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Abstract
This paper deals with the existence of reversible geodesics on a Finsler space with some (α,β)-metrics. The conditions for

a Finsler space (M, F) to be with reversible geodesics are obtained. We study some geometrical properties of F with reversible
geodesics and prove that the Finsler metric F induces a weighted quasi-metric dF on M.
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1. 1. Introduction

The study of Finsler metrics with reversible geodesics is an interesting topic in Finsler geometry. We
study the problem with Finsler spaces with (α,β)-metrics. A Finsler space is said to have reversible
geodesics if for every one of its oriented geodesic paths, the same path traversed in the opposite direction
is also a geodesic. Some progress has been done in last few years on the study of Finsler spaces with
reversible geodesics. In [1], Crampin discusses Randers space with reversible geodesics. In [4, 5], Masca
et. al discuss reversible geodesics with (α,β)-metrics and two dimensional (α,β)-metrics with reversible
geodesic respectively. In [6], Sabau and Shimada discuss Finsler manifolds with reversible geodesics.
Motivated by these works, we extend the idea of reversible geodesics to a Finsler space with a special
(α,β)-metric. The paper is organized as follows: In Sect. 2 we discuss some preliminary concepts of
Finsler geometry and reversible geodesics. In Sect. 3 we discuss reversible geodesics of a Finsler space
with a special (α,β)-metric. In Sect. 4 we study the relation between Finsler metric and weighted quasi-
metric.

2. Preliminaries

Let Fn = (M, F) be an n-dimensional connected, Finsler manifold equipped with a Finsler metric F.
F : TM→ [0,∞) is a Finsler norm, i.e., smooth function on T̃M = TM\{0}, with the homogeneous property
F(x, λy) = λF(x,y) for all λ > 0 and all (x,y) ∈ T̃M and whose Hessian matrix

(
gij
)
=
(

1
2
∂2F2

∂yi∂yj

)
is positive
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definite at each point u = (x,y) ∈ T̃M. If γ : [0, 1]→M is a piecewise C∞ curve on M, then its Finslerian
length of γ is defined as [7],

ŁF(γ) =
∫ 1

0
F(γ(t), γ̇(t))dt. (2.1)

In order for this expression to be invariant under reparameterizations of curve γ, a requirement on F is
imposed, that is, F(x, λy) = λF(x,y) for all λ > 0, in the definition of Finsler metric. Length structures
obtained from this type of constructions are called Finslerian length structure. Now, since we have a
length structure therefore we can measure any distance on the manifold M. Consequently, this length
structure induces a distance function dF : M×M → [0,∞), known as Finslerian distance function, that
is defined by dF(p,q) = infγL, where infimum is taken over all piecewise C∞-curves joining the points
p = γ(0) to q = γ(1). In general, Finslerian distance function dF is irreversible, i.e., dF(p,q) 6= dF(q,p).

If (M,g) is a Riemannian manifold, where g is Riemannian metric, then it is easy to check that its
geodesics are reversible, i.e., if γ : [0, 1] →M is a geodesic of g, then γ̄ : [0, 1] →M, γ̄ = γ(1 − t) is also a
geodesic of g. In case of an arbitrary Finsler manifold (M, F), this property is not always true. However,
there are some special Finsler structures on smooth manifold whose geodesics are reversible. Our main
aim is to characterize such Finsler metrics which play a role in order to have a reversible geodesics.

A curve γ : [0, 1] → M is called geodesic of Finsler manifold (M, F) if it minimizes the Finslerian
length defined by Equation (2.1) for all piecewise C∞-curves that keep their endpoints fixed. Denote the
reversible Finsler metric of F as a smooth function F̄ : TM→ [0,∞), given by F̄(x,y) = F(x,−y). It is easy
to see that F̄ is also a Finsler metric. Recall the following definition and lemmas ([1, 4, 6]) for later use.

Lemma 2.1. If γ(t) is a geodesic of the Finsler space (M, F), then γ̄(t) = γ(1 − t) is a geodesic of F̄, but not
necessarily a geodesic of F in general.

