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Abstract 
In many real-world optimization problems, multimodal function optimization is considered, in fact, we 

are faced with a multimodal optimization problem. Particle swarm optimization (PSO) and continuous ant 

colony optimization (ACOR) are two population-based optimization techniques that work based on 

probability laws. The main problem of PSO and ACOR algorithms is premature convergence and falling 

into local optima. One way to solve the problems is to use combinational methods. This paper presents a 

combinational method including PSO and ACOR in order to improve the search process. The proposed 

algorithm tries to solve the problem. Standard benchmark functions are used in order to evaluate the 

proposed algorithm, proposed method was compared with ACOR, PSO and sequential approach with the 

enlarged pheromone-particle table of the composition of PSO and ACOR Introduced in [8]. Results show 

that the proposed method is superior. 

 
Keywords: Multimodal function optimization, Continuous Ant Colony Optimization, Particle Swarm 

Optimization 

1. Introduction 

In multimodal optimization, user has obtained more knowledge about optimal solutions in search 

space and it helps to use other solutions when the current solution is not possible due to some issues 

(such as some physical constraints). Obtaining the best possible outcome of a question is called 

optimization according to governing conditions. In optimization issues of real world, sometimes only 

one optimal solution is not sufficient. When there are multiple optimal solutions for a problem, 

demand for various solutions will be more sensitive. The issues that have more optimal points, if all 

these points contribute to problem solution, we will face with a multifaceted problem and each of these 

points is called a local optimum and the greatest of points (in maximization issues) is called global 
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optimum and local optimum may be as good as global optimum in better decision making. Innovative 

solutions are good ways for obtaining optimal solutions, but do not guarantee optimal solutions. 

Nowadays, embracing innovative ways is drastically increased with larger and complex issues [1]. 

PSO algorithm is a heuristic optimization technique that works on the basis of population. The main 

idea of this algorithm was first proposed in 1995 by Kennedy and Eberhart [2] that was inspired from 

bunch of fish and birds’ behaviors to find food. A group of particles search for food in a random space 

and there is only one food source and none of the particles are aware of food place and they only know 

the distance to the food. One of the best strategies is to move towards the particle which is closer to 

food source. This strategy is the main idea behind the PSO algorithm. 

ACOR algorithm that is a generalization of the discrete ant colony (ACO) was proposed for solving 

optimization problems with continuous values for the first time in 2008 by Soosha and Dorigo [3], 

good solutions are kept in this solution archives. Each solution has a value of objective the function. 

New solutions are produced for the next generation using a normal distribution that is obtained on the 

basis of objective function values from any solution of pheromone table (Solution archive). 

Combining algorithms can improve the original algorithm and obtain a solution with superior quality. 

In evolutionary calculations, combination is essential in order to improve an optimization algorithm 

performance. Generally, an algorithm performance is lower than combinational algorithm [4,5]. In this 

paper, a combinational strategy of combining two PSO and ACOR algorithms is proposed that solves 

greatly problems of ACOR and PSO algorithms. 

Classification of remaining paper is as below: firstly, section 2 introduces basic concepts, including 

particle swarm optimization and continuous ant colony optimization algorithms. Section 3 deals with 

the concept of multimodal optimization. In Section 4, the proposed method of this paper is described. 

In Section 5, time and computational complexity of proposed method is discussed. In Section 6, the 

proposed algorithm has been tested on several benchmark functions. Finally, the conclusion is 

presented in Section 8. 

2. Preliminaries 

2.1. Particle Swarm Optimization 

It was developed by Kennedy and Eberhart, in 1995 and has been successfully employed in many 

scientific and applied areas. This is a population-based algorithm in which anyone is considered as a 

particle and any population consists of a number of these particles. In PSO, problem-solving space is 

regarded as a searching environment and anyplace is a problem-dependent solution. In this population, 

particles tries to find the best situation (best solution) in the searching place (solution space). All 

particles move according to their speed. The movement of particles in any iteration is calculated by the 

following formula: 

vi
d(t) = w × vi

d(t) + c1 × rand1 × (pbesti
d(t) − xi

d(t − 1)) + c2 × rand2 × (gbest
d(t)

− xi
d(t − 1)) 

 

(1) 

xi
d(t) = xi

d(t − 1) + vi
d(t) (2) 

  

In relations (1) and (2), xi
d is the current position of dth dimension of ith particle and vi

d is the current 

speed of this dimension of this particle, and pbesti
d is the previous optimal position of the dth 

dimension encountered by ith particle, gbestd is the best position of dth dimension which has been ever 

found by the population, w is the weight of inertia that gives a proportion of the previous speed,c1 and 
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c2 are the acceleration coefficients and define the best effect of the position of each particle and the 

best overall position, rand1 and rand2 are two random numbers between 0 and 1. Fig. 1 presents the 

procedure of particle swarm optimization [6, 7]. 

