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Abstract 

In this paper, the asymptotic behaviour of the vibrations of a damped linear string is studied. The 

exponential stability result of the overall system is obtain directly by means of an exponential energy 

decay estimate. A closed form approximate numerical result is constructed by fuzzy transform method 

to support and implement the stability result. 
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1. Introduction and Mathematical Formulation 

Recently, studies on vibrational stability of different mechanical system have developed significantly 

due to increase of usage of flexible structures. The stabilization of the vibrations of a flexible structure 

is a problem of dynamical system governed by partial differential equations. Damping mechanism of 

passive type is a very common treatment of vibrational stability which uses a resistive device that 

absorbs vibration energy. In mathematical literature, the stabilities most commonly studied are 

asymptotic stability and uniform stability. A system is called asymptotic stable, if the solution of the 

system converges to zero as time tends to infinity. If this convergence is uniform with respect to all 

initial data, the system is called uniformly stable. Though the vibration of flexible structure are 

nonlinear in practice, linearized model are treated just for analytical approach, simplicity and for 

concise result. The theory of stability of a second order hyperbolic equation like wave equation has 

been treated earlier by several authors (cf. Lagnese [1], Komornik 

[10], Shahruz [8], Nandi et al [13]). The most important fact for studying the stability of such system 

is to suppress the vibrations to assure a good performance of the overall system. The stability by 

means of the energy decay rate for the solution of internally damped wave equation in a bounded 
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domain has been studied by Gorain [4]. Gorain [5] and Prasanta et al [14] have treated the case of 

Kirchhof type wave equation with Kelvin-Voigt model of viscoelasticity and then Gorain [3, 6] and 

Siddartha et al [12] has extended the idea to the vibrations of inhomogeneous beams and strings. 

Recently, Rajib et al [7] have obtain the uniform stability result for the vibrations of a telegraph 

equation together with a numerical support by fuzzy transform method. 

We observe keenly that knowledge on the study of dynamical system modeled by differential 

equations is sometimes incomplete or vague. For examples, knowledges of the parameters, initial 

conditions, boundary conditions, disturbances involved in the system are indistinct, in general. In fact, 

functional relationship connecting different parameter of a system does not charterized the whole set 

of system behaviour compatible with our partial knowledge. This idea leads all systems to Fuzzy 

Input Fuzzy Output (FIFO) systems. In this paper, we like to introduce and apply the idea of 

Stepnicka [17], Perfilieva et al [15] to a specific dynamical system that can be shown uniform stable 

without going through its analytical solutions. This techniques is based on two transforms: one direct 

fuzzy transform or, F -transform and another inverse F -transform. Practically, the technique based on 

this transform has gained importance due to its wide application on differential equations especially 

on partial differential equations. 

 The physical model considered here is the vibrations of a simple linear string having length L which 

is clamped at both ends. Suppose that it is made of a viscoelastic material of Kelvin-Voigt constitutive 

relation 

(cf. Fung [2]). Consequently, the vibration of the string can be described by the following partial 

differential equation  

                                    𝑢𝑡𝑡 +  µ𝑢𝑡 = 𝑐2𝑢𝑥𝑥 ,   in   (0, L) ×  ℝ+                                                            

(1) 

Where c is the wave velocity and µ be the coefficient of damping and 𝑅+= (0, ∞). 

For a clamped string, the boundary conditions are obviously   

                                   u(0, t) = 0,   u(L,t)= 0   on      ℝ+                                                                       

(2) 

Let initially the string is set to vibrate with 

                   U(x, 0) = f(x),    𝑢𝑡(x, 0) = g(x)    in   (0, L).                                                                       

(3) 

The function f(x) and g(x) are assume to be continuous upto second order partial derivatives over [0, 

L] so that the solution u(x, t) is continuously differentiable over (0, L)  ×   ℝ+ . 

