
Journal of mathematics and computer science        14 (2015), 250-257 

 

 
Some Algebraic Structures of Languages 

 
Dasharath Singh1,*, Ahmed Ibrahim Isah1,+ 

 
1Mathematics Department, Ahmadu Bello University, Zaria, Nigeria. 

*mathdss@yahoo.com 

 +aisah204@gmail.com  

 
Article history: 

Received   November, 2014 

Accepted    January, 2015 

Available  online  January 2015 

 

Abstract 
In this paper, suitable operations are defined on the class of partitions of a language which give rise to 

certain monoids and semigroups. In particular, certain algebraic structures of a language defined over a 

string are described.   
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1. Introduction 

The applications of various algebraic structures abound (see [1, 2, 3, 6, 7, 8] for details and 

related references). In particular, certain algebraic structures have found applications in 

formal language theory (see [6] for details). Moreover, a number of algebraic structures of 

partitions of a set and that of an integer have been developed which have useful applications 

in computer arithmetic, formal languages and sequential machines (see [5, 7] for details). In 

this paper, suitable operations on the set of partitions of a language are defined which give 

rise to certain monoids and semigroups. In addition, certain algebraic structures of a language 

defined over a string are described.   
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2. Definitions 

Definition 2.1   Union, Intersection and Concatenation of Languages 

Let 𝑋 be an alphabet and 𝑋 denote the set of all strings over  𝑋. A language 𝐿 is a subset of 

𝑋  i.e., 𝐿 ⊆ 𝑋 .  Let 𝐿1  and 𝐿2  be any two languages over   𝑋 . The union of 𝐿1  and   𝐿2 , 

denoted  𝐿1 ∪ 𝐿2, is the language 𝐿1 ∪ 𝐿2 = {𝑢 ∈ 𝑋 | 𝑢 ∈ 𝐿1 or  𝑢 ∈ 𝐿2}. The intersection of 

𝐿1  and  𝐿2 , denoted  𝐿1 ∩ 𝐿2 , is the language 𝐿1 ∩ 𝐿2 = {𝑢 ∈ 𝑋 | 𝑢 ∈ 𝐿1  and  𝑢 ∈ 𝐿2}. The 

concatenation (or simply, catenation) of 𝐿1 and  𝐿2, denoted    𝐿1𝐿2, is the language   𝐿1𝐿2 =
{𝑢 =   𝑢1𝑢2|  𝑢1 ∈ 𝐿1 and  𝑢2 ∈ 𝐿2}. It is immediate to see that the union, intersection and 

catenation of languages are each associative because union, intersection and catenation of 

strings are each associative and hence 𝑋 with catenation is a non-commutative monoid (see 

[2, 4], for details). In the same vein, let  𝑢 be defined as the set of all strings over  𝑢 ∈ 𝑋, 

then 𝑢 with catenation is a commutative monoid.  

 

Definition 2.2    Cardinality bounded languages 

Let  𝑋𝑛 , henceforth called a cardinality bounded language over  𝑋, denote the set of all 

strings of length  ≤ 𝑛 over  𝑋. In other words, {𝑋𝑛 } is a strictly monotonic increasing nested 

sequence, and obviously  𝑋 = 𝑋0 ∪ 𝑋1 ∪ … ∪ 𝑋𝑛 ∪ … . However, it gives an alternative 

form of representation of the usual one viz., 𝑋 = 𝑋0 ∪ 𝑋1 ∪ … ∪ 𝑋𝑛 ∪ …, where 𝑋𝑛 is the set 

of all strings of length 𝑛 over  𝑋. Moreover, ⋃ 𝑋𝑛∞
𝑛=0 = ⋃ 𝑋𝑛∞

𝑛=0 , but ⋂ 𝑋𝑛∞
𝑛=0 = ∅, whereas 

⋂ 𝑋𝑛∞
𝑛=0 = {𝜀}. 

It may also be observed that each of 𝑋𝑛 is a well-ordered set with ⊂ (inclusion), and hence a 

finite ordinal, say 𝛼, 𝛽, 𝛾, …, satisfying the following properties: (i) 𝛽 ∈ 𝛼 ⟹ 𝛽 ⊂ 𝛼 (ii) each 

𝛼 is well-ordered by ⊂ and (iii) neither 𝛼 nor its element is an element of itself. 

