Most differential equations do not have exact analytic 

solutions, so approximation and numerical techniques must be used. 

Development of constructive methods for the numerical solution of mathematical problems is a 

main branch of mathematics. Meshless methods have attracted much attention in the both 

mathematics and engineering community, recently. Extensive developments have been made in several 

varieties of meshless techniques and applied to many applications in science and engineering. These 

methods exist under different names, such as: the diffuse element method (DEM) [10], the hp-cloud 

method [11], Meshless Local Petrov- Galerkin (MLPG) method [12,13,14], the meshless local boundary 

integral equation (LBIE) method [15], the partition of unity method (PUM) [16], the meshless collocation 

method based on radial basis functions (RBFs)[17], the smooth particle hydrodynamics (SPH)[19], the 

reproducing kernel particle method (RKPM) [20], the radial point interpolation method [22], meshless 

local radial point interpolation method (MLRPI) [23,24], and so on. 

In this study, we implement the meshless collocation method for solving the following integro-

differential reaction-diffusion equation (also arising in population dynamic) [25,26] by using a radial 

basis function (RBF):  

 
∂𝑢(𝑥 ,𝑡)

∂𝑡
=

∂2𝑢(𝑥 ,𝑡)

∂𝑥2 + 𝛽𝑢(1 − 𝑎𝑢 − 𝑏𝐽(𝑥, 𝑡)) + 𝑓(𝑥, 𝑡), (1) 

 where:  

 𝐽(𝑥, 𝑡) =  
𝑥𝑅
𝑥𝐿

𝜓(𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 

(for    𝑡 ∈ [0,𝑇]) on a finite domain 𝑥𝐿 < 𝑥 < 𝑥𝑅. 𝜓(𝑥) is kernel function and 𝑓(𝑥, 𝑡) is a given smooth 

function. 

Initial condition 𝑢(𝑥, 0) = 𝑔(𝑥) for     𝑥𝐿 < 𝑥 < 𝑥𝑅  and boundary conditions are as follows: 

𝑢(𝑥𝐿 , 𝑡) = 0    and    𝑢(𝑥𝑅 , 𝑡) = 0.  

In the special case, if 𝑏 = 0 and 𝑓(𝑥, 𝑡) = 0 we have well-knownFisher’sequationas: 

 
∂𝑢(𝑥 ,𝑡)

∂𝑡
=

∂2𝑢(𝑥 ,𝑡)

∂𝑥2 + 𝛽𝑢(1 − 𝑎𝑢), 

2  Preliminaries 
 For implementation of this method we need the following definitions.  

Definition 2.1  ( Radial basis functions.) Considering a finite set of interpolation points 

𝑋 = {𝑥1,𝑥2 ,… , 𝑥𝑀} ⊆ 𝑅𝑑  and a function 𝑢:𝑋 → 𝑅𝑑 , according to the process of interpolation using 

radial basis functions [6], the interpolant of u is constructed in the following form:  
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 (𝑆𝑢)(𝑥) =  𝑀
𝑖=1 𝜆𝑖𝜑(∥ 𝑥 − 𝑥𝑖 ∥) + 𝑝(𝑥),    𝑥 ∈ 𝑅𝑑  

where ∥. ∥ is the Euclidean norm and 𝜑(∥. ∥) is a radial function. Also, 𝑝(𝑥) is a linear combination of 

polynomials on 𝑅𝑑  of total degree at most 𝑚 − 1 as follows:  

 𝑝(𝑥) =  𝑀+𝑙
𝑗=𝑀+1 𝜆𝑗𝑞𝑗 (𝑥),    𝑙 = (𝑑

𝑚+𝑑−1) 

Moreover, the interpolant 𝑆𝑢 and additional conditions must be determined to satisfy the system:  

  

(𝑆𝑢)(𝑥𝑖) = 𝑢(𝑥𝑖) ,    𝑖 = 1,2,… ,𝑀

 𝑀
𝑖=1 𝜆𝑖𝑞𝑗 (𝑥𝑖) = 0, ,    ∀𝑞𝑗 ∈ Π𝑚−1

𝑑   

 where Π𝑚−1
𝑑  denotes the space of all polynomials on 𝑅𝑑  of total degree at most 𝑚− 1. Now we have a 

unique interpolant (𝑆𝑢) of u if 𝜑(𝑟) is a conditionally positive definite radial basis function of order 

m[28]. For any partial differential operator 𝐿, 𝐿𝑢 can be represented by:  

 𝐿𝑢(𝑥) =  𝑥𝑖∈𝑋 𝜆𝑖𝐿𝜑(∥ 𝑥 − 𝑥𝑖 ∥) + 𝐿𝑝(𝑥), 

The coefficients 𝜆𝑖  will be obtained by solving the system of linear equations. 