Our aim of this work is to study the uniform stability result for the solutions of the mathematical 

problem (1) subject to the initial - boundary conditions (2) - (3). The uniform exponentially stability 

result is obtained by means of an explicit form of exponential energy decay estimate. For this, we 

adopt here a direct method by constructing suitable Layapunov functional related to the energy 

functional of the system. The detailed discussion of such method can be found in Komornik [9]. In the 

next step, we present an approximate closed form numerical scheme of the above problem using fuzzy 

transform of two variables following the idea of Stepnicka [18], Perfilieva et al [15]. Under this 

scheme the above system reduces to a set of discrete recursive equations which we are able to solve. 
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The computational solutions are then plotted graphically for different values of the parameters and the 

initial conditions. Then verified the analytical result of uniform stability obtained directly is verified 

with these solutions. 

To achieve the result, we now construct the energy of the system in the following. 

2. Energy of the System 

We define the energy E(u(x, t)) of the system (1)-(3) at any instant t by  

                                 𝐸(𝑢(𝑡)) =
1

2
∫ [𝑢𝑡

2 + 𝑐2𝑢𝑥
2] 𝑑𝑥,

𝐿

0
        for all 𝑡 ≥ 0.                                                        

(4) 

Now, differentiating (4) with respect to t, we have  

                                            
𝑑𝐸

𝑑𝑡
= ∫ [𝑢𝑡𝑢𝑡𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡]  𝑑𝑥

𝐿

0
.                                                                            

(5) 

Using (1) in (5) and applying the boundary conditions in (2), we get 

                                    
𝑑𝐸

𝑑𝑡
=  −µ ∫ 𝑢𝑡

2𝐿

0
 𝑑𝑥 ≤ 0   for  all 𝑡 ≥

0.                                                                      (6) 

It follows from (6) that is the system (1)-(3) is energy dissipating and hence on integrating on it with 

respect to t over [0, t], the solution u(x, t) satisfy energy estimate 

                              𝐸(𝑢(𝑡)) − 𝐸(𝑢(0)) = ∫ ∫ 𝑢𝜏
2𝐿

0

𝐿

0
𝑑𝑥 𝑑𝜏    for all    𝑡 ≥ 0,                                                

(7) 

Where 

                                               𝐸(𝑢(0)) =  
1

2
∫ [𝑔2𝐿

0
+ 𝑐2𝑓𝑥

2] dx.                                                                       

(8) 

In view of (7) and (8), we may conclude that if 𝑓 ∈  𝐻0
𝐿(0, 𝐿)𝑎𝑛𝑑 𝑔 ∈  𝐿2(0, L), where  

                                      𝐻0
1 = { 𝜑 ∶  𝜑 ∈  𝐻1(0, 𝐿), 𝜑(0) = 𝜑𝑥(0) = 0 } 

is the subspace of classical Sobolev space  𝐻1(0, 𝐿) = { 𝜑 ∶  𝜑 ∈  𝐿2(0, 𝐿), 𝜑𝑥 ∈  𝐿2(0, 𝐿)}  of real 

valued function of order one, then 

                                   𝐸(𝑢(𝑡)) ≤ 𝐸(𝑢(0))  <  ∞   for 𝑡 ≥ 0.                                                                     

(9) 

3. Uniform Stability Result by Direct Method 

Since the energy of the system (1)-(3) given by (4) is a dissipative function of time, so, naturally a 

question arises as to whether the energy decays with time exponentially or not and the affirmative 

answer is found in the following theorem. 
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Theorem:  If u(x, t) be the solution of the system (1)-(3) with (𝑓, 𝑔) ∈  𝐻0
1(0, 𝐿)  × 𝐿2(0, 𝐿) then the 

solution u(x, t) → 0 exponentially as 𝑡 →  ∞, in other words, the energy functional given by (4) 

satisfies 

                                        𝐸(𝑢(𝑡)) ≤ 𝐴𝑒−𝛾𝑡𝐸(𝑢(0)),    𝑡 ≥ 0                                                                        

(10)     

For some reals 𝛾 > 0 𝑎𝑛𝑑 𝐴 > 1. 

