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Abstract 
The purpose of this paper is the study of algebraic properties of soft sets in a BCH-algebras. In this 

regards we introduce and study soft ideals and idealistic soft BCH-algebras. 
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1. Introduction 

In order to solve complicated problems in economics, engineering, environmental science, medical 

science, and social science, methods in classical mathematics are not always successfully used because 

various uncertainties are typical for these problems. Therefore, there has been a great deal of alternative 

research and applications in the literature concerning some special tools such as probability theory, fuzzy 

set theory [18, 19, 20], rough set theory [14, 15], vague set theory [3], and interval mathematics [4]. 

Although they are all useful approaches to describe uncertainty, each of these theories has its inherent 

difficulties, as mentioned by Molodtsov [13].Consequently, Molodtsov [13] proposed a completely new 

approach, called soft set theory, for modeling vagueness and uncertainty. Soft set theory has potential 

applications in many fields, including the smoothness of functions, game theory, operations research, 

Riemann integration, Perron integration, probability theory, and measurement theory. Most of these 

applications have already been demonstrated in Molodtsovs paper [13]. Currently, work on soft set theory 

is progressing rapidly. Maji et al. [11] investigated the applications of soft set theory to a decision making 

problem. Roy and Maji [16] proposed the concept of a fuzzy soft set and provided its properties and an 

application in decision making under an imprecise environment. Chen et al. [2] presented a definition for 

soft set parameterization reduction and showed an application in another decision making problem. Kong 

et al. [9] further studied the problem of the reduction of soft sets and fuzzy soft sets by introducing a 

definition for normal parameter reduction. Maji et al. [10] defined and studied several operations on soft 

sets, and Ali et al. [1] gave some new notions such as restricted intersection, restricted union, restricted 
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difference, and extended intersection of soft sets. Jun [5] applied Molodtsovs notion of soft sets to the 

theory of BCK/BCI-algebras and introduced the notion of soft BCK/BCI-algebras and soft subalgebras 

and then investigated their basic properties. Jun and Park [6] dealt with the algebraic structure of 

BCK/BCI-algebras by applying soft set theory. They introduced the notion of soft ideals and idealistic 

soft BCK/BCI-algebras and gave several examples. Jun et al. [7] introduced the notion of soft p-ideals 

and p-idealistic soft BCI-algebras and investigated their basic properties. Using soft sets, they gave 

characterization of (fuzzy) p-ideals in BCI-algebras. Moreover, Jun et al. [8] applied a fuzzy soft set 

introduced by Maji et al. [12] as a generalization of the standard soft sets for dealing with several kinds of 

theories in BCK/BCI-algebras. They defined the notions of fuzzy soft BCK/BCI-algebras, (closed) fuzzy 

soft ideals, and fuzzy soft p-ideals, and investigated related properties. Yang et al. [17] introduced the 

concept of the interval-valued fuzzy soft set; they studied the algebraic properties of the concept and they 

analyzed a decision problem by using an interval-valued fuzzy soft set. In this paper, we deal with the 

algebraic structure of BCH-algebras by applying soft set theory. We discussed the algebraic properties of 

soft sets in BCH-algebras and introduced the notion of soft ideals and idealistic soft BCH-algebras. For 

there more we investigated relation between soft BCH-algebra and idealistic soft BCH-algebras. In 

follows we established the intersection, union, "AND" operation and "OR" operation of soft ideals and 

idealistic soft BCH-algebras. 

 

2. Preliminaries 
In this section we gather some basic definitions and results on BCH-algebras and soft sets which we need 

to extending our paper. Recall that a BCH-algebra is an algebra (𝑋,∗, 0) of type (2, 0) satisfying the 

following axioms: 

(BCH1) 𝑥 ∗ 𝑥 =  0, 

(BCH2) (𝑥 ∗ 𝑦)  ∗ 𝑧 =  (𝑥 ∗ 𝑧)  ∗ 𝑦, 

(BCH4) 𝑥 ∗ 𝑦 =  0 and 𝑦 ∗ 𝑥 =  0 imply 𝑥 =  𝑦. 

for every 𝑥, 𝑦, 𝑧 ∈ 𝑋. For any BCH-algebra X, the relation ≤ defined by 𝑥 ≤  𝑦 if and only if 𝑥 ∗ 𝑦 =  0 

is a partial order on X. In any BCH-algebra X, the following hold: 

(u1) 𝑥 ∗ 0 =  𝑥, 

(u2) 0 ∗ (𝑥 ∗ 𝑦)  =  (0 ∗ 𝑥)  ∗ (0 ∗ 𝑦), 
for all 𝑥, 𝑦 ∈ 𝑋. A nonempty subset S of a BCH-algebra X is said to be a subalgebra of X if 𝑥 ∗ 𝑦 ∈ 𝑆, 

whenever 𝑥, 𝑦 ∈ 𝑆. A nonempty subset A of a BCH-algebra X is called an ideal, denoted by 𝐴 ⊴  𝑋, if it 

satisfies: 