 

Initialize a population of particles with random positions and velocities in 

the search space. 

While (termination conditions are not met) 

{ 

For each particle i do 

{ 

For each dimension of particle I do 

{ 

Update the velocity of dth dimension of particle i according to equation (1). 

Update the position of dth dimension of particle i according to equation (2). 

Update pbestid (t) and gbestd (t) if necessary. 

} 

Map the position of particle i in the solution space and evaluate its fitness 

value according to the fitness function. 

} 

} 
 

Fig. 1.  Procedure of particle swarm optimization 

 

2.2. Continuous Ant Colony Optimization 

Ant colony algorithm is applied mostly for permutation and discrete problems. How we can use Ant 

Colony Algorithm for continuous domains. Different approaches were proposed for continuous ant 

colony algorithm before 2008 but were not really accepted. In 2008, Dorigo and Sosha raised a very 

interesting idea for the continuous ant colony algorithm that is a generalization of the discrete ant 

colony algorithm. The number of selections is countable in discrete spaces, but it is not so in 

continuous space, the number of selections is infinite, so we must consider the points that are close to 

better solutions in continuous space. In fact, the continuous space and a set of characterized points of 

search space are emphasized in continuous ant colony, a distribution of pheromone is defined and 

pheromone distribution can be explained as probability distribution, in this case, the normal 

distribution is used. It is the basis for normal distribution and its centers are points that we have tried 

before and are confident of their relative well-being and we use solution archive (pheromone table) in 

order to maintain these points. Figure 2 shows the structure of solution archive, in this figure, 𝑆l
i 

represents the ith variable of lth solution in solution archive [3]. 

In ACOR, we assign a probability to each solution based on fitness, then, we obtain a distribution for 

each decision making variable in solution archives and sample from distribution and create a new 

solution. Pheromones of this method are probabilities that we assign to each solution and continuity of 

problem is where we don’t consider problem itself, but we focus all around it [3].  
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Fig. 2.The structure of the solution archive 

 

The algorithm is detailed as follows [8]:  

1) The target function f (si) is calculated for any solution si in the pheromone table. Available 

solutions in the table are arranged based on the target function. Thus, for a minimization problem, 

we have: 

f(s1) ≤ f(s2) ≤ ⋯ ≤ f(si) ≤ ⋯ ≤ f(sk) 

2) Weight (w) is calculated for ith solution in the pheromone table as below: 

wi =
1

qk√2π
e
−
(i−1)2

2q2K2 (3) 

In the above equation q shows the learning rate, which is a value between 0 and 1. 

3) As to wi for each available solution in the pheromone table, Roulette Wheel probability pi is 

estimated as bellow: 

pi = 
wi

∑ wj
k
j=1

 (4) 

 

4) Stage 4 is iterated M times to produce M new ants (M ≤ K): using normal distribution(μi
d, σi

d), a 

new ant is achieved for each variable. μi
d is a value selected from dth variable and from ith solution in 

the pheromone table with the probability pi. σi
d is defined as follows: 

σi
d =  τ∑

|xj
d − xi

d|

k − 1

k

𝑗=1
 (5) 

In the above equation, xi
dis the dth variable from the ith solution. K is the size of the pheromone table 

and τ shows the rate of evaporation which is between 0 and 1.  

5) M new ants are evaluated and less qualified solutions are replaced in the pheromone table by 

superior solutions and by M new ants. 
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3. Multimodal optimization 

A function that has more than one optimum is called multimodal function. However, a multimodal 

function may have one or more than one global optimum. When we plan to optimize a multimodal 

function, different problems will be arisen. The objective of optimization algorithms is to find a global 

optimum that are usually applied to functions with one global optimum and some local 

optimums. Hence, the main problem is to avoid algorithm falling into the trap of local optimums. On 

the other hand, when the function has several optimums with the same values, the aim of an 

optimization algorithm may be to find all optimums [9]. 

Many optimization techniques are designed to deal with the multiple functions of the first type. They 

usually assume that there is only one solution in search space and use their efforts to isolate it from 

other false solutions. 

The situation is different when dealing with multimodal global optimum functions. In this case, 

standard techniques usually prefer a solution or may become confused by multiple solutions and fail to 

converge to one of optimums. Hence, using combinational standard algorithms is essential that can act 

effectively on multimodal functions. 