First, we need the following two inequalities. 

For any real number 𝛼, we have Young’s inequality (cf. Mitrinovic et al [11]) 

                                    ∫| 𝑓. 𝑔|𝑑𝑥 ≤  
1

2
∫[𝛼 |𝑓|2 +   

|𝑔|2

𝛼
] 𝑑𝑥.                                 

(11) 

Poincare type Scheeffer’s inequality (cf. Mitrinovic et al [11]) 

                                    ∫ 𝑢2 𝑑𝑥 ≤  
𝐿2

𝜋2  ∫ 𝑢𝑥
2 𝑑𝑥

𝐿

0

𝐿

0
                                                                                        

(12) 

As u(x, t) satisfy the boundary conditions in (2). 

To prove the above theorem, we proceed like Komornik [9], Gorain [3, 4]. Let us introduce an energy 

like Layapunov functional denoted by V (u (t)) and is defined by 

                                                𝑉(𝑢(𝑡)) = 𝐸(𝑢(𝑡)) +  𝜖 𝐺(𝑢(𝑡))       for      𝑡 ≥ 0,                                     

(13)    

where 𝜀 > 0 is a small real number and  

                                               𝐺(𝑢(𝑡)) =  ∫ [𝑢 𝑢𝑡 +  
𝜇

2

𝐿

0
𝑢2] 𝑑𝑥.                   

(14) 

Differentiating (14) with respect to t, we have  

                                
𝑑𝐺

𝑑𝑡
= ∫ 𝑢𝑡

2𝐿

0
𝑑𝑥 + ∫ 𝑢 𝑢𝑡𝑡 𝑑𝑥 +  ∫ 𝜇 𝑢 𝑢𝑡

𝐿

0
𝑑𝑥 

𝐿

0
                                                               

(15)          

Using (1) and (2), we get  

                                                
𝑑𝐺

𝑑𝑡
=  ∫ 𝑢𝑡

2𝐿

0
𝑑𝑥 + 𝑐2  ∫ 𝑢

𝐿

0
 𝑢𝑥𝑥 𝑑𝑥.                                                                

(16) 

Hence 

                                     
𝑑𝐺

𝑑𝑡
= ∫ 𝑢𝑡

2 𝑑𝑥
𝐿

0
−  𝑐2 ∫ 𝑢𝑥

2𝐿

0
 𝑑𝑥.                                                                          

    (17) 

Using energy equation (4) in (17), we get  
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𝑑𝐺

𝑑𝑡
=  −2 𝐸(𝑢(𝑡)) + 2 ∫ 𝑢𝑡

2𝐿

0
 𝑑𝑥  .                                                                   

(18) 

Again by using the inequalities (11) and (12), we get  

                                             |∫ 𝑢
𝐿

0
𝑢𝑡  𝑑𝑥 | = 

1

𝑐
| ∫ (𝑐 𝑢) 𝑢𝑡  𝑑𝑥 | 

𝐿

0
 

                                                                    ≤  
1

2𝑐
 [ 

𝜋

𝐿
∫ 𝑐2𝑢2 𝑑𝑥 +  

𝐿

𝜋
 ∫ 𝑢𝑡

2 𝑑𝑥 ]
𝐿

0
𝐿

0
  

                                                                    ≤  
1

2𝑐
 [ 

𝜋

𝐿

𝐿2

𝜋2  ∫ 𝑐2𝐿

0
𝑢𝑥

2 𝑑𝑥 + 
𝐿

𝜋
 ∫ 𝑢𝑡

2 𝑑𝑥 ]
𝐿

0
  

                                                                    =  
1

2𝑐
 [ 

𝐿

𝜋
 ∫ 𝑐2𝐿

0
𝑢𝑥

2  dx + 
𝐿

𝜋
 ∫ 𝑢𝑡

2 𝑑𝑥 ]
𝐿

0
   

                                                                    =  
1

2𝑐

𝐿

𝜋
 ∫  [𝑐2𝐿

0
𝑢𝑥

2  +  𝑢𝑡
2] 𝑑𝑥 

                                                                    =
𝐿

𝜋𝑐
 𝐸(𝑢(𝑡))  