Definition 2.2. The Finsler metric F is called with reversible geodesics if and only if for any geodesic γ(t)
of F, the reverse curve γ̄(t) = γ(1 − t) is also a geodesic of F.

Lemma 2.3. Let (M, F) be a connected, complete Finsler manifold with associated distance function dF : M×
M → [0,∞). Then dF is symmetric distance function on M×M if and only if F is absolute homogeneous, i.e.,
F(x,y) = F̄(x,y) = F(x,−y).

Definition 2.4. A special vector field Γ , on the slit tangent bundle T̃M = TM\{0} is said to be spray on
smooth manifold M if Γ satisfies following properties:

(a) In standard coordinate system (x,y) on TM, Γ can be expressed as Γ = yi ∂
∂xi

− 2Gi(x,y) ∂
∂yi

, where
Gi(x, λy) = λ2Gi(x,y), ∀ > 0. Gi are called spray coefficients;

(b) Gi are smooth at (x,y 6= 0) ∈ T̃M.

Spray is sometimes also denoted by G instead of Γ .
Locally, a smooth curve γ : [0, 1]→M is a constant Finslerian speed geodesic of (M, F) if and only if it

satisfies the system of differential equations γ̈i(t) + 2Gi(γ(t), γ̇(t)) = 0, i = 1, 2, · · · ,n, where γ̇ = γ̇i ∂
∂xi

.
Here the functions Gi : T̃M→ R are given by

Gi(x,y) = Γ ijky
jyk, (2.2)

where Γ ijk(x,y) := 1
2g
is
(
∂gsj
∂xk

+ ∂gsk
∂xi

− ∂gik
∂xs

)
. The spray Γ := yi ∂

∂xi
− 2Gi ∂

∂yi
is a well defined vector field

on the slit tangent bundle T̃M = TM\{0}, whose integral lines are canonical lift γ̄(t) = (γ(t), γ̇(t)) of the
geodesics of γ. Due to this reason, the vector field Γ is called the canonical geodesic spray of the Finsler
space (M, F) and Gi are called the coefficient of the geodesic spray Γ .

Recall ([1, 4]) for the later use, that the Euler-Lagrange equation of (M, F), in terms of geodesic spray
Γ , is given by Γ

(
∂F
∂yi

)
− ∂F
∂xi

= 0.
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Definition 2.5 ([6]). If F and F̄ are two different Finsler functions on same differentiable manifold M. Then
F and F̄ are called projectively equivalent, or projectively related, if their geodesics coincide as a set of
points.

Using geodesics sprays, the above definitions is equivalent to Γ̄
(
∂F
∂yi

)
− ∂F
∂xi

= 0, where Γ̄ is geodesic

spray of (M, F̄).

Lemma 2.6 ([6]). A Finsler structure (M, F) is with reversible geodesics if and only if F and its reversible function
F̄ are projectively equivalent, i.e., the geodesics of F and F̄ coincides as a set of points.

If we denote the reverse geodesic spray by Γ̄ , then F is with reversible geodesics if and only if Γ̄
(
∂F
∂yi

)
−

∂F
∂xi

= 0.

3. Reversible geodesics of a Finsler space with a special (α,β)-metric

Consider a Finsler space (M, F) with a special (α,β)-metric F = α+β+ β2

α , known as first approximate
Matsumoto metric. F can be treated as the Randers change of a special (α,β)-metric F̄ = α+ β2

α . One can
easily see that F̄ is absolute homogeneous as F̄(x,−y) = F̄(x,y).

It is a well known fact [6] that if (M, F) is a non-Riemannian n(n > 2)-dimensional Finsler structure
with (α,β)-metric, which is not absolute homogeneous, then F is with reversible geodesics if and only if
F(α,β) = F0(α,β) + εβ, where F0 is absolute homogeneous (α,β)-metric, ε is a non-zero constant and β
is a closed 1-form on the manifold M.