(I1) 0 ∈ 𝐴, 

(I2) 𝑥 ∗ 𝑦 ∈ 𝐴 and 𝑦 ∈ 𝐴 imply 𝑥 ∈ 𝐴 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Note that an ideal of a BCH-algebra X is a subalgebra of X. Let U be an initial universe set, E be a set of 

parameters, 𝑃(𝑈) denotes the power set of U and 𝐴 ⊂ 𝐸. Then we have the following definitions: 

 

Definition 2.1. [13] A pair (p , A) is called a soft set over U, where p is a mapping given by 

𝑝 ∶  𝐴 → 𝑃(𝑈). 
In other words, a soft set over U is a parameterized family of subsets of the universe U. For 𝑎 ∈  𝐴, p(a) 

may be considered as the set of a-approximate elements of the soft set (p, A). Clearly, a soft set is not a 

set. 

 

Definition 2.2. [11]Let (p, A) and (q, B) be two soft sets over a common universe U. 

(i) The intersection of (p, A) and (q, B) is defined to be the soft set (r, C) satisfying the following 

conditions: 

(1) 𝐶 =  𝐴 ∩  𝐵, 

(2) (∀𝑒 ∈  𝐶)(𝑟(𝑒)  =  𝑝(𝑒) or 𝑞(𝑒), (as both are same set)). 

In this case, we write (𝑝, 𝐴) ∩̃ (𝑞, 𝐵)  =  (𝑟, 𝐶). 
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(ii) Let {(𝑝𝑖, 𝐴𝑖) | 𝑖 ∈ 𝐼} be a family of soft sets over a common universe U. The intersection 

⋂  (𝑝𝑖, 𝐴𝑖)𝑖∈𝐼  is defined to be the soft set (r, C) satisfying the following conditions: 

(1) 𝐶 =  ⋂ 𝐴𝑖𝑖∈𝐼 , 

(2) (∀𝑒 ∈ 𝐶)(𝑟(𝑒)  =  𝑝𝑖(𝑒) or 𝑝_𝑗(𝑒), (𝑖, 𝑗 ∈ 𝐼), (as both are same set)). 

In this case, we write ⋂̃
𝑖 ∈ 𝐼

(𝑝𝑖 , 𝐴𝑖)=(r, C). 

 

Definition 2.3. [11] Let (p, A) and (q, B) be two soft sets over a common universe U. 

(i) The union of (p, A) and (q, B) is defined to be the soft set (r, C) satisfying the following conditions: 

(1) 𝐶 =  𝐴 ∪  𝐵, 

(2) for all 𝑒 ∈  𝐶, 

𝑟(𝑒)  = {

𝑝(𝑒)                    , 𝑖𝑓 𝑒 ∈ 𝐴\𝐵,
𝑞(𝑒)                    , 𝑖𝑓 𝑒 ∈ 𝐵\𝐴,
𝑝(𝑒) ∪ 𝑞(𝑒)      , 𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵.

 

 
In this case, we write (𝑝, 𝐴)) ∪̃ (𝑞, 𝐵)  =  (𝑟, 𝐶). 
(ii) Let {{(𝑝𝑖, 𝐴𝑖)  | 𝑖 ∈  𝐼} be a family of soft sets over a common universe U. The union ⋃  (𝑝𝑖, 𝐴𝑖)𝑖∈𝐼  is 

defined to be the soft set (r, C) satisfying the following conditions: 

(1) 𝐶 =  ⋃ 𝐴𝑖𝑖∈𝐼 , 

(2) for all 𝑒 ∈  𝐶, 

𝑟(𝑒)  =

{
 
 

 
 

          
𝑝𝑖(𝑒)
           

, 𝑖𝑓 𝑒 ∈ 𝐴𝑖\⋃𝐴𝑗
𝑖≠𝑗

,

⋃𝑝𝑖(𝑒)

𝑖∈𝐼

, 𝑖𝑓 𝑒 ∈⋂𝐴𝑖
𝑖∈𝐼

 

In this case, we write ⋃̃
𝑖 ∈ 𝐼

(𝑝𝑖 , 𝐴𝑖)  = (r ,C). 

 

Definition 2.4. [11] Let (p, A) and (q, B) be two soft sets over a common universe U. Then: 

i) "(p, A) AND (q, B)"denoted by (𝑝, 𝐴)) ∧̃ (𝑞, 𝐵) is defined by (𝑝, 𝐴) ∧̃ (𝑞, 𝐵) = (𝑟, 𝐴 × 𝐵), where 

𝑟(𝛼, 𝛽)  =  𝑝(𝛼)  ∩  𝑞(𝛽) for all (𝛼, 𝛽)  ∈  𝐴 × 𝐵. 

ii) "(p, A) OR (q, B)"denoted by (𝑝, 𝐴)  ∨̃  (𝑞, 𝐵) is defined by (𝑝, 𝐴)  ∨̃  (𝑞, 𝐵)  =  (𝑟, 𝐴 ×  𝐵), where 

𝑟(𝛼, 𝛽)  =  𝑝(𝛼)  ∪  𝑞(𝛽) for all (𝛼, 𝛽)  ∈ 𝐴 ×  𝐵. 