                                                                     = 𝜆0 𝐸(𝑢(𝑡))            for 𝑡 ≥ 0,                                                   

(19)                                                             where 

                                                                  𝜆0 =   
𝐿

𝜋𝑐
  .                                                                                         

(20) 

Also by using (12), we get  

                                                                 ∫
𝜇

2

𝐿

0
 𝑢2 𝑑𝑥 =  

𝜇

2
 ∫ 𝑢2𝐿

0
𝑑𝑥 

                                                                                       ≤
𝜇

2
 

𝐿2

𝜋2  ∫ 𝑢𝑥
2 𝑑𝑥

𝐿

0
  

                                                                                      = 𝜆1 𝐸(𝑢(𝑡))      for   𝑡 ≥ 0,                                      

(21) 

Where 

                                                                   𝜆1 =  
𝜇

𝑐2

𝐿2

𝜋2  .                                                                                     

(22)     

Now, by (19) and (21), we estimate (14) as  

𝜌0𝐸(𝑢(𝑡)) ≤ 𝐺(𝑢(𝑡)) ≤ (𝜆0 + 𝜆1) 𝐸(𝑢(𝑡))        for   𝑡 ≥ 0. 

Hence V(u(t)) as defined in (13) can be estimated as  

          (1 −  𝜆0𝜖 ) 𝐸(𝑢(𝑡))  ≤ 𝐺(𝑢(𝑡))  ≤   [1 + (𝜆0 + 𝜆1 )𝜖 ]𝐸(𝑢(𝑡))         for      𝑡 ≥ 0.                  

(23) 

We choose (1 − 𝜆0𝜖) > 0  that is 𝜖 <  
1

𝜆0
   so that  𝑉(𝑢(𝑡)) ≥ 0   for   𝑡 ≥ 0. 
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Now, taking the time derivative of (13) and applying the results (6) and (18), we get 

𝑑𝑉

𝑑𝑡
=  

𝑑𝐸

𝑑𝑡
+  𝜖

𝑑𝐺

𝑑𝑡
 

                                                                                  =  −𝜇 ∫ 𝑢𝑡
2 𝑑𝑥

𝐿

0
− 2 𝜖 𝐸(𝑢(𝑡)) + 2𝜖 ∫ 𝑢𝑡

2 𝑑𝑥
𝐿

0
  

                                                                                   =  −2𝜖 𝐸(𝑢(𝑡)) − (𝜇 − 2𝜖) ∫ 𝑢𝑡
2𝐿

0
𝑑𝑥 

                                                                                    = −
2𝜖

1+(𝜆0+𝜆1)𝜖
 𝑉(𝑢(𝑡)) − (𝜇 − 2𝜖) ∫ 𝑢𝑡

2 𝑑𝑥
𝐿

0
        

(24) 

Since 𝜖 is small, we assume that  

                                             𝜖 <  𝜖0 =min [
1

𝜆0
,

𝜇

2
]                                                                                           

(25) 

Hence from (24), we get the differential inequality 

                                                 
𝑑𝑉

𝑑𝑡
+ 𝛾 𝑉(𝑢(𝑡)) ≤ 0 for  𝑡 ≥ 0,                                                                    

(26) 

 Where                                                  𝛾 =
2𝜖

1+(𝜆0+𝜆1)𝜖
 .                                                                                  

(27) 

Multiplying (26) by 𝑒𝛾𝑡 and integrating over [0, t] for any  𝑡 ∈  ℝ+, we get  

                                                𝑉(𝑢(𝑡)) ≤  𝑒−𝛾𝑡 𝑉(𝑢(0)) .                                                                             

(28) 

Applying the inequality (23) in (28), we get 

                                                     𝐸(𝑢(𝑡)) ≤  
1+(𝜆0+𝜆1)𝜖

1−𝜆0𝜖
 𝑒−𝛾𝑡  𝐸(𝑢(0)). 