In our case, F0 = F̄ is absolute homogeneous. If β is a closed 1-form, then F is with reversible geodesics.
A necessary and sufficient condition for F to have reversible geodesics is that [6]

Γ̄

(
∂F

∂yi

)
−
∂F

∂xi
= 0, (3.1)

where Γ̄ is the reverse of Γ , the geodesic spray of F; moreover Γ̄ is geodesic spray of F̄. We have

F = α+β+
β2

α
, F̄ = α+

β2

α
.

Therefore F = F̄+β. We have

Γ̄

(
∂F

∂yi

)
−
∂F

∂xi
= Γ̄

(
Fα
∂α

∂yi
+ Fβ

∂β

∂yi

)
− Fα

∂α

∂xi
− Fβ

∂β

∂xi

= Γ̄(Fα)
∂α

∂yi
+ FαΓ̄

(
∂α

∂yi

)
+ Γ̄(Fβ)

(
∂β

∂yi

)
+ FβΓ̄

(
∂β

∂yi

)
− Fα

∂α

∂xi
− Fβ

∂β

∂xi
(3.2)

= Γ̄(Fα)
∂α

∂yi
+ Fα

[
Γ̄

(
∂α

∂yi

)
−
∂α

∂xi

]
+ Γ̄(Fβ)

∂β

∂yi
+ Fβ

[
Γ̄

(
∂β

∂yi

)
−
∂β

∂xi

]
.

For the Riemannian metric α, the Euler-Lagrange equation gives Γ̄
(
∂α
∂yi

)
− ∂α
∂xi

= 0. Also, one knows (see

lemma 2.7 of [6]) that if (M, F(α,β)) be a Finsler space with (α,β)-metric, then f(x,y) ∂α
∂yi

+ g(x,y)bi = 0,
∀=1,2,...,n., implies that f = g = 0, for any smooth functions f and g on TM. If β is closed and F is
projectively equivalent to the Riemannian metric α, then Γ̄(Fα) ∂α∂yi + Γ̄(Fβ)bi = 0 and by the lemma 2.7

of [6], we find that Γ̄(Fα) = 0, Γ̄(Fβ) = 0. Again, since F = α+β+ β2

α , therefore Fβ = 1 + 2β
α .

Now, using above results , the Equation (3.2) reduces to the form

Γ̄

(
∂F

∂yi

)
−
∂F

∂xi
= Fβ

[
Γ̄

(
∂β

∂yi

)
−
∂β

∂xi

]
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=

(
1 +

2β
α

)[
Γ̄

(
∂β

∂yi

)
−
∂β

∂xi

]
=

(
1 +

2β
α

)(
Γ̄(bi) −

∂bj

∂xi
yj
)

=

(
1 +

2β
α

)(
∂bi
∂xj

yj −
∂bj

∂xi
yj
)

=

(
1 +

2β
α

)(
∂bi
∂xj

−
∂bj

∂xi

)
yj.

Here 1 + 2β
α = 0 is not admissible, so F is with reversible geodesics if and only if Γ̄

(
∂F
∂yi

)
− ∂F
∂xi

= 0,

which implies that F is with reversible geodesics if and only if
(
∂bi
∂xj

−
∂bj
∂xi

)
yj = 0, i.e., F is with reversible

geodesics if and only if β is closed 1-form. Hence, we have the following theorem:

Theorem 3.1. A Finsler space (M, F) with first approximate Matsumoto metric F = α+β+ β2

α is with reversible
geodesics if and only if the differential 1-form β is closed on M.

Next, a Finsler space (M, F) is called (locally) projective flat if all its geodesics are straight lines. An
equivalent condition is that the spray coefficient Gi of F can be expressed as Gi = P(x,y)yi, where
P(x,y) = 1

2F
∂F
∂xk

yk.
An equivalent characterization of projective flatness is the Hamel’s relation [2]

∂2F

∂xm∂yk
ym −

∂F

∂xk
= 0.

Recall (see theorem 3.1 of [6]) that if F = F0 + εβ is a Finsler metric, where F0 is an absolute homogeneous
(α,β)-metric, then any two of the following properties imply the third one:

(1) F is projectively flat;

(2) F0 is projectively flat;

(3) β is closed.

