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Abstract 

In this manuscript goodness-of-fit test is proposed for the Skew-t distribution based 

on properties of the family of these distributions and the sample correlation coefficient. 

The critical values for the test can be achieved by Monte Carlo simulation method for 

several sample sizes and levels of significance. The power of the proposed test can be 

specified for different sample sizes and considering diverse alternatives. 
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1. Introduction 

Let Z  be a random variable, we say that Z  has the Skew-normal distribution, denoted by  SNZ ~ , if 

its probability density function be 

  )1(),()(2);( ),( zIzzzf z    

where    and    denotes the density and cumulative distribution function of standard Normal 

distribution respectively. The skew-normal distribution was introduced by Azzalini (1985), as a family 

with the appealing property of strictly including the normal law, as well as a wide variety of skewed 

densities. We say that a random variable  ,W  has the Skew-t distribution with parameters 0  and 

R  if VZW
d

/,    , where Z  is the skew-normal variable with pdf in (1),  /2V , and are 

independent. This variable is denoted by   ,, StW   . 

If a random variable Y  is defined as 

)2( WY   

with R , 
R , then ),,,( StY  . Skew-Cauchy distribution is obtained simply as special 

cases of the skew-t with 1  and denoted by   ,,SC . 
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Some well know properties of skew-t variables which will be useful for constructing goodness of fit test 

are the following (See for details [3]): 

(a) If ),(,  StW   , then ),(,   StW . 

(b) If ),(,  StW   , then ),1(2

,  FW  . 

2. EDF-Based Tests 

Perez Rodrguez and Villasenor (2010) developed a goodness of fit test for the skew normal family based 

on the sample correlation coefficient and showed that their test have greater power than the Empirical 

Distribution Function-based tests against some alternative distributions. We are interested in testing the 

null hypothesis 

)3(R ,R R, R, somefor  ),,,( is  : 0

  StYH  

against general alternatives. In this section we discuss general EDF-based goodness-of-fit statistics 

designed to test the null hypothesis 0H  . EDF-based test statistics measure the difference between the 

distribution function, (.)F , stated in the null hypothesis and the EDF, a step function denoted by (.)nF  

given as 

 

 

 

where )()1( ... nxx   are the ordered statistics of the ix 's. To compare the two distribution functions, 

several statistics can be used that Stephens (1986) divides into two families. The Cramér-von Mises 

family contains the Cramér-von Mises statistic, 
2W , Watson's 

2U statistic, and the Anderson-Darling 

statistic, 
2A  , defined as: 

  )()()(
22 xdFxFxFnW n  




 

 

  )()()()()()(
2

2 xdFtdFtFtFxFxFnU nn 



  








 

 

     )()(1)()()(
122 xdFxFxFxFxFnA n




   

The Kolmogorov-Smirnov family contains the statistics 
D , 

D , the Kolmogorov-Smirnov statistic, D
, and the Kuiper statistic, V , defined as: 

   .)()(sup    ,)()(sup xFxFDxFxFD n
x

n
x

 
 

 

  .         ,,max   DDVDDD  

Stephens (1986) provides the following simple formulae for calculating these statistics: 
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2

2 2 1
(5)

2
U W n p

 
 
 

    

 

     )6(1loglog12
1

1()(
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n

nA 
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   

 

)7(max )( 
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)8(
1

max )( 



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

 


n
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  )9(,max  DDD  

 

)10(,  DDV  

Where  
)()( ii xFp   and npp i

n
i /)(1  . Large values of a given statistic indicate significant 

differences between the empirical and hypothesized distribution functions and thus that we should reject 

the null hypothesis. 

In general, when the parameter values of the hypothesized distribution are completely specified, the 

sampling distribution of any of these EDF statistics is known exactly, and tables of percentage points are 

available (see Stephens (1986), Table 4.2). However, when the values taken by the parameters of the 

distribution are unknown and have to be estimated from the sample, the sampling distribution of any EDF 

statistic depends on the distribution being tested, sample size, true values of the unknown parameters, and 

method used to estimate the parameters. 

Now we describe the parametric bootstrap techniques used to estimate the quantiles of the test statistic T  

when the hypothesized distribution is skew-t with parameter values estimated from the data. Maximum 

likelihood methods can be employed to estimate the parameters of the skew-t distribution. Since analytic 

expressions do not exist for these estimators, numerical methods must be used to compute them. Note that 

when the unknown parameters are location or scale parameters, and they are estimated using location and 

scale equivariant estimators (as are maximum likelihood estimators), the sampling distributions of the 

EDF statistics do not depend on the true values of those parameters. (see Eastman and Bain (1973)). 

Therefore the values of 0  and 1  were used for simplicity because of the sampling distributions 

of the statistics being invariant to changes in the location and scale parameters. 