Thus                                                    𝐸(𝑢(𝑡)) ≤ 𝐴 𝑒−𝛾𝑡 𝐸(𝑢(0)),    𝑡 > 0,    

Where   

                                  𝐴 =  
1+(𝜆0+𝜆1)𝜖

1−𝜆0𝜖
 > 1.                                                                                                      

(29) 

Thus the result is obtained directly and the theorem is proved. The above result shows the uniform 

exponential stability of the system (1)-(3) by means of an exponential energy decay estimate. Hence 

the solution of the system (1)-(3) decays exponentially with time, that means, 𝑢(𝑥, 𝑡) → 0  as 𝑡 → +∞  

for every     (𝑢0, 𝑢1) ∈  𝐻0
1(0, 𝐿) ×  𝐿2(0, 𝐿) 

We shall now verify the above result by a closed form numerical scheme using fuzzy transform 

technique. To study the scheme, we first introduce basic ideas of fuzzy transform or, F-transform. 
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4. F-Transforms for Functions 

In this section we proceed like Perfilieva [15] and Stepnicka [18]. This technique is rather numerical 

than linguistic for computing solutions on the basis of fuzzy approximation. An interval [a, b] of real 

numbers has been used as common domain of all functions. 

Let 𝑥𝑖 = 𝑎 + 𝑏(𝑖 − 1), 𝑖 = 1, 2, … , 𝑛 be nodes on [a, b], where ℎ =  
𝑏−𝑎

𝑛−1
, 𝑛 > 2. We say that functions 

𝐴1(𝑥), 𝐴2(𝑥), … , 𝐴𝑛(𝑥) defined on [a, b] are basis functions, if each of them fulfils the following 

conditions: 

i) 𝐴𝑖: [𝑎, 𝑏] → [0, 1], 𝐴𝑖(𝑥𝑖) = 1, 

ii) 𝐴𝑖(𝑥) = 0   𝑖𝑓  𝑥 ∉ (𝑥𝑖−1,  𝑥𝑖),   when   𝑥0 = 𝑎,   𝑥𝑛+1 = 𝑏, 

iii) 𝐴𝑖(𝑥) is continuous, 

iv) 𝐴𝑖(𝑥) strictly increases on [𝑥𝑖−1, 𝑥𝑖] and  strictly decreases on [𝑥𝑖 , 𝑥𝑖+1] 

v) ∑ 𝐴𝑖(𝑥) = 1𝑛
𝑖=1   for all  𝑥 ∈ [𝑎, 𝑏],  

vi) 𝐴𝑖(𝑥𝑖 − 𝑥) = 𝐴𝑖(𝑥𝑖 + 𝑥), for all 𝑥 ∈ [0, ℎ], 𝑖 = 1, 2, … , 𝑛 − 1, 𝑛 > 2, 

vii) 𝐴𝑖+1(𝑥) = 𝐴𝑖(𝑥 − ℎ), for all 𝑥 ∈ [𝑎 + ℎ, 𝑏], 𝑖 = 2, … … . , 𝑛 − 2, 𝑛 > 2, 

 

Zadeh [19] introduce the concept of fuzzy sets via membership function as mathematical means of 

describing vagueness in linguistic. In last two decay many theoretical as well as numerical 

developments in fuzzy logic took place among the researchers of mathematical communities. In this 

case, we say that basic functions 𝐴1(𝑥), … , 𝐴𝑛(𝑥) determine a uniform fuzzy partition of interval [a, 

b]. In other words, basic functions are the fuzzy sets determining a uniform fuzzy partition of real 

interval [a, b]. Moreover, each basic function 𝐴𝑖(𝑥) can be viewed as a fuzzy set "approximately 𝑥𝑖". 

