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Abstract 

A collocation scheme based on the use of the multiquadric quasi-interpolation operator
2WL , integrated 

radial basis function networks (IRBFNs) method and three order finite difference method is applied to the 

nonlinear Klein-Gordon equation. In the present scheme, the three order finite difference method is used 

to discretize the temporal derivative and the integrated form of the multiquadric quasi-interpolation 

scheme is used to approximate the unknown function and its spatial derivatives. Several numerical 

experiments are provided to show the efficiency and the accuracy of the given method. 
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1. Introduction 

The Klein-Gordon equation is a relativistic version of the Schrodinger equation, which describes scalar 

spineless particles. It appears in various physical applications such as the propagation of fluxions in the 

Josephson junctions, the motion of rigid pendula attached a stretched wire, and dislocations in crystals 

[21]. 

In this paper, we consider the one-dimensional nonlinear Klein-Gordon equation of the form: 
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( ) ( , ), [ , ] , 0 ,tt xxu u F u f x t x a b t T                                                                            (1) 

with the initial conditions 

1

2

( ,0) ( ), ,

( ,0) ( ), ,t

u x g x x

u x g x x

 

 
                                                                                                                          (2) 

and the boundary condition 

( , ) ( , ), ,u x t g x t x                                                                                                                          (3) 

where  ,u u x t   represents the wave displacement at position x  and time ,t    is a known constant, 

 F u   is the nonlinear force such that 0
F

u




  and  1 ,g x   2g x  and  ,g x t   are known functions. 

The general form of (1) covers many different generalized Klein-Gordon equations arising in various 

physical applications. For example, when ( ) sin( ),F u u   ( ) sin( ) sin(2 )F u u u   and 

( ) sinh( ) sinh(2 )F u u u   , (1) becomes the well-known sine-Gordon equation, the double sine-Gordon 

equation and the double sinh-Gordon equation, respectively.  The above nonlinear Klein-Gordon 

equations are Hamiltonian partial differential equations (PDEs), and for a wide class of force  ,F u  it 

has the conserved Hamiltonian quantity (or energy) [18] 

2 21 1
( ( )) ,
2 2

t xH u u G u dx     

where G'(u)=F(u) . 

    Up to now, many authors have studied the numerical and approximation solutions of the nonlinear 

Klein-Gordon equation by using various techniques that some of them are the finite difference method, 

the spectral method, the adomian decomposition method, the inverse scattering method, Bäcklund 

transformation, the auxiliary equation method, the Wadatitrace method, Hirota bilinear forms, pseudo-

spectral method, the tanh-sech method, the sine-cosine method, Jacobi elliptic functions and the Riccati 

equation expansion method and so on (see [10, 15, 25, 26, 30, 31] and references therein). 

    Finite difference methods are known as the first technique for solving PDEs. Even though these 

methods have been widely used but they require the construction and update of a mesh and hence bring 

inconvenience during computation.  

     In 1990, Kansa [13, 14] modified Hardy's multiquadric (MQ) RBF method to solve PDEs. Since then, 

using of the RBFs collocation method for solving of PDEs have attracted the attention of researchers 

because no tedious mesh generation is required. Recently, the Kansa’s method has been developed to 

simulate nonlinear PDEs [2] such as Burger's equation [11], sine-Gordon equation [6], Klein-Gordon 

equation [7], and Korteweg-de Vries (KdV) equation [5] etc. In all these works, the solution function is 

decomposed into RBFs and its derivatives are then obtained through differentiation that caused the 

reduction in convergence rate. In order to avoid from this problem, Mai-Duy and Tran-Cong introduced 

an integrated MQ-RBFNs scheme for the approximation of function and its derivatives [20]. Numerical 
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experiments and theoretical analysis indicate that for solving PDEs integrated RBF (IRBF) procedure is 

more accurate in comparison with direct RBF (DRBF) procedure. Also, IRBF scheme is more stable than 

DRBF for a range of PDEs [20, 27]. 

  In both DRBF and IRBF schemes, one must resolve a linear system of equations at each time step. Hon 

and Wu [12], Wu [8, 9] and others have provided some successful examples using MQ quasi-

interpolation scheme for solving differential equations. Beatson and Powell [1] and Wu and Schaback 

[29] proposed other univariate MQ quasi-interpolations. In [3, 4], Chen and Wu used MQ quasi-

interpolation to solve Burgers' equation and hyperbolic conservation laws. Also, Xiao et al. [25] presented 

the numerical method based on Chen and Wu's method for solving the third-order KdV equation. 