4. Proposed method 

In the proposed method, the ACOR and PSO share the same set of solutions, named the “pheromone-

particle” table, abbreviated as "PHERO_PAR". This method consists of two phases, which two phases 

are executed in parallel. The proposed method is a combination of sequential and parallel Strategies of 

combining PSO and ACOR introduced in [8]. Figure 2 shows the main concept of the proposed 

method, and its detailed algorithm is as follows: 

Algorithm:  

step 1. Create and initialize a pheromone-particle table, “PHERO-PAR”, with K rows and D 

dimensions using the uniform distribution. 

step 2. Phase 1: 

 2.1. Calculate fitness for each particle in PHERO-PAR using test function, update 

pbest for each particle, and update gbest with the best fitness value of all the 

particles. 

 2.2. Generate new positions for all particles in PHERO-PAR by performing PSO 

algorithm and update pbest for each particle, and update gbest. 

 2.3. Generate new ants, Ant, with M rows by performing ACOR algorithm based on 

the updated PHERO-PAR performed in the previous step. 

 2.4. Pheromone particles Table updated by PSO combines with M new ant, and select 

the best of them to shape “PHERO-PAR1” with K solution. 

step 3. Phase 2: 

 3.1. Calculate fitness for each particle in PHERO-PAR using test function, update 

pbest for each particle, and update gbest with the best fitness value of all the 

particles. 
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 3.2. Generate new ants, Ant, with M rows by performing ACOR algorithm based on 

the updated PHERO-PAR performed in the previous step. 

 3.3. Generate new positions for all particles in PHERO-PAR by performing PSO 

algorithm and update pbest for each particle, and update gbest. 

 3.4. Pheromone particles Table updated by PSO combines with M new ant, and select 

the best of them to shape “PHERO-PAR2” with K solution. 

 3.5. PHERO-PAR1 combines with PHERO-PAR2, and select the best of them to 

shape new “PHERO-PAR” with K solution, and update pbest for each particle, 

and update gbest. 

step 4. If the stop condition is satisfied, the algorithm terminates and is returned gbest, 

otherwise, go to the second step of the algorithm. 

 
Fig. 3. main concept of the proposed method 
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5. Computational complexity analysis 

The time complexity of the Proposed method are proportional to the number of iterations, the number 

of particles, and the number of ants, and can be computed according to their main steps, as follows: 

𝑇𝑖𝑚𝑒 complexity = 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜×𝑛𝑠  × (𝑁𝑁𝑒𝑤𝐴𝑛𝑡𝑠 × 𝑇𝐴𝑛𝑡 + 𝑁𝑁𝑒𝑤𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 × 𝑇𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + T𝑈𝑝𝑑𝑎𝑡𝑒)               (6) 

Where: 

𝑁𝑁𝑒𝑤𝐴𝑛𝑡𝑠: Number of iterations 

𝑁𝑁𝑒𝑤𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒: Number of new ants  

𝑁𝑁𝑒𝑤𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒: Number of new particles  

𝑇𝐴𝑛𝑡: cpu time for generating a new ant 

𝑇𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒: cpu time for generating a new particle 

T𝑈𝑝𝑑𝑎𝑡𝑒: cpu time for relevant processes including updating the pheromone table, updating the position 

of a new particle, and other necessary processing times 

 

6. Experiments 

In this section, proposed algorithm is assessed with ACOR, PSO and sequential approach with the 

enlarged pheromone-particle table [8] algorithms by 10 test functions; the test functions are introduced 

in Table 1. In this table, “Range” presents function domain and “Dim” specifies Function dimension. 

The proposed implementation was executed on the Matlab9 platform, with an Intel Core 2 Duo CPU 

running at 3.0GHz and 4GB RAM; Parameters needed to be set for running algorithms are given in 

Table 2.  Selecting parameters has been experimentally. Below, the results of running algorithms are 

given. To summarize the sequence with enlarged pheromone-particle table model was introduced as 

hybrid I and proposed model as hybrid II. 

Table 1. Test functions adopted for our experiments. 

Test function 

Number Of 

Global 

Minimum 

Dim Range 

 

2 1  

 

3 1  

   

 

1

160
x            for    0 x < 10

10

160
f x = 15- x    for    10 x < 15

5

200
x-15    for    15 x 20

5











 


0 20x 

   

 

2

160
x               for   0 x 15

10

160
f x 15      for  15 x 20

5

200
x 20       for  20 x 25

5

x


 




   



  


0 x 25 
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7 1  

 
5 1  

𝑓5(𝑥) =

{
 

 
15(15 − 𝑥)                     𝑓𝑜𝑟 0 ≤ 𝑥 < 15

(
15

4
) (𝑥 + 10)                𝑓𝑜𝑟 15 ≤ 𝑥 < 20

15(𝑥 − 20)                      𝑓𝑜𝑟 20 ≤ 𝑥 < 30  

 

 

2 1 0 ≤ 𝑥 ≤ 30 

 

 

5 1  

 

1 1  

 
5 1  

 
1 2 

 

 
1 2 

 
 