 

For example, let   𝑋 = {0,1} ,  then 𝑋0 = {𝜀}, 𝑋1 = {𝜀, 0,1}, 𝑋2 = {𝜀, 0,1,00,01,10,11},
𝑋3 = {𝜀, 0,1,00,01,10,11,000,001,010,011,100,101,110,111}, and so on. 

 

Let us recapitulate that the cardinality of a language  𝐿, denoted  |𝐿|, is the number of strings 

in   𝐿 . Thus 𝑋  is countably infinite over any   𝑋 . Moreover,  |𝑋𝑛| = |𝑋0| + |𝑋1| + |𝑋2| +
⋯ + |𝑋𝑛|. 

 

Examples  

Let  𝑋 = {0}. Then, 

|𝑋𝑛| = |𝑋0| + |𝑋1| + |𝑋2| + ⋯ + |𝑋𝑛| = |{𝜀}| + |{0}| + |{00}| + |{000}| + ⋯ + |{0}𝑛|   

= 10 + 11 + 12 + ⋯ + 1𝑛. 
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Let  𝑋 = {0,1}. Then, 

|𝑋𝑛| = |𝑋0| + |𝑋1| + |𝑋2| + ⋯ + |𝑋𝑛| = |{𝜀}| + |{0,1}| + |{00,01,10,11}|+ 

+|{000,001,010,011,100,101,110,111}| + ⋯ + |{0,1}𝑛| = 20 + 21 + 22 + ⋯ + 2𝑛. 

 

Let  𝑋 = {0,1,2}. Then, 

|𝑋𝑛| = |𝑋0| + |𝑋1| + |𝑋2| + ⋯ + |𝑋𝑛| = |{𝜀}| + |{0,1,2}| +
|{00,01,02,10,11,12,20,21,22}|+ 

|{000,001,002,010,011,012,020,021,022,100,101,102,110,111,112,120,121,122,200,201
, 

202,210,211,212,220,221,222}| + ⋯ + |{0,1,2}𝑛| = 30 + 31 + 32 + ⋯ + 3𝑛.  

 

Let  𝑋 = {0,1,2,3}. Then, 

|𝑋𝑛| = |𝑋0| + |𝑋1| + |𝑋2| + ⋯ + |𝑋𝑛| = |{𝜀}| + |{0,1,2,3}| + |{00,01,02,03,10,11,12,13, 

20,21,21,22,23,30,31,32,33}| + |{000,001,002,003,010,011,012,013,020,021,022,023, 

030,031,032,033,100,101,102,103,110,111,112,113,120,121,122,123,130,131,132,133, 

200,201,202,203,210,211,212,213,220,221,222,223,230,231,232,233,300,301,302,303, 

310,311,312,313,320,321,322,323,330,331,332,333}| = 40 + 41 + 42 + ⋯ + 4𝑛. 

 

By induction, if 𝑋 be a 𝑘 −element set, we have  

|𝑋𝑛| = 𝑘0 + 𝑘1 + 𝑘2 + ⋯ + 𝑘𝑛.  

 

 

3. Some algebraic structures of languages  

3.1 Monoids of equivalence classes of a partition of a language 

Let  𝑅𝑎  be a relation on X such that for 𝑠, 𝑡 ∈ X, 𝑠𝑅𝑎𝑡 if and only if 𝑠 and 𝑡 are of equal 

length.  

It is easy to see that 𝑅𝑎 is an equivalence relation on X and hence, it partitions X into its 

equivalence classes. In other words, a partition of X can be viewed as a collection of disjoint 

languages of  X, whose union is  X. 

 

Let the equivalence class generated by 𝑆 ∈ X  be denoted [𝑆]𝑅𝑎
 or simply   [𝑆] , and the 

quotient set X/𝑅𝑎 denote the family of all equivalence classes of  X.  

Let us define an operation  on  X/𝑅𝑎 such that  [𝑠][𝑡] = [𝑠𝑡] where 𝑠𝑡 is the catenation of 

𝑠 and  𝑡. Then, (X/𝑅𝑎, , [𝜀]) is a monoid of the partition of  𝑋 induced by  𝑅𝑎, where [𝜀] 
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is the identity of catenation. The operation   is neither commutative nor idempotent, in 

general. However, the identity element [𝜀] is the only idempotent element. Also, the operation 

 is commutative if X is a singleton.   