Since however the asymptotic null distribution of the test statistic depends upon the unknown value of   

and   , a parametric bootstrap versions of the test is performed: 

1. Given the sample nyy ,...,1  compute the maximum likelihood estimator 
^

  and ̂  of   and  .  

2. Calculate the value of the chosen test statistic, T  , using the appropriate formula(e) from Eqs. )4( - 

)10( , where (.)F  denoted the distribution function of   ˆ,ˆSt . 

 (a) Generate a bootstrap sample of size n  from   ˆ,ˆSt . 
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 (b) Given the bootstrap sample generated previously, compute the ML estimators of   and   say 
*̂  

and 
*̂ . 

 (c) Compute the value of the test statistic, say 
T  using 

*̂  , 
*̂  and the bootstrap sample. 

3. Repeat steps (a), (b) and (c) 1000 times to get 


jT , 1000,...,1j . 

4. Obtain )05.0(nT  as 


)950(T  , where ,)(



jT  1000,...,1j  denotes the ordered 
Tj


 values. 

3. Correlation Goodness-of-Fit Test 

In this section, we introduced goodness-of fit test for skew-t distribution with sample correlation 

coefficient. The test procedure is based on property (b). From Eq. (2): 

,, WY   

where ),,,( StY   and ),(,  StW  , then  

(11))(: 2

,

22

 WYX   

By property (b): 

(12).),1(: 2

,2



 FW

X
  

From (12) parameter   has been eliminated from the problem. 

For fixed   and   , say 0   and 0   , X  has a scale distribution, 

)()(
2

x
GxXP   

where G  is the distribution function of a ),1( 0F  random variable. So given the sample nyy ,..,1  and 

0  , calculate nxx ,...,1  by using (11). A consistent estimator for )( xXP   is the empirical distribution 

function, then 

)()(
2

xF
x

G n


 

therefore 

  )13()(:
2

1



x
xFGu n  

 

Since (13) is established, we should expect a strong linear relationship between ix 's and iu 's under the 

null hypothesis stated in (3). If   and   are estimated by consistent estimators, say   and   then it is 

expected that the linear relationship in (14) still holds. To test if there is a strong linear relationship 

between ix 's and iu 's the sample correlation coefficient statistic is used, which is given by 

 

 

 

The null hypothesis (3) is rejected at the level of significance   if )(nn CC   , where )(nC  is such 

that 
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The distribution of nC  under the null hypothesis for each fixed value of   and   can be obtained by 

Monte Carlo simulation. Note that nC  is scale invariant and the distribution of X  in (11) does not 

depend on   , therefore we will fix 0  and 1  . If the random sample comes from a distribution 

function different from the skew-t distribution for which property (b) does not hold then it means that (13) 

does not hold. Therefore the sample correlation coefficient in (14) can not be near 1, hence nC  should be 

lower than the critical value, since under 0H  the distribution of nC  will be concentrated close to 1. 

Therefore we use the following procedure to obtain the critical values: 

1. Fix n ,  ,  , 0 , 1 . 

2. Simulate a sample of size n  from ),,,( St   

3. Calculate the maximum likelihood estimator of parameter   . 

4. Calculate ix  , ni ,...,1  using Eq. (11). 

5. Sort ix 's into ascending order. 

6. Calculate  )(: 1

ini xFGu  , ni ,...,1 , where 
1G  is the quantile function of the ),1( F  

distribution. 

7. Calculate nC  using Eq. (14) and the data ix  , iu  generated in steps 5 and 6. 

8. Repeat steps 2-7 B  times. 

Upon finishing the simulation process, we have B  realizations of nC  for a given value of   and  . 

Therefore the value of the critical constant )(nC  is determined with the quantiles 100 from the 

empirical distribution of nC  . 

For example, fig. 1 presents graph of )(nC  as a function of   ,  025.0,05.0,1.0  and 50n  for 

2  , which shows that the distribution of the test statistic nC  under 0H  not depends on the value of 

the unknown parameter   . Our simulations show this fact indefeasible for arbitrary   . 

Note that we have limited our attention to ),,,( StY   with 0  since ),,,(   StY  

by property (a). Therefore distribution of Cn  does not depend on the sign of  , hence the critical 

constant )(nC  in (15) is such that 

   .)(max)(max
,0?,




nnnn CCPCCP   

For arbitrary   , simulations show that the values of the critical constant )(nC  are determined with the 

quantiles 100  from the empirical distribution of nC  obtained by simulation with arbitrary  . Fig. 1 

show this fact for 2 . 
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Figure 1. Critical values as a function of   for 50n  , 2 , 5000B for the statistic nC  . 

Given a random sample of n  data values, the steps necessary to carry out a given test can be summarized 

as follows: 

1. Calculate the MLEs of the   and   , using library `sn' (Azzalini (2008)) in R (R Development Core 

and Team, 2008) and denote by ̂   and ̂ . 