 

Definition 2.5. [11] Let (p, A) and (q, B) be two soft sets over a common universe U. We say that (p, A) is 

a soft subset of (q, B), denoted by  (𝑝, 𝐴) ⊂̃ (𝑞, 𝐵), if it satisfies: 

(i) 𝐴 ⊂  𝐵, 

(ii) For every 𝑎 ∈ 𝐴, 𝑝(𝑎) and 𝑞(𝑎) are identical approximations. 

 

3. Soft Ideal 
In what follow let X and A be a BCH-algebra and a non empty set, respectively, and R will refer to an 

arbitrary binary relation between an element of A and an element of X, that is, R is a subset of 𝐴 × 𝑋 

without otherwise specified. A set-values function p: 𝐴 → 𝑝(𝑋) can be defined as 𝑝(𝑥)  =  {𝑦 ∈
𝑋 | (𝑥, 𝑦)  ∈  𝑅} for all 𝑥 ∈ 𝐴. The pair (p, A) is then a soft set over X. 

 

Definition 3.1. A non empty subset S of a BCH-algebra (𝑋,∗, 0) is called a subalgebra if 𝑥 ∗  𝑦 ∈  𝑆, for 

all 𝑥, 𝑦 ∈  𝑆. 

 

Definition 3.2. Let S be a subalgebra of X. A subset I of X is called an ideal of X related to S (briefly, S-

ideal of X), denoted by 𝐼 ⊲ 𝑆, if it satisfies: 
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(i) 0 ∈  𝐼, 
(ii) (∀𝑥 ∈  𝑆) (∀𝑦 ∈  𝐼) (𝑥 ∗  𝑦 ∈  𝐼 ⇒  𝑥 ∈  𝐼). 
Note that if S is a subalgebra of X and I is a subset of X that contains S then I is an S-ideal of X. 

Obviously, every ideal of X is an S-ideal of X for every subalgebra S of X, but the converse is not true in 

general as seen the following example. 

 

Example 3.3. Let 𝑋 =  {0, 1, 2, 3, 4} be a BCH-algebra with the following Cayley table: 

∗ 0 1 2 3 4 
0 0 0 0 0 4 
1 1 0 0 1 4 
2 2 2 0 0 4 
3 3 3 3 0 4 
4 4 4 4 4 0 

 

Then 𝑆 =  {0, 1} is a subalgebra of X and 𝐼 =  {0, 1, 3}  ⊲ 𝑆, but I is not an ideal of X because 2 ∗  3 =
 0 ∈  𝐼 and 2 ∉  𝐼. 
  

Definition 3.4. Let (p, A) be a soft set over X. Then (p, A) is called a soft BCH algebra over X if p(x) is a 

subalgebra of X for all 𝑥 ∈ 𝐴. 

 

Definition 3.5. Let (p, A) be a soft BCH-algebra over X. A soft set (q, I) over X is called a soft ideal of (p, 

A), denoted by (𝑞, 𝐼) ⊲̃ (𝑝, 𝐴), if it satisfies: 

(i) 𝐼 ⊂ 𝐴, 

(ii) (∀𝑥 ∈ 𝐴) (𝑞(𝑥)  ⊲  𝑝(𝑥)). 
Let us illustrate this definition using the following examples. 

 

Example 3.6. Let 𝑋 =  {0, 𝑎, 𝑏, 𝑐} be a BCH-algebra with the following cayley table: 

∗ 0 𝑎 𝑏 𝑐 
0 0 𝑎 𝑏 𝑐 
𝑎 𝑎 0 𝑐 𝑏 
𝑏 𝑏 𝑐 0 𝑎 
𝑐 𝑐 𝑏 𝑎 0 

 

Let (p, A) be a soft set over X, where A = X and 𝑝: 𝐴 →  𝑝(𝑋) is a set-valued function defined by 𝑝(𝑥)  =
 {𝑦 ∈ 𝑋 | 𝑥 ∗  (𝑦 ∗  𝑥)  ∈  {0, 𝑥}} for all x ∈ A. Then p(0) = {0}, 𝑝(𝑎)  =  {0, 𝑎}, 𝑝(𝑏)  =  {0, 𝑏} and 

𝑝(𝑐)  =  {0, 𝑐} are subalgebra of X. Then (p, A) is a soft BCH-algebra over X. 