Moreover, as described in section 2 above, it is easy to see that (𝐿/𝑅𝑎, , [𝜀])  is a 

commutative monoid where  𝐿 = u, u ∈ X. 

 

Similarly, for each of the relations 𝑅𝑏 , 𝑅𝑐, and 𝑅𝑑 defined on X as  

(i)    𝑠𝑅𝑏𝑡 iff both 𝑠 and 𝑡 have the same number of occurrences of each symbol, 

(ii)    𝑠𝑅𝑐𝑡 iff 𝑠 and 𝑡 agree in their first symbols, and 

(iii)   𝑠𝑅𝑑𝑡 iff 𝑠 and 𝑡 agree in their last symbols; 

the respective quotient set is a non-commutative and non-idempotent monoid. 

Moreover, each of 𝑅𝑏 , 𝑅𝑐, and 𝑅𝑑, similar to 𝑅𝑎, defined on a language 𝑢, partitions it, and 

the respective quotient set is a commutative monoid of the partitions of 𝑢. 

 

3.2 Monoids of partitions of a language  

We introduce further three operations on the class of all partitions of  X.  

Let ℱ(X) denote the collection of all partitions of X and 𝑆 = {𝑆1, 𝑆2, … } and 𝑇 = {𝑇1, 𝑇2, … } 

be two partitions of  X. Observe that 𝑆𝑖′𝑠 and 𝑇𝑖′𝑠 are the blocks of 𝑆 and 𝑇, respectively, and 

each block is a subset of X.   

Let a binary operation ⊛ be defined on ℱ(X) as follows: 

For any 𝑆, 𝑇 ∈ ℱ(X), 𝑆 ⊛ 𝑇 consists of the set of nonempty intersections of every block of 𝑆 

with every block of  𝑇. It is clear that the operation ⊛ is both associative and commutative as 

intersection on languages is associative and commutative.  The partition consisting of a 

unique single block is the identity of ⊛. It may be observed that  𝑃 ⊛ 𝑃 = 𝑃  for all 𝑃 ∈

ℱ(X) i.e.,  ⊛  is idempotent. Thus,  (ℱ(X), ⊛)  or (ℱ(X), ⊛, {X})  is a commutative, 

idempotent monoid. 

Let another binary operation ⊕ on ℱ(X) be defined as follows:  

Let  𝑆, 𝑇 ∈ ℱ(X). A subset 𝑃 of X belongs to  𝑆 ⊕ 𝑇 if  

(i) 𝑃 is the union of one or more elements of 𝑆;  

(ii) 𝑃 is the union of one or more elements of 𝑇; and 

(iii) No element of 𝑃 satisfies (i) and (ii) except 𝑃 itself.  

 Clearly, ⊕ is associative and commutative, and the partition consisting of singleton blocks is 

the identity of the operation ⊕  on ℱ(X).   Thus, (ℱ(X) ,   ⊕)  or (ℱ(X) ,   ⊕,
{x0, x1, x2, … }), where x𝑖′𝑠 are the elements of  X, is a commutative, idempotent monoid.     

 

Finally, let a binary operation ⊚ be defined on ℱ(X) as follows:  
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For any  𝑆, 𝑇 ∈ ℱ(X), 𝑆 ⊚ 𝑇 is the union of every block of 𝑆 with every block of 𝑇 if no 

element of the block of 𝑆 and/or 𝑇 appears previously. In the case, a block has an element that 

appeared previously, it is not included in the union. 

It is immediate to see that ⊚ is associative but non-commutative and every element 𝑃 ∈
ℱ(X) is idempotent as 𝑃 ⊚ 𝑃 = 𝑃 holds. Thus, (ℱ(X), ⊚) is only a semigroup as there is 

no identity element.  

It is immediate to see that all the foregoing constructions, described above, hold good for 𝑋𝑛 

as well.    

 

Examples   

Let 𝑋 = {0,1} be an alphabet and 𝑛 = 2. Then, X2 = {ε, 0,1,00,01,10,11}.  