Recently, Jiang et al. [16] have introduced a new multi-level univariate MQ quasi-interpolation approach 

with high approximation order compared with initial MQ quasi-interpolation scheme. This approach is 

based on inverse multiquadric (IMQ) RBF interpolation, and Wu and Schaback's MQ quasi-interpolation 

operator DL   that have the advantages of high approximation order. 

     The Jiang et al. MQ quasi-interpolation one-dimensional operator 
2WL  is summation of two series that 

the second series coefficients are combined of first series coefficients. By giving relation between two 

series coefficients based on function values, we can convert it to a compact form that is based on one 

series and can use it in integrated form for the numerical solution of PDEs. 

     This paper presents a novel numerical scheme to solve the nonlinear Klein-Gordon equation that is 

based on integrated MQ quasi-interpolation scheme. The rest of present paper is arranged as follows. 

Brief information of the MQ quasi-interpolation scheme is given in Section 2. Section 3 describes our 

method on the nonlinear Klein-Gordon equation. Several numerical experiments are presented in Section 

4, followed by a conclusion summary in Section 5. 

 

2. The MQ quasi-interpolation scheme  
 

    In this section, some elementary knowledge about of three univariate MQ quasi-interpolation schemes, 

namely, ,DL  WL   and 
2WL   is presented. For more information about MQ quasi-interpolation operators 

see [1,3,4, 29]. 

For a given interval [ , ]a b   and a finite set of distinct points 

0 1 1 1, max ( ),N i N i ia x x x b h x x        

quasi-interpolation of a univariate function :[ , ]f a b   is given by 

0

( ) ( ) ( ),
N

i i

i

L f f x x


  

where function  ( )i x  is a linear combination of the MQs 

2 2( ) ( ) ,i ix c x x     
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and  c    is a shape parameter. In [29], Wu and Scheback presented the univariate MQ quasi-

interpolation operator LD that is defined as 

0

( ) ( ) ( ),
N

iD i

i

L f x f x x



                                                                                                                         (4)

 

where 

1 0
0

1 0

( ) ( )1
( ) ,

2 2( )

x x x
x

x x




 
 


 

1 02 1
1

2 1 1 0

( ) ( )( ) ( )
( ) ,

2( ) 2( )

x x xx x
x

x x x x

 


 
 

 
                                                                                              (5)

 

1 1

1 1

( ) ( ) ( ) ( )
( ) , 2 2,

2( ) 2( )

i i i i
i

i i i i

x x x x
x i N

x x x x

   
  

 

 
  

 
                                                                                 

 

1 1 2
1

1 1 2

( ) ( ) ( ) ( )
( ) ,

2( ) 2( )

N N N N
N

N N N N

x x x x x
x

x x x x

  
   



  

  
 

 
 

and 

1

1

( ) ( )1
( ) .

2 2( )

N N
N

N N

x x x
x

x x


 



 
 


 

    In RBFs interpolation, high approximation order can be gotten by increasing the number of 

interpolation centers but we have to solve unstable linear system of equations. By using MQ quasi-

interpolation scheme, we can avoid this problem, whereas the approximation order is not good. Therefore, 

Jiang et al. [16] defined two MQ quasi-interpolation operators denoted as WL and 
2WL which pose the 

advantages of RBFs interpolation and MQ quasi-interpolation scheme. The process of MQ quasi-

interpolation of WL and 
2WL are as follows that is described in [16]. 

   Suppose that 
1{ }

j

N

k jx 
is a smaller set from the given points 0{ }N

i ix  where N  is a positive integer 

satisfying N N and 0 1 1
0 .