The technique of fuzzy transforms is based on two transforms: the direct one and the inverse one. At 

first, we transform an element of space of continuous functions 𝐶[𝑎, 𝑏] to a vector which serves us as 

its discrete representation. 

Let 𝑓(𝑥) be a continuous function on [a, b] determining a uniform fuzzy partition of [a, b]. If we set  

                                 𝐹𝑖 =
∫ 𝑓(𝑥)𝐴𝑖(𝑥)

𝑏

𝑎
𝑑𝑥

∫ 𝐴𝑖(𝑥)𝑑𝑥
𝑏

𝑎

,   𝑖 = 1, 2, … , 𝑛.                                                                                

(30) 

Then the n-tuple of real number [𝐹1, 𝐹2, … , 𝐹𝑛] called the direct F-transform of ‘f’ with respect to the 

basic functions 𝐴1(𝑥), … , 𝐴𝑛(𝑥). Each 𝐹𝑖  is called component of f-transform and the totality can be 

viewed as an aggregate representation of the function f. Moreover, they will be used in a construction 

of a simplified continuous approximate representation of f. On the other hand, if 𝐹𝑛[𝑓] =

[𝐹1, 𝐹2, … 𝐹𝑛] be the F-transform of f with respect to the basic function 𝐴1, 𝐴2, … , 𝐴𝑛. Then the 

function   

                                                           𝑓𝑛
𝐹(𝑥) = ∑ 𝐴𝑖(𝑥)𝐹𝑖

𝑛
𝑖=1                                                                            

(31) 

is called  the  inverse  F-transform. 

 



Rajib Ghosh, Ganesh .C. Gorain, Samarjit Kar / J. Math. Computer Sci.    15 (2015) 216 - 227 
 

223 
 

5. Closed Form Numerical Scheme 

In this section, our purpose is to solve system of equation (1)-(3) that means, the following Initial 

Boundary value problem:  

𝑢𝑡𝑡 +  µ𝑢𝑡 = 𝑐2𝑢𝑥𝑥,                   (0, 𝐿) × (0, ∞) 

                                           𝑢(𝑥, 0) = 𝑓(𝑥), 𝑢𝑡(𝑥, 0) = 𝑔(𝑥),          𝑥 ∈ (0, 𝐿) 

                                       𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 𝑜,      𝑡 ∈ (0, ∞).                                                                

(32) 

Using F-transform method. 

By applying F-transform in equation (32) is transformed into the following algebraic equation          

                                                    𝐹2[𝑢𝑡𝑡] = 𝑐2𝐹2[𝑢𝑥𝑥] −  𝜇𝐹2[𝑢𝑡],                                                              

(33) 

Where 𝐹2[𝑢𝑡𝑡],  𝐹2[𝑢𝑥𝑥],  𝐹2[𝑢𝑡]  are the matrices of the F-transform components of  𝑢𝑡𝑡, 𝑢𝑥𝑥, 𝑢𝑡 

given by 

𝐹2[𝑢𝑡𝑡] = [
𝑢𝑡𝑡

11  𝑢𝑡𝑡
12 ⋯ 𝑢𝑡𝑡

1𝑚

⋮ ⋮
 𝑢𝑡𝑡

𝑛1  𝑢𝑡𝑡
𝑛2 ⋯ 𝑢𝑡𝑡

𝑛𝑚
], 

𝐹2[𝑢𝑥𝑥] = [
𝑢𝑥𝑥

11   𝑢𝑥𝑥
12 ⋯ 𝑢𝑥𝑥

1𝑚

⋮ ⋮
𝑢𝑥𝑥

𝑛1   𝑢𝑥𝑥
𝑛2 ⋯ 𝑢𝑥𝑥

𝑛𝑚
] 

                      and                          𝐹2[𝑢𝑡] = [
𝑢𝑡

11  𝑢𝑡
12 ⋯ 𝑢𝑡

1𝑚

⋮ ⋮
𝑢𝑡

𝑛1  𝑢𝑡
𝑛2 ⋯ 𝑢𝑡

𝑛𝑚
] 