We will use some RBFs which have the following form:  

 𝜑(∥ 𝑥 − 𝑥𝑖 ∥) = 𝜑(𝑟𝑖) 

Some types of RBFs presented in Table.1. (c is shape parameter)  

 Table 1. Some types of RBF functions  

 Name   Abbreviation   Formula  

Cubic  CU   𝜑(𝑟) = 𝑟3 

Thin plate splines  TPS   𝜑(𝑟) = 𝑟2log(𝑟)  

Generalized Thin plate splines   GTPS  𝜑(𝑟) = 𝑟2𝑚 log(𝑟),    𝑚 ∈ 𝑁  

Inverse quadrics(or Cauchy)   IQ   𝜑(𝑟) =
1

𝑐2+𝑟2
 

Multiquadrics   MQ   𝜑(𝑟) =  𝑐2 + 𝑟2   
Inverse Multiquadrics   IMQ   𝜑(𝑟) =

1

 𝑐2+𝑟2
  

Gaussian RBF   GA   𝜑(𝑟) = 𝑒−𝑟
2/𝑐2

 
 

Definition 2.2  𝜃 -method, (0 ≤ 𝜃 ≤ 1), is general finite-difference approximation to 
𝜕2𝑢(𝑥 ,𝑡)

𝜕𝑥2  

given by:  

 
∂2𝑢(𝑥 ,𝑡)

∂𝑥2 ≅ 𝜃𝛿2,𝑥𝑈𝑖,𝑗+1 + (1 − 𝜃)𝛿2,𝑥𝑈𝑖,𝑗 , (2) 

 such that we define:  
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 ∇2= 𝛿2,𝑥𝑈𝑖,𝑗 =
1

(Δ𝑥)2 (𝑈𝑖+1,𝑗 − 2𝑈𝑖 ,𝑗 + 𝑈𝑖−1,𝑗 ), 

 (where  = Δ𝑥 =
𝑥𝑅−𝑥𝐿

𝑀
 for 𝑥-axis and 𝑈𝑖 ,𝑗 = 𝑈𝑖

𝑗
= 𝑈(𝑥𝑖 , 𝑡𝑗 ) represent the numerical approximation 

solution) In other words:  

 
∂2𝑢(𝑥 ,𝑡)

∂𝑥2 ≅
1

(Δ𝑥)2  𝜃(𝑈𝑖+1,𝑗+1 − 2𝑈𝑖 ,𝑗+1 + 𝑈𝑖−1,𝑗+1) + (1 − 𝜃)(𝑈𝑖+1,𝑗 − 2𝑈𝑖 ,𝑗 + 𝑈𝑖−1,𝑗 ) , 

 Remark 2.3 Note that 𝜃 = 0 gives the explicit scheme, 𝜃 =
1

2
 the Crank-Nicolson, and 𝜃 = 1 a fully 

implicit backward time-difference method.  

Remark 2.4 The laplacian operator 𝛻2 for 𝜑 function is given by  

 ∇2(𝜑(𝑟)) =
∂𝜑

∂𝑟
(
∂2𝑟

∂𝑥2) +
∂2𝜑

∂𝑟2 (
∂𝑟

∂𝑥
)2, (3) 

3  Discretization 
 According to definitions (2.1)and (2.2), from (1) and 𝜃-method we get:  

 
∂𝑢(𝑥 ,𝑡𝑛+1)

∂𝑡
= [𝜃∇2𝑢𝑛+1 + (1 − 𝜃)∇2𝑢𝑛 ] + 𝛽𝑢𝑛+1 − 𝑎𝛽(𝑢𝑛)2 − 𝑏𝛽𝑢𝑛𝐽𝑛 + 𝑓𝑛+1 , (4) 

 By substituting finite difference for left hand into (4) we have: 

 

 
𝑢𝑛+1−𝑢𝑛

Δ𝑡
= [𝜃∇2𝑢𝑛+1 + (1 − 𝜃)∇2𝑢𝑛 ] + 𝛽𝑢𝑛+1 − 𝑎𝛽(𝑢𝑛)2 − 𝑏𝛽𝑢𝑛𝐽𝑛 + 𝑓𝑛+1 , (5) 

 and for Δ𝑡 = 𝑘:  