N
k k k N


     Using the IMQ-RBF, the second derivative of ( )f x

can be approximated by RBF interpolant fS  as 

1

( ) ( ),
N

f j j

j

S x x 




                                                                                                                                (6)

 

where 
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2

2 2 3/2
( ) ,

( ( ) )
j

j

k

s
x

s x x
 

 
 

and s  is a shape parameter. The coefficients 
1{ }N

j j 
are uniquely determined by the interpolation 

condition 

1

( ) ( ) ( ), 1 .
i i i

N

f k j j k k

j

S x x f x i N 



 
                                                                                          (7)

 

Since, the Eq. (7) is solvable [19], so 

1. ,X XA f  
                                                                                                                                                (8)

 

where 

1
{ , , },

N
k kX x x         1[ , , ] ,T

N
            [ ( )],

iX j kA x           
1

[ ( ), , ( )] .
N

T

X k kf f x f x     

By using f and the coefficient   defined in Eq. (8), a function ( )e x  is constructed in the form 

2 2

1

( ) ( ) ( ) .
i

N

i k

i

e x f x s x x


   
                                                                                                        (9)

 

Then the MQ quasi-interpolation operator WL by using DL defined by Eqs. (4) and (5) on the data 

0( , ( ))i i i Nx e x  with the shape parameter c is defined as follows: 

2 2

1

( ) ( ) ( ).
i

N

W i k D

i

L f x s x x L e x


   
                                                                                            (10)

 

The shape parameters c and s should not be the same constants in the Eq. (10). 

    In Eq. (7), 
k j

xf  can be replaced by 

1 1 1 1 1 1

1 1 1 1

2[( ) ( ) ( ) ( ) ( ) ( )]
,

( )( )( )

j j j j j j j j j

k j

j j j j j j

k k k k k k k k k

x

k k k k k k

x x f x x x f x x x f x
f

x x x x x x

     

   

    
 

  
 

when the data 
0

( , ( ))
i ik k i N

x f x  are given. So, if  Xf   in Eq. (8) replace by 

1

( , , ) ,
k k N

T

X x xF f f   
                                                                                                                               (11)

 

the quasi-interpolation operator defined by Eqs. (9) and (10) is denoted by 
2
.WL  For more details about 
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the properties and accuracy of WL and
2WL , one can see [26]. In this paper, we use the MQ quasi-

interpolation operator 
2WL with equally spaced points and 2 .N N  

  The operator 
2WL  can be written in the compact form 

2

0

( ) ( ) ( ),
N

iW i

i

L f x f x x


                                                                                                                     (12) 

where the basis functions ( )i x   are obtained by substituting Equations (8), (9) and (11) into (10), see 

[23]. 

     By writing operator 
2WL in the compact form (12), we can use it in the indirect form for the numerical 

solution of PDEs. Also, by converting operator 
2WL

 
to form (12), we do not require to solve a linear 

system of equations for getting of the coefficients i  at each time step, see [17]. 

3. The numerical method 

      In this section, the numerical scheme is presented for solving the Klein-Gordon equation (1) by using 

the MQ quasi-interpolation
2WL . In our approach, the fourth order finite difference approximation is first 

employed for discretizing of the temporal derivative similar to work that Rashidinia did in [22]. Then, the 

highest order derivatives (second order in this paper) of the solution function are approximated by Eq. 

(12), and their lower order derivatives and the solution function are then obtained by symbolic 

integration. At the end, the collocation scheme is applied. 

  3.1. The discretization of time 

    According of the fourth order finite difference, the term ( , )n

tt tt nu u x t , nt n t   can be arranged as 

2
4

2 2
(( ) ),

( ) (1 )

n nt
tt

t

u u O t
t




  

 
                                                                                                          (13) 

where 
2 1 12n n n

t u u u      . 

Substituting Eq. (13) into Eq. (1) yields the following time discretized form of Klein-Gordon equation: 

2 2 2 2 2 2 2( ) (1 ) ( ) (1 ) ( ) (1 ) ,n n n n

t t xx t tu t u t F t f                                                                     (14) 

where ( , )n

nf f x t   and ( )n nF F u .  

 In this paper, we consider the nonlinear force ( ) kF u u u    wherein 2k   or 3k    and   and   

are known constants. After some arrangements, Eq. (14) can be written in the following form: 
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1 1 1

2

1
( ) ( ) ( ),

( )

n n n k

xxu u u x
t

   


     


                                                                                        (15) 

where 

1 1 1

2 2

2 1
( ) ( ) ( ) [ ] [ ( ) ( ) ],

( ) ( )

n n n n n k n k

xx xxx u u u u u u
t t

     
 

         
 

  

and 
1 2





  . 