(1) Let (q, I) be a soft set over X, where 𝐼 =  {𝑎, 𝑏} and 𝑞 ∶  𝐼 →  𝑝(𝑋) is a set-valued 

function defined by 𝑞(𝑥)  =  {𝑦 ∈ 𝑋 | 𝑦 ∗ (𝑦 ∗ 𝑥)  ∈  {0, 𝑥, 𝑐}} for all 𝑥 ∈ 𝐼. Then 

𝑞(𝑎)  =  {0, 𝑎, 𝑏, 𝑐}  ⊲ {0, 𝑎}  =  𝑝(𝑎), 𝑞(𝑏)  =  {0, 𝑎, 𝑏, 𝑐}  ⊲ 𝑝(𝑏)  =  {0, 𝑏}. Hence (𝑞, 𝐼) is a soft ideal 

of (p, A). 

(2) For 𝐼 =  {𝑎, 𝑏}, let 𝑟 ∶  𝐼 →  𝑝(𝑋) be a set-valued function defined by 𝑟(𝑥)  =  {0}  ∪  {𝑦 ∈ 𝑋 | 𝑦 ≤
 𝑥} for all 𝑥 ∈ 𝐼. Then 𝑟(𝑎)  =  {0, 𝑎}  ⊲ {0, 𝑎}  =  𝑝(𝑎) and 𝑟(𝑏)  =  {0, 𝑏}  ⊲ {0, 𝑏}  = 𝑝(𝑏). Therefore, 

(r, I) is a soft ideal of (p, A). 

 

Theorem 3.7. Let (p, A) be a soft BCH-algebra over X. For any soft sets (𝑞1, 𝐼1) and (𝑞2, 𝐼2) over X 

where  𝐼1 ∩ 𝐼2 ≠ ∅, we have 

(𝑞1, 𝐼1) ⊲̃ (𝑝, 𝐴), (𝑞2, 𝐼2) ⊲̃ (𝑝, 𝐴)  ⇒ (𝑞1, 𝐼1) ∩̃ (𝑞2, 𝐼2) ⊲̃ (𝑝, 𝐴) 
Proof. Using Definition 2.2, we can write 

(𝑞1, 𝐼1) ∩̃ (𝑞2, 𝐼2) = (𝑞, 𝐼) 
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where 𝐼 =  𝐼1 ∩ 𝐼2 and 𝑞(𝑥)  =  𝑞1(𝑥) or 𝑞2(𝑥) for all 𝑥 ∈ 𝐼. Obviously, 𝐼 ⊂ 𝐴 and 𝑞 ∶  𝐼 →  𝑝(𝑋) is a 

mapping. Hence (𝑞, 𝐼) is a soft set over X. Since (𝑞1, 𝐼1) ⊲̃ (𝑝, 𝐴) and (𝑞2, 𝐼2) ⊲̃ (𝑝, 𝐴)  , we know that 

𝑞(𝑥)  =  𝑞1(𝑥)  ⊲ 𝑝(𝑥) or 𝑞(𝑥)  =  𝑞2(𝑥)  ⊲ 𝑝(𝑥) for all 𝑥 ∈ 𝐼. Therefore, (𝑞1, 𝐼1) ∩̃ (𝑞2, 𝐼2)  =
(𝑞, 𝐼) ⊲̃ (𝑝, 𝐴). 
 

Corollary 3.8. Let (p, A) be a soft BCH-algebra over X. For any soft sets (q, I) and (r, I) over X, we have 

(𝑞, 𝐼) ⊲̃ (𝑝, 𝐴), (𝑟, 𝐼) ⊲̃ (𝑝, 𝐴)  ⇒ (𝑞, 𝐼) ∩̃ (𝑟, 𝐼) ⊲̃ (𝑝, 𝐴) 
Theorem 3.9. Let (p, A) be a soft BCH-algebra over X. For any soft sets (q, I) and (r, J) over X in which I 

and J are disjoint, we have 

(𝑞, 𝐼) ⊲̃ (𝑝, 𝐴), (𝑟, 𝐽) ⊲̃ (𝑝, 𝐴)  ⇒ (𝑞, 𝐼) ∪̃ (𝑟, 𝐽) ⊲̃ (𝑝, 𝐴) 
Proof. Assume that (𝑞, 𝐼) ⊲̃ (𝑝, 𝐴) and (𝑟, 𝐽) ⊲̃ (𝑝, 𝐴). By means of definition 2.3, we can write 

(𝑞, 𝐼) ∪̃ (𝑟, 𝐽) = (𝑠, 𝐾) where 𝐾 =  𝐼 ∪ 𝐽 and for every 𝑥 ∈ 𝐾, 

 

s(x) ={

𝑞(𝑥)  𝑖𝑓 𝑥 ∈ 𝐼 \ 𝐽
𝑟(𝑥)      𝑖𝑓 𝑥 ∈ 𝐽 \ 𝐽

𝑞(𝑥)  ∪ 𝑟(𝑥)  𝑖𝑓 𝑥 ∈ 𝐼 ∩ 𝐽
 

Since 𝐼 ∩  𝐽 =  𝜙, either 𝑥 ∈ 𝐼 \ 𝐽 or 𝑥 ∈ 𝐽 \ 𝐼 for all 𝑥 ∈ 𝐾. 