 𝑢𝑛+1 − 𝑘𝜃∇2𝑢𝑛+1 − 𝑘𝛽𝑢𝑛+1 = 𝑢𝑛 + 𝑘(1 − 𝜃)∇2𝑢𝑛 − 𝑘𝑎𝛽(𝑢𝑛)2 − 𝑘𝑏𝛽𝑢𝑛𝐽𝑛 + 𝑘𝑓𝑛+1 , (6) 

 In other words, we get:  

 (1 − 𝑘𝜃∇2 − 𝑘𝛽)𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝑘(1 − 𝜃)∇2𝑢𝑖
𝑛 − 𝑘𝑎𝛽(𝑢𝑖

𝑛)2 − 𝑘𝑏𝛽𝑢𝑖
𝑛𝐽𝑖

𝑛 + 𝑘𝑓𝑖
𝑛+1 , (7) 

Now, according to the mentioned method in one-dimensional case, if we collocate 𝑀 different 

points 𝑥1 ,𝑥2 ,… , 𝑥𝑀 , then:  

 𝑢(𝑥𝑖 , 𝑡𝑛+1) =  𝑀
𝑗=1 𝜆𝑗

𝑛+1𝜑(∥ 𝑥𝑖 − 𝑥𝑗 ∥) + 𝜆𝑀+1
𝑛+1 𝑥𝑖 + 𝜆𝑀+2

𝑛+1 , (8) 

 Two additional conditions can be described as:  

  𝑀
𝑗=1 𝜆𝑗

𝑛+1 =  𝑀
𝑗=1 𝜆𝑗

𝑛+1𝑥𝑖 = 0, (9) 

 Finally, by combining equations (8),(9), we obtain a matrix form:  

 [𝑢]𝑛+1 = 𝐴[𝜆]𝑛+1 
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where: [𝑢]𝑛+1 = [𝑢1
𝑛+1 ,𝑢2

𝑛+1 ,… ,𝑢𝑀
𝑛+1 , 0,0]𝑇      ,     [𝜆]𝑛+1 = [𝜆1

𝑛+1 ,𝜆2
𝑛+1 ,… , 𝜆𝑀+2

𝑛+1 ]𝑇 

and the matrix 𝐴 = (𝑎𝑖𝑗 )(𝑀+2)×(𝑀+2) is given by: 

 

 𝐴 =

 
 
 
 
 
 
 
 
𝜑11 ⋯ 𝜑1𝑗 ⋯ 𝜑1𝑀 𝑥1 1

⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮
𝜑𝑖1 ⋯ 𝜑𝑖𝑗 ⋯ 𝜑𝑖𝑀 𝑥𝑖 1

⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮
𝜑𝑀1 ⋯ 𝜑𝑀𝑗 ⋯ 𝜑𝑀𝑀 𝑥𝑀 1

𝑥1 ⋯ 𝑥𝑗 ⋯ 𝑥𝑀 0 0

1 ⋯ 1 ⋯ 1 0 0
 
 
 
 
 
 
 
 

 (10) 

 By substituting (8) into (5),(6) and considering (9) and initial and boundary conditions we obtain a 

matrix form:  

 [𝑐]𝑛+1 = 𝐵[𝜆]𝑛+1 (11) 

 where:     [𝑐]𝑛+1 = [𝑐1
𝑛+1 , 𝑐2

𝑛+1 ,… , 𝑐𝑀
𝑛+1 , 0,0]𝑇      and  

 𝐵 =

 
 
 
 
 
 
 
 
 
𝐿(𝜑11) ⋯ 𝐿(𝜑1𝑗 ) ⋯ 𝐿(𝜑1𝑀) 𝐿(𝑥1) 𝐿(1)

⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮
𝐿(𝜑𝑖1) ⋯ 𝐿(𝜑𝑖𝑗 ) ⋯ 𝐿(𝜑𝑖𝑀) 𝐿(𝑥𝑖) 𝐿(1)

⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮
𝐿(𝜑𝑀1) ⋯ 𝐿(𝜑𝑀𝑗 ) ⋯ 𝐿(𝜑𝑀𝑀) 𝐿(𝑥𝑀) 𝐿(1)