3.2. The indirect MQ quasi-interpolation scheme 

In this scheme, the highest order derivatives (second order in this paper) of the solution function, n

xxu ,   is 

approximated by MQ quasi-interpolation 
2WL   on data 1

1{ }N

j jx 

   as follows: 

1

1

ˆ( ) ( ) ( ).
N

n n

xx xx j j

j

u x u x x




                                                                                                                        (16) 

Now, symbolic integrating of Eq. (16) yields 

1

1

1

ˆ( ) ( ) ( ) ,
N

n n

x xx j j

j

u x u x x dx C




                                                                                                            (17) 

1

1 2

1

ˆ( ) ( ) ( ) .
N

n n

xx j j

j

u x u x x dxdx C x C




                                                                                            (18) 

The Eqs. (16)- (18) can be rewritten in the compact form as follows: 

0 0 0

( ) ( ), ( ) ( ), ( ) ( ),
N N N

n n n n n n

j j x j j xx j j

j j j

u x w x u x w x u x w x  
  

                                                         (19) 

where 

0
ˆ( ) ( ) , 1 1, ( ) , ( ) 1,j j Nx x dxdx j N x x x          

0
ˆ( ) ( ) , 1 1, ( ) 1, ( ) 0,j j Nx x dx j N x x         

0
ˆ( ) ( ), 1 1, ( ) 0, ( ) 0,j j Nx x j N x x         

and 
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0 1 2( ), 1 1, , .n n n n

j xx j Nw u x j N w C w C      

Now, substituting Eq. (19) into Eqs. (15) and (3) and applying collocation method yield the following 

equations: 

1 1 1

2
0 0 0

1
( ) ( ) ( ), 1, , 1,

( )

N N N
n n n k

j ij j ij j ij i

j j j

w w w x i N
t

      


  

  

      


                               (20) 

and 

1 1

0

( ), 0, ,
N

n n

j ij i

j

w g x i N 



                                                                                                              (21) 

where ( )ij j ix   ,  ( )ij j ix   ,  ( ) ( , )n

i i ng x g x t   and  

2 1 1 1 1
( ) ( ) ( ) ( ) ( ) [ ( ) ( )] [ ( ( )) ( ( )) ].

2 2
( ) ( )

n n n n n k n k
x u x u x u x u x u x u xxx xxi i i i i i i

t t
     

 

  
       

 

At 1n  , according to the initial conditions that was introduced in (2) and approach that Rashidinia did in 

[30] on based Taylor series, we apply the following assumptions 

0

1( ) ( ,0) ( ),u x u x g x    

and 

2 3 4
1 0 '' 0

1 2 2

( ) ( ) ( )
( ) ( ) ( ) [ ] [ ( ) ] [

2! 3! 4!
xx t t u t xxxx

t t t
u x g x tg x u F f g x F f F u u   

  
                          

0 5( )] (( ) ),x x xx xx xu x x xu uu xF u F f F u u F F u O t          

In each time step (for example time step 1n  ), at first we set 1n n

j jw w  . Having this, Eqs. (20) and (21) 

are solved as a system of linear algebraic equations for unknowns 1; 0,1, ,n

jw j N   . Then, we 

recomputed 1 1n n

j jw w    where 1n

jw   as we illustrate, can be obtained by solving Eqs. (20) and (21). 

Now, at each time level, we iterate calculating 1n

jw   and solving the approximation values of the 

unknown, until  the tolerance of any two latest iterations is not bigger than 810 , i.e. a predictor-corrector 

scheme is adopted in each time level, then we can move on to the next time level. 
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4. The numerical experiments 

Four experiments are studied to investigate the robustness and the accuracy of the proposed method. The 

numerical results of the Klein-Gordon equation by using this scheme is compared with the analytical 

solutions and solutions in [7, 22]. These methods include Thin Plate Splines (TPS) RBF collocation 

method [7] and cubic B-spline collocation method (CBS) [22]. Our scheme is denoted by IMQQI. The 

2L ,L   and RMS error norms which are defined by 

2

2 2

0

L ( ( ) ( )) ,
N

n n n n

j j

j

u h u x u x 



   ‖ u ‖   

0L max | ( ) ( ) |,n n n n

j N j ju u x u x 

    ‖ u ‖   

2

0

RMS ( ( ( ) ( )) ) / ( 1),
N

n n

j j

j

u x u x N



     

are used to measure the accuracy of our scheme where u 
 is the approximation solution. In all 

experiments, the shape parameter s   is considered twice of the shape parameterc . 