If 𝑥 ∈ 𝐼 \ 𝐽, then 𝑠(𝑥)  =  𝑞(𝑥)  ⊲ 𝑝(𝑥). If 𝑥 ∈ 𝐽 \ 𝐼, then 𝑠(𝑥)  =  𝑟(𝑥)  ⊲ 𝑝(𝑥). Thus 𝑠(𝑥)  ⊲ 𝑝(𝑥) for 

all 𝑥 ∈ 𝐾, and so (𝑞, 𝐼) ∩̃ (𝑟, 𝐽)  =  (𝑠, 𝐾) ⊲̃ (𝑝, 𝐴).  
Note that if I and J are not disjoint in Theorem 3.9, then Theorem 3.9, is not true in general seen in the 

following example. 

 

Example 3.10. Let 𝑋 =  {0, 1, 2, 3} in which ∗ is defined by: 

∗ 0 1 2 3 
0 0 0 0 0 
1 1 0 3 3 
2 2 0 0 2 
3 3 0 0 0 

Then (𝑋,∗, 0) is a BCH-algebra. 

Let (p, A) be a soft set over X, where A = X and 𝑝 ∶  𝐴 →  𝑝(𝑋) is a set-valued function defined by 

𝑝(𝑥)  =  {𝑦 ∈ 𝑋 | 𝑦 ∗ (𝑦 ∗ 𝑥)  ∈  {0, 3}} for all 𝑥 ∈ 𝐴. Then 𝑝(0)  =  𝑝(3)  =  𝑋, 𝑝(1)  =  {0, 3} and 

𝑝(2)  =  {0, 1, 3} which are subalgebras of X. Hence (p, A) is a soft BCH-algebra over X. 

Let 𝐼 =  {0, 2} and 𝑞 ∶  𝐼 →  𝑝(𝑋) is a set-valued function defined by 𝑞(𝑥)  =  {𝑦 ∈ 𝑋 | 𝑦 ∗ (𝑦 ∗ 𝑥)  ∈
{0, 2}} for all 𝑥 ∈ 𝐼. Then 𝑞(0)  =  𝑋 ⊲ 𝑋 =  𝑝(0) 𝑎𝑛𝑑 𝑞(2)  =  {0, 2}  ⊲ {0, 1, 3}  =  𝑝(2), and so (q, 

I) is a soft ideal of (p, A). 

Let 𝐽 =  {2, 3} and 𝑟 ∶  𝐽 →  𝑝(𝑋) is a set-valued function defined by 𝑟(𝑥)  =  {𝑦 ∈ 𝑋 | 𝑦 ∗ 𝑥 =
0} \ {𝑥} for all 𝑥 ∈ 𝐽. Then 𝑟(2)  =  {0, 3}  ⊲ 𝑝(2)  =  {0, 1, 3} and 𝑟(3)  =  {0}  ⊲ 𝑋 =  𝑝(3), andso (r, 

J) is a soft ideal of (p, A). Then (𝑠, 𝑈)  =  (𝑞, 𝐼)~ ∪ (𝑟, 𝐽) is not a soft ideal of (p, A), since 1 ∗  2 =  3 ∈
𝑠(2) and 2 ∈ 𝑠(2) but 1 ∉ 𝑠(2) 𝑠(2)  =  𝑟(2) ∪ 𝑞(2)  =  {0, 2, 3}, we have is not p(2)-ideal. 

 

4. Idealistic soft BCH-algebra 
Definition 4.1. Let (p, A) be a soft set over X. Then (p, A) is called an idealist soft BCH-algebra over X if 

p(x) is an ideal of X for all 𝑥 ∈ 𝐴. 

 

Example 4.2. Let 𝑋 =  {0, 1, 2, 3, 4} in which ∗ is defined by: 

∗ 0 1 2 3 4 
0 0 0 0 0 4 
1 1 0 0 1 4 
2 2 2 0 0 4 
3 3 3 3 0 4 
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4 4 4 4 4 0 

 
Routine calculations give that (𝑋,∗, 0) is a BCH-algebra. 

Let 𝐴 =  {0, 1, 2} and let 𝑝 ∶  𝐴 →  𝑝(𝑋) be a set-valued function defined by 𝑝(𝑥)  =  {𝑦 ∈ 𝑋 | 𝑦 ∗ 𝑥 =
 0} for all 𝑥 ∈ 𝐴. Then 𝑝(0)  =  {0}, 𝑝(1)  =  {0, 1} and 𝑝(2)  =  {0, 1, 2}, which areideals of X. Hence 

(p, A) is an idealistic soft BCH-algebra over X. 

 

Proposition 4.3. Let (p, A) and (q, B) be soft sets over X where 𝐵 ⊆ 𝐴 ⊆ 𝑋. If (p, A) is an idealistic soft 

BCH-algebra over X, then so is (q, B). 

Proof. The proof is straightforward.  

Note that example 3.6[18] show that the converse of proposition 4.3 is not true in general. 