Let   𝑆, 𝑇 ∈ ℱ(X2) where S = {ε, 0,1, 00,01,10,11} and 𝑇 = {ε, 0,1, 00,01,10, 11}. Then, the 

following hold: 

(i) 𝑆 ⊛ 𝑇 = {ε, 0,1, 00,01,10, 11} ∈ ℱ(X2) , S ⊛ 𝑆 = {ε, 0,1, 00,01,10,11} = 𝑆,  and 

𝑆 ⊛ 𝑇 = 𝑇 ⊛ 𝑆. Similarly, results could be computed to show associativity. Thus, 

(ℱ(X2), ⊛) is a commutative, idempotent monoid with {ε, 0,1,00,01,10,11} as the 

identity. 

 

(ii) 𝑆 ⊕ 𝑇 = {ε, 0,1, 00,01,10,11} ∈ ℱ(X2) , 𝑆 ⊕ 𝑆 = {ε, 0,1, 00,01,10,11} = 𝑆 , and 

𝑆 ⊕ 𝑇 = 𝑇 ⊕ 𝑆. Moreover, 𝐼 = {ε, 0, 1, 00, 01, 10, 11} is the identity element since 

𝐼 ⊕ 𝑇 = {ε, 0, 1, 00, 01, 10, 11} ⊕ {ε, 0,1, 00,01,10, 11} = {ε, 0,1, 00,01,10, 11} =

𝑇 , for any 𝑇 . Results could be computed to show that ⊕  is associative.  Thus, 

(ℱ(X2), ⊕) is a commutative, idempotent monoid with {ε, 0, 1, 00, 01, 10, 11} as 

the identity. 

 

(iii) 𝑆 ⊚ 𝑇 = {ε, 0,1, 00,01,10, 10} ∈ ℱ(X2) , 𝑇 ⊚ 𝑆 = {ε, 0,1, 00,01,10,11} ∈ ℱ(X2) , 

and 𝑇 ⊚ 𝑆 ≠ 𝑆 ⊚ 𝑇 . Moreover, 𝑇 ⊚ 𝑇  = {ε, 0,1, 00,01,10, 11} ⊚

{ε, 0,1, 00,01,10, 11} = {ε, 0,1, 00,01,10, 11} = 𝑇. In order to show associativity, let 

𝑅 = {ε, 0,1,00, 01,10, 11} . Then, (𝑆 ⊚ 𝑇) ⊚ 𝑅 = {ε, 0,1, 00,01,10, 10} ⊚

{ε, 0,1,00, 01,10, 11} = {ε, 0,1,00, 01,10, 11} , and  𝑆 ⊚ (𝑇 ⊚ 𝑅) =

{ε, 0,1, 00,01,10,11} ⊚ ({ε, 0,1, 00,01,10, 11} ⊚ {ε, 0,1,00, 01,10, 11})  =

{ε, 0,1, 00,01,10,11} ⊚ {ε, 0,1,00, 01,10, 11} = {ε, 0,1,00, 01,10, 11}  i.e., (𝑆 ⊚
𝑇) ⊚ 𝑅 = 𝑆 ⊚ (𝑇 ⊚ 𝑅). Thus, (ℱ(X2), ⊚) is an idempotent semigroup.        

 

 

3.3 Some algebraic structures of a language over 𝒖 ∈ 𝑿 
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Let 𝑢 denote the set of all strings over 𝑢 ∈ 𝑋 . Then 𝑢  is a commutative monoid under 

catenation. Moreover, the monoid 𝐶 = (𝑢, ∘)  is isomorphic to the monoid   𝑁 = (ℕ,   . ) , 

where ∘ and . denote catenation and multiplication, respectively. 

 

Proof  

The first part follows by definition. 

For the second part, let 𝑓: 𝐶 ⟶ 𝑁 be a function defined as 

  

 

 

where 𝑢𝑛 is the 𝑛 − times catenation of 𝑢 itself.  

 

It is easy to see that  ∀𝑢, 𝑣 ∈ 𝐶, since 𝑓(𝑢𝑣) = 𝑓(𝑢1𝑢2 … 𝑢𝑛𝑣1𝑣2 … 𝑣𝑛) =
𝑓(𝑢1)𝑓(𝑢2) … 𝑓(𝑢𝑛)𝑓(𝑣1)𝑓(𝑣2) … 𝑓(𝑣𝑛) = 𝑓(𝑢1𝑢2 … 𝑢𝑛)𝑓(𝑣1𝑣2 … 𝑣𝑛) = 𝑓(𝑢)𝑓(𝑣), the 

function 𝑓 is a monoid homomorphism. 