To determine the matrices 𝐹2[𝑢𝑡𝑡],   𝐹2[𝑢𝑥𝑥]  𝑎𝑛𝑑  𝐹2[𝑢𝑡], we replace the partial derivatives in (32) 

by approximation as   

𝑢𝑡𝑡 ≈  
𝑢(𝑥, 𝑡 + 𝑘) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − 𝑘)

𝑘2
, 

𝑢𝑥𝑥 ≈
𝑢(𝑥 + ℎ, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ℎ, 𝑡)

ℎ2
, 

𝑢𝑡 ≈
𝑢(𝑥, 𝑡 + 𝑘) − 𝑢(𝑥, 𝑡)

𝑘
. 

Next, we can approximate 𝑢𝑡𝑡
𝑖𝑗

 as follows: 

𝑢𝑡𝑡
𝑖𝑗

=  
∬

𝜕2𝑢
𝜕𝑡2 (𝑥, 𝑡)𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥 𝑑𝑡

∬ 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥 𝑑𝑡
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                                                         ≈
∬[

𝑢(𝑥, 𝑡 + 𝑘) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − 𝑘)
𝑘2 ]𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥 𝑑𝑡

∬ 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥 𝑑𝑡
 

                                                                   =
1

𝑘2 [𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1].                                                       

(34) 

Similarly,                                         𝑢𝑥𝑥
𝑖𝑗

=
1

ℎ2 [𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗]                                                          

(35) 

                                                              𝑢𝑡
𝑖𝑗

=
1

𝑘
[𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗].                                                                         

(36) 

By the use of (34), (35) and (36), we come to the following recursive equation 

1

𝑘2 [𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1] =
𝑐2

ℎ2 [𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗] −
µ

𝑘
[𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗] 

Or, (1+𝑟2)𝑢𝑖,𝑗+1 = 𝑟1
2𝑢𝑖+1,𝑗 + (2 − 2𝑟1

2 + 𝑟2)𝑢𝑖,𝑗 + 𝑟1
2𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1, 

where 𝑟1 =
𝑐𝑘

ℎ
     and 𝑟2 =  𝜇𝑘. 

Now the above can be written as 

                                              𝑢𝑖,𝑗+1 = 𝐴[𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗] + 𝐵𝑢𝑖,𝑗 − 𝐶𝑢𝑖,𝑗−1],                                            

(37) 

𝑖 = 1, 2, … … … … . . , 𝑚 − 1,     𝑗 = 0, 1, 2, … … … … , 𝑛 − 1,  

where             𝐴 =
𝑟1

2

1+𝑟2
,     𝐵 =

2−2𝑟1
2+𝑟2

1+𝑟2
,    𝐶 =

1

1+𝑟2
. 

In particular 𝑗 = 0, then the above equation becomes 

                                                 𝑢𝑖,1 = 𝐴[𝑢𝑖+1,0 + 𝑢𝑖−1,0] + 𝐵𝑢𝑖,0 − 𝐶𝑢𝑖,−1.                                              

(38) 

The unknown 𝑢𝑖,−1 for  𝑖 = 0, 1, 2, … , 𝑚  occurring in recursive equation (38) can be obtained from 

the second initial condition 𝑢𝑡(𝑥, 0) = 𝑔(𝑥)  in (32) by the following difference scheme. 

                                                             
𝜕𝑢

𝜕𝑡
≈

𝑢(𝑥, 𝑡 + 𝑘) − 𝑢(𝑥, 𝑡)

𝑘
.                                                            (39) 

The above scheme for k=1, leads to 

𝑢𝑖,1 − 𝑢𝑖,−1

2𝑘
= 𝑔(𝑖ℎ) 

𝑜𝑟,   𝑢𝑖,−1 = 𝑢𝑖,1 − 2𝑘𝑔(𝑖ℎ). 