 

Theorem 4.4. Let (p, A) and (q, B) be two idealistic soft BCH-algebra over X. If 𝐴 ∩  𝐵 ≠ ∅, then the 

intersection (𝑝, 𝐴)  ⊓ (𝑞, 𝐵) is an idealistic soft BCH-algebra over X. 

Proof. The proof is similar to the proof of Theorem 3.7.  

 

Corollary 4.5. Let (p, A) and (q, A) be two idealistic soft BCH-algebra over X. Then their intersection 

(𝑝, 𝐴)  ⊓ (𝑞, 𝐴) is an idealistic soft BCH-algebra over X. 

 

Theorem 4.6. Let (p, A) and (q, B) be two idealistic soft BCH-algebra over X. If A and B are disjoint, 

then the union (𝑝, 𝐴)  ⊔ (𝑞, 𝐵) is an idealistic soft BCH-algebra. 

Proof. The proof is similar to the proof of Theorem 3.9.  

 

Theorem 4.7. Let (p, A) and (q, B) be two idealistic soft BCH-algebra over X. Then (𝑝, 𝐴) ∧̃ (𝑞, 𝐵) is an 

idealistic soft BCH-algebra over X. 

Proof. By use of Definition 2.4, we know that (𝑝, 𝐴) ∧̃ (𝑞, 𝐵)  =  (𝑟, 𝐴 ×  𝐵), where 𝑟(𝑥, 𝑦)  = 𝑝(𝑥) ∩
𝑞(𝑦) for all (𝑥, 𝑦)  ∈ 𝐴 × 𝐵. Since p(x) and q(y) are ideals of X, the intersection 𝑝(𝑥) ∩ 𝑞(𝑦) isalso an 

ideal of X. Hence 𝑟(𝑥, 𝑦) is an ideal of X for all (𝑥, 𝑦)  ∈ 𝐴 × 𝐵. Therefore, (𝑝, 𝐴) ∧̃ (𝑞, 𝐵)  = (𝑟, 𝐴 ×  𝐵) 
is an idealistic soft BCH-algebra over X. 

 

Definition 4.8. An idealistic soft BCH-algebra (p,A) is said to be trivial (resp., whole) if 𝑝(𝑥)  =  {0} 
(resp., 𝑝(𝑥)  =  𝑋) for all 𝑥 ∈ 𝐴. 

 

Example 4.9. Let (𝑋,∗, 0) be a BCH-algebra which 𝑋 =  {0, 1, 2, 3, 4} and ∗ is defined by: 

 

∗ 0 1 2 3 4 
0 0 0 0 0 4 
1 1 0 0 1 4 
2 2 2 0 0 4 
3 3 3 3 0 4 
4 4 4 4 4 0 

 

Suppose that 𝐴 =  {0, 1, 2, 3} and 𝑝 ∶  𝐴 →  𝑝(𝑋) be a set-valued function defined by 𝑝(𝑥)  =  {𝑦 ∈
𝑋 | (𝑦 ∗ 𝑥)  ∗ 𝑥 =  𝑦 ∗ 𝑥}, Then 𝑝(𝑥)  =  𝑋 for all 𝑥 ∈ 𝐴, and so (p, A) is a whole idealistic soft BCH-

algebra over X. 

 

Lemma 4.10. Let 𝑓 ∶  𝑋 →  𝑌 be a mapping of BCH-algebras. 

(i) For a soft set (p, A) over X, (f(p), A) is a soft set over Y where 𝑓(𝑝) ∶  𝐴 →  𝑝(𝑌 ) is defined by 

𝑓(𝑝)(𝑥)  =  𝑓(𝑝(𝑥)) for all 𝑥 ∈ 𝐴. 
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(ii) For a soft set (q, B) over Y , (f−1(q), B) is a soft set over X, where 𝑓−1(𝑞) ∶  𝐵 →  𝑃(𝑋) is defined by 

𝑓−1(𝑞)(𝑏)  = ⋃ 𝑓−1(𝑦)𝑦∈𝑞(𝑏)  for all 𝑏 ∈ 𝐵. 

Proof. The proof is straightforward.  

 

Lemma 4.11. Let 𝑓 ∶  𝑋 →  𝑌 be an onto homomorphism of BCH-algebras. 

(i) If (p, A) is an idealistic soft BCH-algebras over X. Then (f(p),A) is an idealistic soft BCH-algebras 

over Y . 

(ii) If (q, B) is an idealistic oft BCH-algebra over Y , then (𝑓−1(𝑞), 𝐵) is an idealistic soft BCH-algebra 

over X. 

Proof. (i) For every 𝑥 ∈ 𝐴, we have 𝑓(𝑝)(𝑥)  ∈ 𝑓(𝑝(𝑥)) is an ideal of Y since p(x) is an ideal of X and its 

onto homomorphic image is also an ideal of Y . Therefore, (𝑓(𝑝), 𝐴) is an idealistic soft BCH-algebras 

over Y . 