Table 2. System parameter setting 

Parameter ACOR PSO Hybrid Models 

Learning rate C1  2 2 

Learning rate C2  2 2 

Learning rate q 0.9  0.9 

Evaporation rate 1  1 

Number of particles  20  

Size of Pheromone-particle 

table 
  10 

Number of ants 30  20 

Number of iterations 1000 1000 1000 

 

 

 

 

 

 

 

 

 

3

80(2.5 - x)               for  0 x 2.5

64 2.5             for  2.5 x 5

64 7.5             for  5 x 7.5

28 7.5             for  7.5 x 12.5
f x

28 17.5           for  12.5 x 17.5

32 17.5           for 17. 5 x

x

x

x

x

x

 

  

  

  


  

  

 

 

22.5

32 27.5           for  22.5 x 27.5

80 30              for 27. 5 x 30

x

x












  


  

0 30x 

6

3f (x) = sin (5px) 10 1x  

 
3

6 4
6f x = sin (5p x - 0.05 )

 
 
 

0 1x 

   
3

2 6 4
7

x 0.08
f x exp[ 2log 2 .( ) ].sin (5π x 0.05 )

0.854

 
   

 

0 1x 

  10

8f x tan (12πx) 10 10x  

1

2 2

9 1 2 1 2 2( , ) ( ( ) exp( ( ) ( ) ))f x x cos x cos x x π x π        j-100 < x  < 100,  j = 1, 2

2 2

10 1 2 1 2f (x , x ) = x + x j-5.12 < x  < 5.12,  j = 1, 2
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Table 3. Average results of 20 different runs for PSO, ACOR and proposed methods algorithms on benchmark 

functions are presented in Table 1 

Test 

Function 

PSO ACOR Hybrid I Hybrid II 

Average 

Best 

Cost 

Average 

Cpu 

Time (s) 

Average 

Best 

Cost 

Average 

Cpu 

Time (s) 

Average 

Best 

Cost 

Average 

Cpu 

Time (s) 

Average 

Best 

Cost 

Average 

Cpu Time 

(s) 

F1 0.38774 0.6136 0.31388 0.6645 0.26528 1.0822 0.05096

1 

1.5672 

F2 0.34911 0.6580 0.37914 0.7141 0.24491 1.1154 0.11437 1.5848 

F3 0.26575    0.6113 0.3443 0.6585 0.24099 1.0842 0.09561

1 

1.5890 

F4 8.3681e-

014 

0.6346 2.0103e

-013 

0.6733 2.3859e-

013 

1.1230 1.0395e

-014 

1.6617 

F5 0.31397 0.5937 0.30177 0.6588 0.29456 1.0679 0.06068

9 

1.4670 

F6 1.2581e-

013 

0.7884 3.2759e

-013 

0.7427 2.463e-

015 

1.6943 1.4233e

-015 

2.05162 

F7 4.7057e-

013 

0.8282 1.3821e

-012 

0.7574 3.0966e-

014 

1.3979 3.1345e

-017 

2.1943 

F8 8.2144e-

025 

0.6401 2.5625e

-020 

0.6807 1.1819e-

020 

1.1346 3.4216e

-023 

1.7215 

F9 -0.99689 0.584 -0.9978 0.64 -0.9999 1.0507 -1 1.519 

F10 0.1241 0.54 0.054 0.642 0.0087 1.1245 0.00008

4 

1.4511 
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Fig. 4. Graph changes mean the best cost of PSO, ACOR and Hybrid algorithms in 20 different runs 

on standard benchmark functions at each iteration (X-axis represents the iteration counter, and the y-

axis shows the average value of the best cost of algorithm in 20 repeated). 

In above implementations, the proposed method has found all global optimum points related to each 

test function in all test functions in 20 different performances. In other words, the proposed method 

has had 100 percent success in finding the optimal global points of test functions in Table 1, but PSO 

and ACOR methods have 100% success rate only for test functions of F1, F2, F5 and F9 and Hybrid I 

have 100% success rate only for test functions of F1, F2, F5, F9 and F10. One of the main reasons for the 

superiority of proposed method compared to other methods is to maintain population diversity while 

generating new solutions and the new population diversity prevents premature convergence and 

entrapment in local optima. In this method, superior solutions produced by methods of PSO and 

ACOR are maintained in each iteration of solution archiving. 

7. Conclusion 

This paper presents a combinational method of two particle swarm optimization and continuous ant 

colony algorithms for multimodal optimization. The proposed method was compared with PSO, 

ACOR and sequence with enlarged pheromone-particle table methods and results of this comparison 

are presented in Section 7. As results of implementation show, using proposed combinational method 

for multimodal optimization has improved the accuracy of optimal answers compared to PSO, ACOR 

and sequence with enlarged pheromone-particle table methods. 
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