The computations associated with our experiments are performed in Maple 14 on a PC with a CPU of 2.4 

GHZ. 

Experiment 1. In this experiment, the Klein-Gordon equation (1) is considered with 1, 
2( , ) cos( ) cos( )f x t x t x t     in interval 1 1x   and the nonlinear force 

2( )F u u  so the values of 

constants in (15) are 0  , 1    and 2k  . The initial conditions are given by 

( ,0) , 1 1,u x x x    

( ,0) 0, 1 1.tu x x    

The exact solution is given in [28] as 

( , ) cos( ).u x t x t   

The boundary function  ,g x t  can be extracted from the exact solution. The 2L , L  and RMS errors in 

the solutions with 0.0001t  , 10N  , 21.63 10c    and 
1

12
   that calculated in 100 points are listed 

in Table 1 and compared with the results in [7, 22].  

The space-time graphs of the estimated solution are drawn in Fig. 1. Table 1 indicates that the proposed 

method requires more less nodes to attain the accuracy of the CBSM [22] and TPSM [7]. Also, it shows 

that this scheme performs better than TPSM. 
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Figure 1: The graph of the estimated solution up to 10t   with 0.0001t    and 10N   of experiment 

1. 

 

Table 1: The comparison of the
1

L ; 
2

L  and RMS errors of our method with the results of [7, 22] at 

different times of experiment 1. 

Time  1 3 5 7 10        
IMQQI; N = 10              
L1  9.6719E-11 1.4351E-10 1.7096E-10 1.4199E-10 1.0761E-10 
L2  6.6578E-11 1.1603E-10 1.5434E-10 1.4325E-10 7.6498E-11 

RMS  4.6771E-11 8.1926E-11 1.0882E-10 1.0164E-10 5.3802E-11        
Time  1 3 5 10 20        
CBSM [22]; N = 100              
L1  4.7698E-13 2.8899E-13 4.3667E-13 8.4593E-13 3.1344E-12 
L2  1.8986E-12 1.0680E-12 1.5686E-12 5.3244E-12 4.4324E-11 

RMS  2.6850E-14 1.5105E-13 2.2184E-12 5.9738E-12 2.2332E-12        
Time 1           1 3 5 7 10        
TPSM [7]; N = 100              
L1  1.2540E-05 1.5554E-05 3.3792E-05 3.7753E-05 1.3086E-05 
L2  6.5422E-05 1.1717E-04 2.2011E-04 2.5892E-04 7.9854E-05 

RMS  6.5097E-06 1.1659E-05 2.1902E-05 2.5763E-05 7.9458E-06        

Experiment 2. Consider the Klein-Gordon equation (1) with 1  , 
2 2 6 6( , ) 6 ( )f x t xt x t x t     in 

interval 0 1x   and the nonlinear force 
2( )F u u  wherein ,   and k  are considered 0 , 1   and 2, 

respectively. The initial conditions are given by 

( ,0) 0, 0 1,u x x   

( ,0) 0, 0 1.tu x x   
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The exact solution is given in [28] as 

 

 

 

 

 

 

 

Figure 2:  The graph of the estimated solution up to 5t   with 0.001t    and 50N    of experiment 2. 

 

Table 2:  The comparison of the
1

L ; 
2

L  and RMS errors of our method with the results of [7, 22] at 

different times of experiment 2. 
Time 1 2 3 4 5      
IMQQI; N = 20           
L1 6.1753E-11 2.3374E-10 7.2934E-10 6.3525E-10 1.0866E-09 

L2 7.7595E-11 6.0731E-10 1.7852E-09 1.9430E-09 2.1023E-09 
RMS 1.6933E-11 1.3253E-10 3.8956E-10 4.2399E-10 4.5876E-10 

     