(ii) First we prove that if B be an ideal of Y , then 𝑓−1(𝐵) is an ideal of X. Obviously 

we have 0 ∈ 𝑓−1(𝐵). Now, let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑥 ∗ 𝑦 ∈ 𝑓−1(𝐵) and 𝑦 ∈ 𝑓−1(𝐵), so we have 

𝑓(𝑥 ∗ 𝑦)  =  𝑓(𝑥)  ∗ 𝑓(𝑦)  ∈ 𝐵 and 𝑓(𝑦)  ∈ 𝐵. Since B is an ideal of Y , we have 𝑓(𝑥 ∗ 𝑦)  =  𝑓(𝑥)  ∗
𝑓(𝑦)  ∈ 𝐵 and so 𝑥 ∗ 𝑦 ∈ 𝑓−1(𝐵). Thus 𝑓−1(𝐵) is an ideal of X. Now, for every 𝑏 ∈ 𝐵, since q(b) is an 

ideal of Y , we have 𝑓−1(𝑞)(𝑏)  =∩ 𝑓−1(𝑦) is an ideal of X. Thus, (𝑓−1(𝑞), 𝐵) is an idealistic soft BCH-

algebra over X.  

 

Theorem 4.12. Let 𝑓 ∶  𝑋 →  𝑌 be an onto homomorphism of BCH-algebras and let (p, A) bean idealistic 

soft BCH-algebras over X. Then: 

(i) Let 𝑝(𝑥)  =  𝑘𝑒𝑟𝑓 for all 𝑥 ∈ 𝐴. Then (𝑓(𝑝), 𝐴) is the trivial idealistic soft BCH-algebraover Y . 

(ii) Let (p, A) is whole. Then (𝑓(𝑝), 𝐴) is the whole idealistic soft BCH-algebra over Y . 

Proof. (i) Assume that 𝑝(𝑥)  =  𝑘𝑒𝑟(𝑓) for all 𝑥 ∈ 𝐴. Then 𝑓(𝑝)(𝑥)  =  𝑓(𝑝(𝑥))  =  {0𝑌 } for all 𝑥 ∈ 𝐴. 

Hence, by Definition 4.8 and Lemma 4.11, (𝑓(𝑝), 𝐴) is the trivial idealistic soft BCH-algebra over Y . 

(ii) Suppose that (p, A) is whole. Then p(x) = X for all 𝑥 ∈ 𝐴 and so 𝑓(𝑝)(𝑥)  =  𝑓(𝑝(𝑥))  = 𝑓(𝑋)  =
 𝑌 for all 𝑥 ∈ 𝐴. It follows from Definition 4.8 and Lemma 4.11, that (𝑓(𝑝), 𝐴) is the whole idealistic soft 

BCH-algebra over Y . 

 

5. Fuzzy ideal and fuzzy soft ideal of BCH-algebras 
Definition 5.1. A fuzzy subset μ of a BCH-algebra X is said to be a fuzzy ideal of X if it satisfies: 

(i) 𝜇(0)  ≥  𝜇(𝑥) for all 𝑥 ∈ 𝑋, 

(ii) 𝜇(𝑥)  ≥  𝑚𝑖𝑛{𝜇(𝑥 ∗ 𝑦), 𝜇(𝑦)} for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Definition 5.2. Let X be a BCH-algebra and F(X) be the set of fuzzy set over X. A pair (p, A) is called a 

fuzzy soft set over BCH-algebra X, where p is a mapping given by: 

𝑝 ∶  𝐴 →  𝐹(𝑋) 
In other word, for every 𝑎 ∈ 𝐴, 𝑝𝑎 ∶  𝑋 →  [0, 1] is a fuzzy set over X. Note that for every fuzzy set μ, the 

set 𝜇𝑡  =  {𝑥 ∈ 𝑋 | 𝜇(𝑥)  ≥  𝑡} is called t-level relation over BCH-algebra X. 

 

Definition 5.3. A fuzzy soft set (p, A) over BCH-algebra X is called fuzzy soft ideal, if for every 𝑎 ∈ 𝐴, 

𝑝𝑎  ∈ 𝐹(𝑋) be a fuzzy ideal of X. 

 

Theorem 5.4. Let (p, A) be a fuzzy soft set over BCH-algebra and 𝑎 ∈ 𝐴, then 𝑝𝑎 ∈ 𝐹(𝑋) is a fuzzy ideal 

if and only if (𝑝𝑎)𝑡 ≠ ∅ is an ideal of BCH-algebra X. 