𝑥1 ⋯ 𝑥𝑗 ⋯ 𝑥𝑀 0 0

1 ⋯ 1 ⋯ 1 0 0
 
 
 
 
 
 
 
 
 

 (12) 

 where L represents an operator given by  

 𝐿(∗) =  
(1 − 𝑘𝜃∇2 − 𝑘𝛽)(∗),     1 < 𝑖 < 𝑀
(∗),     𝑖 = 1    or    𝑖 = 𝑀  (13) 

 and  

 𝑐𝑖
𝑛+1 =  

𝑢𝑛 + 𝑘(1 − 𝜃)∇2𝑢𝑛 − 𝑘𝑎𝛽(𝑢𝑛)2 − 𝑘𝑏𝛽𝐽𝑖
𝑛 + 𝑘𝑓𝑛+1 ,     𝑛 ≥ 0,1 < 𝑖 < 𝑀

𝑔(𝑥𝑖 , 𝑡𝑛+1),     𝑖 = 1    or    𝑖 = 𝑀  

 We use the Simpson method for approximation of the integral term. By solving the system (11) we find 

(𝑀 + 2) unknowns 𝜆𝑗
𝑛+1 then with (8) we approximate the value of u. 

4  Numerical Examples 
 We use the generalized thin plate splines(GTPS) which have the following form:  
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 𝜑(𝑟) = 𝑟2𝑚 log(𝑟),        𝑚 ∈ 𝑁 

Example 4.1 Consider (1) in the special case for 𝑎 = 𝑏 = 0,    𝛽 = −1 (as a linear example) :  

 
∂𝑢(𝑥 ,𝑡)

∂𝑡
=

∂2𝑢(𝑥 ,𝑡)

∂𝑥2 − 𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), 

 (for    𝑡 ∈ [0,𝑇]) on a finite domain [0,2]. Initial condition 𝑢(𝑥, 0) = 𝑔(𝑥) = 0 and boundary conditions 

are:         𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0.  

with an exact analytical solution:  

 𝑢(𝑥, 𝑡) = 𝑡2𝑥(2 − 𝑥).        0 ≤ 𝑥 ≤ 2 

when:  

 𝑓(𝑥, 𝑡) = 2𝑡𝑥(2 − 𝑥) + 𝑡2𝑥(2 − 𝑥) + 2𝑡2 , 

For 𝑚 = 4 in GTPS, the approximated solution and error functions shown in Fig. 1 verify the reliability of 

presented method. The Root mean square(RMS) of error value for some different values of 𝜃 and M are 

given in Table2.  

 

 Table 2. Root mean square(RMS) of Example 4.1 at time 𝑇 = 2.  

 𝜃  M   Δ𝑡   RMS  
0.5   10   0.10  3.2745 e-3  

 20  0.05   9.3012 e-4  

  50   0.02   2.2047 e-4  

  100  0.01   9.2689 e-5  
0.75   10   0.10  2.1991 e-3  

 20  0.05   6.8368 e-4  

  50   0.02   1.9322 e-4  

  100  0.01   8.8321 e-5  
1  10   0.10  1.2820 e-3  

 20  0.05   4.9447 e-4  

  50   0.02   1.7504 e-4  

  100  0.01   8.5429 e-5  
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   Figure 1. Comparison between exact and numerical solutions for the Example 4.1 with 𝑀 = 50,𝜃 = 0.5   

Example 4.2 Consider (1) in the special case for 𝑎 = 1, 𝑏 = 0,    𝛽 = 1 (as a nonlinear example) :  

 
∂𝑢(𝑥 ,𝑡)

∂𝑡
=

∂2𝑢(𝑥 ,𝑡)

∂𝑥2 + 𝑢(1 − 𝑢) + 𝑓(𝑥, 𝑡), 

 (for    𝑡 ∈ [0,𝑇]) on a finite domain [−1,1]. Initial condition 𝑢(𝑥, 0) = 𝑔(𝑥) = (1 − 𝑥4)𝑠𝑖𝑛(𝑥) and 

boundary conditions are:         𝑢(−1, 𝑡) = 𝑢(1, 𝑡) = 0.  

with an exact analytical solution:  

 𝑢(𝑥, 𝑡) = (1 − 𝑥4)𝑠𝑖𝑛(𝑥 + 𝑡) .        − 1 ≤ 𝑥 ≤ 1 

when:  

 𝑓(𝑥, 𝑡) = (1 + 8𝑥3 − 𝑥4)𝑐𝑜𝑠(𝑥 + 𝑡) + 12𝑥2𝑠𝑖𝑛(𝑥 + 𝑡) + (1 − 𝑥4)2𝑠𝑖𝑛2(𝑥 + 𝑡), 

For 𝑚 = 4 in GTPS, the approximated solution and error functions shown in Fig. 2 verify the reliability of 

presented method. The Root mean square(RMS) of error value for some different values of 𝜃 and M are 

given in Table3.  
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 Table 3. Root mean square(RMS) of Example 4.2 at time 𝑇 = 2.  