In our case F = α+β+ β2

α = F̄+β, where F̄ = α+ β2

α which is absolute homogeneous.

Theorem 3.2. Let (M,F) be a Finsler space with first approximate Matsumoto metric. Then F is projectively flat if
and only if F̄ is projectively flat.

Proof. Now, first we suppose F is projectively flat. Since F is projectively flat, therefore F will satisfy
Hamel’s equation

∂2F

∂xm∂yk
ym −

∂F

∂xk
= 0

=⇒ ∂2(F̄+β)

∂xm∂yk
ym −

∂(F̄+β)

∂xk
= 0

=⇒ ∂2F̄

∂xm∂yk
ym −

∂F̄

∂xk
+

∂2β

∂xm∂yk
ym −

∂β

∂xk
= 0

=⇒ ∂2F̄

∂xm∂yk
ym −

∂F̄

∂xk
= 0(as β is closed)

=⇒ F̄ is projectively flat.
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Conversely, suppose that F̄ is projectively flat. Since F̄ is projectively flat, therefore F̄ will satisfy
Hamel’s equation

∂2F̄

∂xm∂yk
ym −

∂F̄

∂xk
= 0

=⇒ ∂2(F−β)

∂xm∂yk
ym −

∂(F−β)

∂xk
= 0

=⇒ ∂2F

∂xm∂yk
ym −

∂F

∂xk
−

∂2β

∂xm∂yk
ym +

∂β

∂xk
= 0

=⇒ ∂2F

∂xm∂yk
ym −

∂F

∂xk
= 0(as βis closed)

=⇒ F is projectively flat.

Theorem 3.3. Let (M,F) be a Finsler space with first approximate Matsumoto metric. If F is projectively flat, then
it is with reversible geodesics.

Proof. Applying Hammel’s equations, one can easily see that F is projectively flat if and only if F̄ is
projectively flat, which implies that both F and F̄ are projectively equivalent to the standard Euclidean
metric therefore F must be projective to F̄, hence by Lemma 2.6, F must be with reversible geodesics.

Remark 3.4. The converse of the Theorem 3.3 is not true. It can be easily verified with metrics constructed
in ([9, 10]).

4. Finsler metrics associated with weighted quasi-metrics

It is well known fact that the Riemannian space are expressible as metric spaces. If (M,α) is a Rieman-
nian space, then one can define the induced metric space (M,dα) with the metric dα :M×M→ [0,∞)

dα(x,y) = inf
γ∈Γxy

∫b
a

α(γ(t), γ̇(t))dt, (4.1)

where Γxy ={γ : [a,b] → M such that γ is a piecewise smooth with γ(a) = x, γ(b) = y} is the set of
curves joining x and y, γ̇ is the tangent vector to γ at γ(t).

One can easily verify that dα is a metric on M. One knows ([7, 10]) that Finsler structures are more
general structures than Riemannian ones. Similar to the Riemannian case, one can induce a metric dF on
a Finsler space (M, F), defined by dF :M×M→ [0,∞)

dF(x,y) = inf
γ∈Γxy

∫b
a

F(γ(t), γ̇(t))dt, (4.2)

However, in this case, unlike the Riemannian case, dF lacks the symmetry condition, i.e, dF(x,y) 6= dF(y, x)
in general. In fact, dF is a special case of quasi-metric. Recall [3] that a quasi-metric d on a set X is a
function d : X×X→ [0,∞) satisfying the following conditions:

(i) Positiveness: d(x,y) > 0 if x 6= y, d(x,x)=0;

(ii) Triangle inequality: d(x,y) 6 d(x, z) + d(z,y);

(iii) Separation axioms: d(x,y) = d(y, x) = 0 =⇒ x=y,

for any x,y, z ∈ X.
There is an special class of quasi-metric spaces, known as weighted quasi-metric spaces (M,d,ω),

where d is a quasi-metric on M for which there exist a function ω : M → [0,∞), called the weight of d,
that satisfies
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(iv) Weightability: d(x,y) +ω(x) = d(y, x) +ω(y), ∀ x,y∈M.