Proof. Let 𝑝𝑎 ∈ 𝐹(𝑋) be a fuzzy ideal, we must prove that (𝑝𝑎)𝑡  ≠ ∅ is an ideal of BCH-algebra. Since 

𝑝𝑎(0)  ≥  𝑝𝑎(𝑥), obviously we have 0 ∈ (𝑝𝑎)𝑡. Now, let 𝑥, 𝑦 ∈ 𝑋 be such that (𝑥 ∗ 𝑦)  ∈ (𝑝𝑎)𝑡, 𝑦 ∈
(𝑝𝑎)𝑡, then 𝑝𝑎(𝑥 ∗ 𝑦)  ≥  𝑡 , 𝑝𝑎(𝑦)  ≥  𝑡. So we have: 

𝑝𝑎(𝑥)  ≥  𝑚𝑖𝑛{𝑝𝑎(𝑥 ∗ 𝑦), 𝑝𝑎(𝑦)}  ≥  𝑡. 
Hence 𝑥 ∈ (𝑝𝑎)𝑡. Therefore (𝑝𝑎)𝑡 is an ideal of BCH-algebra. 
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Conversely, suppose that (𝑝𝑎)𝑡  ≠ ∅ is an ideal of X, we must prove that 𝑝𝑎is a fuzzy ideal of X. For any 

𝑥 ∈ 𝑋, since 𝑥 ∈ (𝑝𝑎)𝑝𝑎(𝑥) ≠ ∅ is an ideal and so 0 ∈ (𝑝𝑎)𝑝𝑎(𝑥) , that is 𝑝𝑎(0)  ≥  𝑝𝑎(𝑥). 

Now, for any 𝑥, 𝑦 ∈ 𝑋, we let 

𝑡 =  𝑚𝑖𝑛{𝑝𝑎(𝑥 ∗ 𝑦), 𝑝𝑎(𝑦)}, 
it followes that (𝑥 ∗ 𝑦)  ∈ (𝑝𝑎)𝑡 and 𝑦 ∈ (𝑝𝑎)𝑡. Since (𝑝𝑎)𝑡  ≠ ∅ is an ideal of BCH-algebra, we have 

𝑥 ∈ (𝑝𝑎)𝑡. Therefore, 

𝑝𝑎(𝑥)  ≥  𝑡 =  𝑚𝑖𝑛{𝑝𝑎(𝑥 ∗ 𝑦), 𝑝𝑎(𝑦)} 
This complete the proof.  

We denote the set of soft ideal, fuzzy ideal and fuzzy soft ideal that constructed over BCH-algebra X by 

SI(x) , FI(x) and FSI(x), respectively. 

 

Definition 5.5. Let X be a BCH-algebra and (p, A) be a soft BCH-algebra over X, we say that (p, A) 

satisfies the maximal condition, if each nonempty subset of SI(p, A) contains least one maximal member 

with respect to the set theoretical inclusion ⊆ and (p ,A) satisfies the ascending chain condition, 

abbreviated by ACC, if there does not exist an infinite property ascending chain (𝑞1, 𝐼1)  ⊆ (𝑞2, 𝐼2)  ⊆ · · · 
in SI(p, A). In an entirely analogous way the minimal condition and the descending chain condition 

(abbreviated by DCC) are defined. 

 

Theorem 5.6. Let X be a BCH-algebra and (p, A) be a soft BCH-algebra over X, then 

(i) (p, A) satisfies the maximal condition if and only if (p, A) satisfies ACC. 

(ii) (p, A) satisfies the minimal condition if and only if (p, A) satisfies DCC. 

Proof. (i) Suppose (p, A) satisfies the maximal condition and (𝑞1, 𝐼1)  ⊆ (𝑞2, 𝐼2)  ⊆ · · ·  is a ascending 

chain in SI(X). Then the set {(𝑞𝑖, 𝐼𝑖) ∶  𝑖 =  1, 2, . . . } has maximal member 

(𝑞𝑛, 𝐼𝑛), so (𝑞𝑖, 𝐼𝑖)  =  (𝑞𝑛, 𝐼𝑛) for all 𝑖 ≥  𝑛, this says (p, A) satisfies ACC. 

Conversely, suppose that (p, A) satisfies ACC and E is any nonempty subset of SI(X). 

If E has no maximal member, then each member of E precede another member of E, 

which permits the construction of an infinite chain (𝑞1, 𝐼1)  ⊆ (𝑞2, 𝐼2)  ⊆ · · ·  in E, where (𝑞𝑖, 𝐼𝑖)  ≠
 (𝑞𝑗 , 𝐼𝑗) whenever 𝑖 ≠ 𝑗, a contradiction. Hence (p, A) satisfies the maximal condition. Likewise for (ii), 

the reader should supply the details. 

 

6. Conclusions and further research 
Soft sets are deeply related to fuzzy sets and rough sets. we applied soft sets to BCH-algebra. we 

discussed the algebraic properties of soft sets in BCH-algebras. We introduced the notion of soft ideals 

and idealistic soft BCH-algebras, and gave several example. we investigated relation between soft BCH-

algebra and idealistic soft BCH-algebra. we established the union, intersection, "AND" operation, and 

"OR" operation of soft ideals and idealistic soft BCH-algebra. Based on these results, we will apply soft 

sets to ideals on hyper BCK-algebra, and investigated relation between fuzzy type of ideals. 
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