 𝜃  M   Δ𝑡   RMS  
0.5   10   0.10  1.7312 e-3  

 20  0.05   4.7132 e-4  

  50   0.02   9.1033 e-5  

  100  0.01   3.1253 e-5  
0.75   10   0.10  9.9762 e-4  

 20  0.05   2.8700 e-4  

  50   0.02   6.5481 e-5  

  100  0.01   2.6401 e-5  
1  10   0.10  5.1844 e-4  

 20  0.05   1.6413 e-4  

  50   0.02   4.9833 e-5  

  100  0.01   2.3557 e-5  
 

  

   Figure 2. Comparison between exact and numerical solutions for the Example 4.2 with 𝑀 = 50,𝜃 = 0.5   

Example 4.3 Consider (1) for 𝑎 = 1, 𝑏 = 1,    𝛽 = 1 (as a nonlinear integro-differential example) :  

 
∂𝑢(𝑥 ,𝑡)

∂𝑡
=

∂2𝑢(𝑥 ,𝑡)

∂𝑥2 + 𝑢(1 − 𝑢 − 𝐽(𝑥, 𝑡)) + 𝑓(𝑥, 𝑡), 

 (for    𝑡 ∈ [0,𝑇]) on a finite domain [−1,1]. 

Where:  
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 𝐽(𝑥, 𝑡) =  
1

−1
𝑒𝑥−𝑦𝑢(𝑦, 𝑡)𝑑𝑦, 

Initial condition 𝑢(𝑥, 0) = 𝑔(𝑥) = 𝑠𝑖𝑛(2𝜋𝑥) and boundary conditions are:         𝑢(−1, 𝑡) = 𝑢(1, 𝑡) = 0.  

with an exact analytical solution:  

 𝑢(𝑥, 𝑡) = (1 − 𝑥4)𝑠𝑖𝑛(𝑥 + 𝑡) .        − 1 ≤ 𝑥 ≤ 1 

when:  

 𝑓(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝐽(𝑥, 𝑡) + (𝑥, 𝑡), 

and:  

 (𝑥, 𝑡) = (1 + 8𝑥3 − 𝑥4)𝑐𝑜𝑠(𝑥 + 𝑡) + 12𝑥2𝑠𝑖𝑛(𝑥 + 𝑡) + (1 − 𝑥4)2𝑠𝑖𝑛2(𝑥 + 𝑡), 

For 𝑚 = 3 in GTPS, the approximated solution and error functions shown in Fig. 3 verify the reliability of 

presented method. The Root mean square(RMS) of error value for some different values of 𝜃 and M are 

given in Table4.  

 

 Table 4. Root mean square(RMS) of Example 4.3 at time 𝑇 = 2.  

 𝜃  M   Δ𝑡   RMS  
0.5   10   0.10  1.8278 e-3  

 20  0.05   6.2988 e-4  

  50   0.02   2.0270 e-4  

  100  0.01   9.7285 e-5  
0.75   10   0.10  1.1707 e-3  

 20  0.05   5.0246 e-4  

  50   0.02   1.9135 e-4  

  100  0.01   9.5507 e-5  
1  10   0.10  8.0165 e-4  

 20  0.05   4.3730 e-4  

  50   0.02   1.8530 e-4  

  100  0.01   9.4433 e-5  
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    Figure 3. Comparison between exact and numerical solutions for the Example 4.3 with 𝑀 = 50,𝜃 = 0.5   

  

5  Conclusion 
 In this paper we have presented a numerical scheme based on combination of meshless 

collocation radial basis function (so-calledKansa’smethod) and 𝜃 −method. The 𝜃 −method has been 

applied to derivative. The method has been tested on three illustrative numerical examples. The 

computational results are found to be in good agreement with the exact solutions. 
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