Let 𝑢, 𝑣 ∈ 𝐶  such that 𝑓(𝑢) = 𝑓(𝑣) i.e., 𝑓(𝑢1)𝑓(𝑢2) … 𝑓(𝑢𝑛) = 𝑓(𝑣1)𝑓(𝑣2) … 𝑓(𝑣𝑛). Then, 

as strings are ordered, we have 𝑢1 = 𝑣1, 𝑢2 = 𝑣2, … , 𝑢𝑛 = 𝑣𝑛 i.e., 𝑢 = 𝑣, which imply that 𝑓 

is injective. Moreover, by the definition of 𝑓, ∀𝑛 ∈ ℕ, ∃𝑢 ∈ 𝐶 such that 𝑓(𝑢) = 𝑛 i.e., 𝑓 is 

surjective. 

Hence 𝑓 is an isomorphism. 

 

Proposition 3.3.1   

A finite 𝐶 = (𝑢, ∘) is a cyclic group of order  𝑛. 

 

Proof 

Let 𝑢 be represented as  {𝑢0, 𝑢1, … , 𝑢𝑛−1, … }. A finite 𝐶 can be represented as (𝑢𝑛
 , ∘) where 

𝑢𝑛
  is the set of 𝑛 elements of  𝑢. Let 𝐶 be finite viz.,  𝐶 = {𝐶𝑖, ∘}, 𝑖 = 0,1, … , 𝑛 − 1, where    

 

  

 

Let  𝐶𝑖𝐶𝑗 = 𝐶𝑖+𝑗,  𝑖 + 𝑗 < 𝑛 and  𝐶𝑖𝐶𝑗 = 𝐶𝑖+𝑗−𝑛,  𝑖 + 𝑗 ≥ 𝑛. Then, it is easy to see that 𝐶 is a 

cyclic group of order  𝑛. 

Example  

𝐶𝑖 = 

𝐶𝑖+1, 0 ≤ 𝑖 < 𝑛 − 1 

𝐶0, 𝑖 = 𝑛 − 1. 

𝑓(𝑢) = 

1, if 𝑢 = 𝜀, 

𝑛, if 𝑢 = 𝑢𝑛,   ∀𝑢 ∈ 𝐶,  
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Let   𝑢 = 𝑏𝑏𝑎, 𝑢 = {𝜀, 𝑏𝑏𝑎, 𝑏𝑏𝑎𝑏𝑏𝑎, … }  and 𝑛 = 7 . Then,   𝐶 =
{𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6} =
{𝜀, 𝑏𝑏𝑎, 𝑏𝑏𝑎𝑏𝑏𝑎, 𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎, 𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎, 𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎, 𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎}. 

              Observe that 𝐶1𝐶2 = 𝐶3,   𝐶4𝐶5 = 𝐶2, 𝐶6𝐶1 = 𝐶0, etc. Thus, 𝐶  is a cyclic group of 

order  7. 

 

Proposition 3.3.2 

Languages of a finite 𝑢  form a bounded distributive lattice.  

 

Proof  

Let a finite  𝑢 be represented as  𝑢𝑛⊛ = u0 ∪ u1 ∪ … ∪ un−1, and  𝐺 be the set of all possible 

languages of   u𝑛⊛ . Let 𝐻  be a structure consisting of   𝐺  with union and intersection 

representing the (join) ∨  and (meet) ∧  operations, respectively. Let 𝐿1, 𝐿2, 𝐿3 ∈ 𝐺. It is 

straightforward to see that   𝐿1 ∨ 𝐿2 = 𝐿2 ∨ 𝐿1 ,  𝐿1 ∨ (𝐿2 ∨ 𝐿3) = (𝐿1 ∨ 𝐿2) ∨ 𝐿3  and  𝐿1 ∨
 𝐿1 =  𝐿1  hold, as the union of languages is associative, commutative and idempotent. Thus, 

(𝐺, ∨) is a commutative, idempotent semigroup. Also, as the intersection of languages is 

commutative, associative and idempotent, (𝐺, ∧) is a commutative, idempotent semigroup.  