In the case of weighted function ω is real valued, ω is called generalized weight.
It is to be remarked that if (M,d) is a metric space, then it can be regarded as weighted metric space

with a weighted function ω=constant. Next, we have the following theorem:

Theorem 4.1. Let (M,F) be n-dimensional simply connected smooth Finsler manifold with F as first approximate
Matsumoto metric. Then, F induces generalized weighted quasi-distance dF on M.

Proof. We consider that (M, F) is the Finsler space with F = α+β+ β2

α , which can be written as F = F̄+β,
where F̄ = α+ β2

α is an absolute homogeneous Finsler metric on M and β an exact 1-form.
Let γxy ∈ Γxy be an F-geodesic, which is in the same time F̄-geodesic, then from Equation (4.2), we

get

dF(x,y) =
∫b
a

F(γ(t), γ̇(t))dt

=

∫b
a

(
α+β+

β2

α

)
dt

=

∫b
a

(
α+

β2

α

)
dt+

∫
γxy

β

=

∫
γxy

α+
β2

α
+

∫
γxy

β.

(4.3)

Consider a fixed point a ∈M and define the function ωa :M→ R by ωa(x) := dF(a, x) − dF(x,a).
From the Equation (4.3) it follows that

ωa(x) =

∫
γax

β−

∫
γxa

β = −2
∫
γxa

β, (4.4)

where we have used the Stokes theorem for the 1-form β on the closed domain D with boundary ∂D :=
γax ∪ γxa.

It can be easily seen that ωa is an anti-derivative of β. This is well defined if and only if the integral
in the R.H.S. of Equation (4.4) is path independent, i.e., β must be exact.

Then dF is a weighted quasi-metric with generalized weight ωa. Next we have

dF(x,y) +ωa(x) =
∫
γxy

α+
β2

α
+

∫
γxy

β+

∫
γax

β−

∫
γxa

β

=

∫
γxy

α+
β2

α
−

∫
γxa

β−

∫
γya

β,

where we have again used Stokes theorem for the 1-form β on the closed domain with boundary γax ∪
γxy ∪ γya. Similarly, we can find

dF(y, x) +ωa(y) =
∫
γyx

α+
β2

α
−

∫
γya

β−

∫
γxa

β,

and hence dF is a weighted quasi-metric with generalized weight ωa.

Recall [3] the following lemma for later use.
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Lemma 4.2. Let (M,d) be any quasi-metric space. Then d is weightable if and only if there exist a function
ω :M→ [0,∞) such that

d(x,y) = f(x,y) +
1
2
[ω(y) −ω(x)], ∀x,y ∈M, (4.5)

where f is the symmetrized distance of d. Moreover, we have

1
2
|ω(x) −ω(y)| 6 f(x,y),∀x,y ∈M.

At this juncture, it is to be remarked that if (M, F) is a Finsler space with F as a first approximate
Matsumoto metric, then the induced quasi-metric dF and the symmetrized metric f induce the same
topology on M (for proof see lemma 4 of [3]). Further, from the Lemma 4.2 it can be seen that the
assumption of ω to be smooth is not essential. In fact, if dF is a weighted quasi-metric, the function ω is
differentiable everywhere on M. Therefore, 1-form β-exists almost everywhere on M.

Next, we discuss an important geometric property concerning the geodesic triangles.

Theorem 4.3. If (M, F) is a Finsler space with first approximate Matsumoto metric, then the perimeter of any
geodesic triangle on M dose not depend on the orientation, i.e.,

dF(x,y) + dF(y, z) + dF(z, x) = dF(x, z) + dF(z,y) + dF(y, x) (4.6)

∀x,y, z ∈M.

Proof. Since the first approximate Matsumoto metric F = α+β+ β2

α can be treated as the Randers change
of absolute homogeneous Finsler metric F̄ = α+ β2

α , i.e., F = F̄+ β with dβ = 0, from Theorem 4.1, it
follows that the quasi-metric is weightable and therefore equation (4.5) holds good. By using the formula
(4.5), an elementary computation gives the required result (4.6).
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