IMQQI; N = 5     

L1 1.9531E-11 2.0935E-10 6.9190E-10 5.5946E-10 1.0916E-09 

L2 5.0991E-11 1.3371E-09 3.9844E-09 4.3492E-09 4.7010E-09 
RMS 5.0738E-12 1.3305E-10 3.9646E-10 4.3276E-10 4.6777E-10      

CBSM [22]; N = 50     

L1 5.5733E-14 3.0198E-13 3.5829E-12 5.1088E-12 7.2456E-11 

L2 1.4257E-13 8.7463E-13 1.0177E-11 1.7568E-11 3.0183E-10 
RMS 2.0162E-14 1.2369E-13 1.4392E-12 2.4846E-12 4.2685E-12       

TPSM [7]; N = 50           
L1 1.1012E-05 1.6496E-04 5.9728E-04 1.8264E-03 3.6915E-03 

L2 5.4998E-05 1.1522E-03 3.2588E-03 9.8191E-03 1.9139E-02 
RMS 5.4725E-06 1.1465E-04 3.2426E-04 9.7704E-04 1.9044E-03 

      

3 3( , ) .u x t x t  

The boundary function  ,g x t   can be extracted from the exact solution. Table 2 shows the 2L , L  and RMS 

errors in the solutions with  0.001t   , 50N   , 
21.63 10c    and 

1

12
  .  Our numerical results are 

compared with the results in [7, 22]. Moreover, the space-time graph of the estimated solution is drawn in Fig. 2.  
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Table 2 indicates that the proposed method requires more less nodes to attain the accuracy of the TPSM [7] and has 

better accuracy than TPSM [7]. 

 

 

 

 

 

 

 

Figure 3: The graph of the estimated solution up to 4t   with 0.001t   and 30N   of experiment 3, 

(Left) 0.05C   , (Right) 0.5C  . 

Table 3: The comparison of the L ,


 
2

L  and RMS errors of our method with the results of [7, 22] with 

0.05C   at different times of experiment 3. 

Time 1 2 3 4      
IMQQI; N = 50          

L1 3.2112E-09 3.5349E-09 4.0395E-09 4.7216E-09 

L2 1.1963E-08 1.6133E-08 1.8570E-08 1.7156E-08 
RMS 1.6752E-09 2.2591E-09 2.6003E-09 2.4023E-09      

IMQQI; N = 100          

L1 1.9972E-10 2.2253E-10 2.4427E-10 2.8106E-10 

L2 8.6479E-10 8.2885E-10 9.3908E-10 1.1417E-09 
RMS 8.6050E-11 8.2474E-11 9.3442E-11 1.1360E-10      

CBSM [22]; N = 100          
L1 1.1986E-08 2.4733E-08 2.8958E-08 1.9916E-08 

L2 7.5619E-08 1.7997E-07 2.0797E-07 1.4058E-07 
RMS 7.5619E-08 1.7997E-08 2.0797E-08 1.4058E-08      

TPSM [7];  N = 100          
L1 3.6497E-07 3.8952E-07 4.2123E-07 4.5928E-07 

L2 1.7861E-06 1.5383E-06 1.7275E-06 2.0097E-06 
RMS 1.7772E-07 1.5306E-07 1.7190E-07 1.9997E-07 

     

Experiment 3. In this experiment, the Klein-Gordon equation (1) is considered with 2.5  ,  , 0f x t    

in interval 0 1x   and the nonlinear force 
3( ) 1.5F u u u   wherein ,   and k   are1 , 1.5  and 3, 

respectively. The initial conditions are given by 

( ,0) tan( ), 0 1,u x B Kx x   

2( ,0) sec ( ), 0 1.tu x BCK Kx x  
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The exact solution is given in [32] as 

 

 

 

 

 

 

 

Figure 4:  The graph of the estimated solution up to 5t   with 0.001t    and 50N    of experiment 4. 

 

Table 4: The comparison of the L ,
 2

L and RMS errors of our method with the results of [7, 22] with 

0.5C   at different times of experiment 3. 