Moreover, as the absorption properties hold i.e., 𝐿1 ∨ (𝐿1 ∧ 𝐿2) = 𝐿1 and 𝐿1 ∧ (𝐿1 ∨ 𝐿2) = 𝐿1, 

and for all 𝐿1, 𝐿2 ∈ 𝐺,   𝐿1 ∧ 𝐿2 = 𝐿1 and  𝐿1 ∨ 𝐿2 = 𝐿2 hold,  𝐻 = (𝐺, ∨, ∧) is a lattice.  

Also, ∀𝐿 ∈ 𝐺, as 𝐿 ∨ ∅ = 𝐿, ∅ is the identity element of the join operation and, as 𝐿 ∧ 𝐺 = 𝐿, 

𝐺 is the identity of the meet operation. Thus, 𝐻 is a bounded lattice.  

In addition, as 𝐿1 ∨ (𝐿2 ∧ 𝐿3) = (𝐿1 ∨ 𝐿2) ∧ (𝐿1 ∨ 𝐿3)  and  𝐿1 ∧ (𝐿2 ∨ 𝐿3) = (𝐿1 ∧ 𝐿2) ∨
(𝐿1 ∧ 𝐿3) hold, 𝐻 is a bounded distributive lattice. 

 

Example    

Let 𝑢 = 01 ∈ 𝑋  over an alphabet   𝑋 = {0,1} , and   𝑢3⊛ = {𝜀, 01,0101} . The set 𝐺  of all 

possible languages of u3⊛ 

is  {∅, {ε}, {01}, {0101}, {ε, 01}, {ε, 0101}, {01,0101}, {ε, 01,0101}}.  

Observe that {01} ∨ ({01} ∧ {01,0101}) = {01},  {01} ∧ ({01} ∨ {01,0101}) = {01}  i.e., 

absorption properties hold. Also, ∅ ∨ {01,0101} = {01,0101}  and {ε, 0101} ∧
{ε, 01,0101} = {ε, 0101} i.e., ∅ is the identity for  ∨, and {ε, 01,0101} is the identity for∧. 

Similarly, results for various other combinations could be computed.  

Thus, (𝐺, ∨, ∧, ) is a bounded distributive lattice.  

 

4. Concluding Remarks 

A number of operations were introduced on the class of partitions of a language which gave 

rise to certain monoids and semigroups. Moreover, cyclic group, commutative monoid and 
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bounded distributive lattice of a language over a string were introduced. It may be emphasized 

at this end that the constructions provided in this paper, specially defined on  𝑋𝑛, may be 

found useful to Network segmentation, analysis of large databases, finite state machines, etc. 

In particular, an alternative representation of a language, developed in definition 2.2, may be 

exploited for further research.         

 

5. Acknowledgements 
 

The authors are thankful to the Editor of The Journal of Mathematics and Computer Science for 

his suggestion to improve upon the references which has been incorporated. 

 

References 

[1] B. Ahmadi, C. M. Campbell and H. Doostie, “Non-commutative finite monoids of a given 
order 𝑛 ≥ 4 “ VERSITA, 22 (2) (2014) 29-35.  

[2] J. Gallier, “Introduction to the Theory of Computation”, Formal Languages and Automata 
Models of Computation, Lecture Notes, (2010) 1- 60.   

[3] E. Hosseinpour, “T-Rough Fuzzy Subgroups of Groups”, The Journal of Mathematics and 
Computer Science 12 (3) (2014) 186-195.  

[4] J. Kari, “Automata and Formal Languages”, Lecture Notes, University of Turku, 
Finland, (2013) 1 – 150. 

[5] D.E Knuth, “The Art of Computer Programming”, Semi-numerical Algorithms, Vol. II, 
2nd, Addison-Wesley, (1981). 

[6] U. Priss, L. J. Old, “Conceptual Structures: Inspiration and Application”, Proceedings of 
the 14th International Conference on Conceptual Structures ICCS, Denmark, 4068 (2006) 
388-400.  

[7] J.P. Tremblay, R. Manohar, “Discrete Mathematical Structures with Applications to          
Computer Science”, Tata McGraw-Hill Edition, (1997).  

[8] S.A. N. Zadeh, A. Radfar, “A. B. Saied, On BP-algebras and QS-algebras”, The Journal 
of Mathematics and Computer Science, 5 (1) (2012) 17-21.  