Putting the values of  𝑢𝑖,−1    in equation (38), we have for 𝑖 = 1, 2, … , 𝑚 − 1,  
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𝑢𝑖,1 =
𝐴

1 + 𝐶
[𝑢𝑖+1,0 + 𝑢𝑖−1,0] +

𝐵

1 + 𝐶 
𝑢𝑖,0 + 2

𝐶

1 + 𝐶
𝑘𝑔(𝑖ℎ).                                               (40) 

Thus, we can obtain all the values of   𝑢𝑖𝑗 for j=1 level, since 𝑢𝑖,0 = 𝑓(𝑖ℎ) are known for 𝑖 =

0, 1, … … … . , 𝑚, from the given function𝑓(𝑥). 

For second and higher order levels, we put 𝑗 = 1, 2, … , 𝑛 − 1   in the recursive relation (37), where  

                                  𝑢(0, 𝑗) = 0,             𝑢(𝑚, 𝑗) = 0,       𝑗 = 0, 1, … , 𝑛 − 1  

Followed from the boundary conditions in (32). 

Applying the above computational scheme with different values of the parameters, the dynamical 

responses of the solution are shown in the following figures. 

The figure 5.1 is obtained with parameters 𝑐 = 1, 𝜇 = 0.2, 𝑘 = 0.05, ℎ = 0.1, 𝑓(𝑥) = 𝑆𝑖𝑛(𝜋𝑥), 

𝑔(𝑥) = 0.015𝑥  over the interval [0, 4]. 

 
Fig 5.1:  Approximate deflections u(x, t) of the string for different values of time. 𝑢0, 𝑢1, 𝑢2, 𝑢3 are 

the deflections of the string for the numerical value of t=0,  t=0.20,  t=0.30,  t=0.5 respectively. 

The figure 5.2 is obtained with parameters 𝑐 = 1.2, 𝜇 = 0.15, 𝑘 = 0.04, ℎ = 0.1, 𝑓(𝑥) =
𝑥𝐶𝑜𝑛𝑠(𝜋𝑥)

5
, 

𝑔(𝑥) = 0.01𝑥  over the interval [0, 4.5]. 
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Fig 5.2:  Approximate deflections u(x, t) of the string for different values of time. 𝑢0, 𝑢1, 𝑢2, 𝑢3 are 

the deflections of the string for the numerical value of t=0,  t=0.16,  t=0.28,  t=0.4 respectively. 

The figure 5.3 is obtained with parameters 𝑐 = 2, 𝜇 = 0.25, 𝑘 = 0.02, ℎ = 0.15, 𝑓(𝑥) =

0.5𝑒0.1𝑥sin (𝜋𝑥), 𝑔(𝑥) = 0.001𝑥  over the interval [0, 4]. 

 

 
Fig 5.3   :  Approximate deflections u(x, t) of the string for different values of time.  𝑢0, 𝑢1, 𝑢2, 𝑢3 are 

the deflections of the string for the numerical value of t=0,  t=0.08,  t=0.14,  t=0.20 respectively. 

We observe that the above numerical results through different graphs, the computational results 

obtained by F-transform method satisfy the analytical result of uniform exponential decay of solution 

that was obtained directly. Thus, the computational result corresponds almost exactly to the 

theoretical stability result so obtained. 

6. Conclusion 

This study deals a comparison between the mathematical stability result obtained directly by means of 

an uniform exponential decay estimate and the numerical stability result obtained by F-transform 

method for the vibration of a string modelled by the partial differential equation (1). The numerical 

u0

u1

u2

u3

0 1 2 3 4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

x

D
e
fl

e
c
ti
o
n

u

u0

u1

u2

u3

0 1 2 3 4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x

D
e
fl

e
c
ti
o
n

u



Rajib Ghosh, Ganesh .C. Gorain, Samarjit Kar / J. Math. Computer Sci.    15 (2015) 216 - 227 
 

227 
 

solutions of the system shown in the figures exhibits a coincidence to the decay of solution of the 

system (1)-(3) with time. This highly signifies our study in this work. 
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