Time 1 2 3 4      
IMQQI; N = 50          
L1 1.3646E-08 6.6291E-08 6.7475E-07 5.6663E-05 

L2 4.8756E-08 2.1550E-07 1.8868E-06 1.1334E-04 
RMS 6.8272E-09 3.0176E-08 2.6420E-07 1.5871E-05      
IMQQI; N = 100          
L1 8.7470E-10 4.2448E-09 4.3933E-08 4.0592E-06 

L2 6.1403E-09 1.7262E-08 1.4987E-07 1.0671E-05 
RMS 6.1099E-10 1.7177E-09 1.4913E-08 1.0618E-06 

     

CBSM [22]; N = 100          
L1 2.6949E-08 8.7462E-08 3.0903E-07 1.9394E-06 

L2 1.9015E-07 6.3813E-07 2.2341E-06 1.3439E-05 
RMS 1.9015E-08 6.3813E-08 2.2344E-07 1.3439E-06      
TPSM [7]; N = 100          
L1 5.9964E-06 2.1973E-05 9.0893E-05 8.2945E-04 

L2 4.0761E-05 1.5769E-04 6.4792E-04 5.3572E-03 
RMS 4.0559E-06 1.5691E-05 6.4470E-05 5.3306E-04 

     

 ( , ) tan( ( ),u x t B K x Ct   
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where B



  and 

2
2

K
C






 
. The boundary function  ,g x t  can be extracted from the exact 

solution. In Tables 3 and 4, the 2L , L  and RMS errors in the solutions are listed with 0.0001t  ,

100N  , 50N  , 
1

12
    and 0.05C   and 0.5C  . The shape parameter c  is choose  2

8.15 10


  and  

Table 5:  The comparison of the
1

L , 
2

L  and RMS errors of our method with the results of [7, 22] at 

different times of experiment 4. 

 
Time 1 2 3 4 5      
IMQQI; N = 100           
L1 4.9908E-07 1.2551E-06 1.7749E-06 1.4689E-06 7.3491E-07 
L2 1.3310E-06 1.9435E-06 3.3137E-06 2.1256E-06 2.2948E-06 

RMS 1.3244E-07 1.9339E-07 3.2972E-07 2.1150E-07 2.9342E-07 
      

CBSM [22]; N = 200           
L1 3.5666E-06 3.1949E-06 3.9619E-06 5.6889E-06 6.3356E-06 

L2 2.5993E-05 2.2013E-05 2.3990E-05 2.9542E-05 3.2638E-05 
RMS 2.5930E-06 2.2013E-06 2.3909E-06 2.9542E-06 2.9092E-06       

TPSM [7]; N = 200           
L1 5.0705E-05 5.0260E-04 2.0612E-03 6.5720E-03 1.9067E-02 

L2 2.9474E-04 2.7082E-03 9.7246E-03 2.7881E-02 7.7337E-02 
RMS 2.0789E-05 1.9102E-04 6.8592E-04 1.9666E-03 5.4549E-03 

      

2
1.63 10


   for 100N    and 50N  , respectively. Tables 3 and 4 indicate that the proposed method 

requires more less nodes to attain the accuracy of the CBSM [22] and TPSM [7]. 

Experiment 4. Consider the nonlinear Klein-Gordon equation (1) with 1   and the nonlinear force 
3( )F u u u    in interval 1 1x . In this case, the constants ,   and k  are considered1 , 1  and 3, 

respectively. The initial conditions are given by 

2( ,0) cosh( ), 1 1u x x x x    

2( ,0) sinh( ), 1 1.tu x x x x    

The exact solution is given as 

2( , ) cosh( ).u x t x x t    

The boundary function  ,g x t  can be extracted from the exact solution. Table 5 shows the 2L , L  and 

RMS error norms in the solutions with  0.0001t  , 28.15 10c    , 100N    and 
1

12
   . We 

compare our results with the results in [7, 22]. Also, the space-time graph of the estimated solution is 

drawn in Fig. 4. Table 5 shows that our scheme has better accuracy than CBSM [22] and TPSM [7]. 
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5. Conclusion 

In this paper, a numerical scheme based on high accuracy MQ quasi-interpolation scheme and IRBFN 

method has been applied to solve the nonlinear Klein-Gordon equation with quadratic and cubic 

nonlinearity. The numerical results which are given in the previous section demonstrate the good 

accuracy of the present scheme. Also, the Tables show that this scheme performs better than TPS method 

and requires more less nodes to attain accuracy. Moreover, we have used bigger time step t , in 

comparison with [13]. Therewith, we would like to emphasize that, the scheme introduced in this paper 

can be well studied for any other nonlinear PDEs. 
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