2. Calculate the value of the test statistic, nC , using the Eq. (14). 

3. For a given significance level,  , identify the quantile )(nC  of the test statistic corresponding to 

 ˆ  and n  . 

4. If )(nn CC   , the null hypothesis is rejected at the   significance level. 

4. Simulation studies 

4-1. Tests size 

The results of size estimations of tests presented in Table 1 and 2, obtained by simulation for 05.0 . 

The selected sample sizes were 50  and 100  the value of parameter 

                 }30,20,5.0,10,10,7,20,5,7,3,5,2,1,1,4,0{,   , 0  , 1 . 

From Table 1 and 2 it can be seen that the estimated tests sizes are very close to the nominal significance 

level  . 

Table 1: Test size estimates using the statistics obtained by simulation with 10000B  Monte Carlo 

samples of size 50n  with 05.0 . 

 

 

 

 

 

 
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Table 2: Test size estimates using the statistics obtained by simulation with 10000B  Monte Carlo 

samples of size 100n  with 05.0 . 

 

 

 

 

 

 

 

4-2. Tests power 

To analyze the behavior of the proposed tests, alternatives different to the skew-t were considered. The 

distributions selected for this were: skew-slash (SSL), Logistic, Exponential, Chi squared, Weibull, 

Gumbel, Log Normal, and Stable (see Nolan (1999)). We also considered some bimodal distributions. 

The results are shown in Tables 3 and 4, from which it can be seen that the proposed test nC  show the 

highest powers for several of the considered alternatives. 

Table 3: Power estimates of the ,2A ,2W ,2U ,D ,V nC  statistics for some alternatives with 50n , 05.0
, 5000B . 

Alternative 
2A  

2W  
2U  D  V  nC  

SSL(0,1,1,1) 0.524 0.624 0.413 0.341 0.271 0.745 

Standard logistic 0.421 0.314 0.217 0.248 0.312 0.417 

Standard exp. 0.321 0.624 0.221 0.541 0.347 0.652 

Chisquared(4) 0.078 0.095 0.074 0.023 0.047 0.092 

Weibull(0.75,1) 0.231 0.712 0.124 0.224 0.317 0.841 

Standard Gumbel 0.529 0.427 0.471 0.521 0.321 0.537 

Log-Normal(0,0.5) 0.712 0.562 0.541 0.321 0.271 0.694 

Sta(1.6,0.25,1,0;0) 0.314 0.421 0.124 0.213 0.119 0.451 

0.5N(4.5,0.5)+0.5N(-4.5,0.5) 0.817 0.910 0.514 0.617 0.419 0.913 

0.9N(4.5,0.5)+0.1N(-4.5,0.5) 0.952 0.514 0.248 0.512 0.642 0.934 

0.5N(1,(1/3))+0.5N(-1,(1/3)) 0.521 0.612 0.217 0.274 0.415 0.664 

0.9N(1,(1/3))+0.1N(-1,(1/3)) 0.412 0.574 0.321 0.217 0.326 0.291 
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Table 4: Power estimates of the ,2A ,2W ,2U ,D ,V nC  statistics for some alternatives with 100n , 

05.0 , 5000B . 

Alternative 
2A  

2W  
2U  D  V  nC  

SSL(0,1,1,1) 0.617 0.714 0.321 0.412 0.319 0.753 

Standard logistic 0.502 0.421 0.312 0.231 0.345 0.518 

Standard exp. 0.345 0.715 0.431 0.614 0.457 0.761 

Chisquared(4) 0.093 0.117 0.082 0.051 0.071 0.103 

Weibull(0.75,1) 0.417 0.629 0.396 0.428 0.627 0.867 

Standard Gumbel 0.746 0.641 0.681 0.629 0.471 0.727 

Log-Normal(0,0.5) 0.875 0.641 0.508 0.441 0.325 0.793 

Sta(1.6,0.25,1,0;0) 0.424 0.517 0.229 0.487 0.247 0.673 

0.5N(4.5,0.5)+0.5N(-4.5,0.5) 0.803 0.945 0.673 0.741 0.576 0.944 

0.9N(4.5,0.5)+0.1N(-4.5,0.5) 0.961 0.621 0.323 0.549 0.673 0.967 

0.5N(1,(1/3))+0.5N(-1,(1/3)) 0.574 0.723 0.315 0.417 0.529 0.801 

0.9N(1,(1/3))+0.1N(-1,(1/3)) 0.521 0.672 0.421 0.321 0.312 0.384 

 

6. Numerical example 

To illustrate how the test procedure works with real data, we use data collected at the Australian Institute 

of Sport (AIS) (Cook & Weisberg (1994)) containing 102  male athletes of body mass index (BMI). 

Table 5  reports maximum likelihood estimators of some skew models, considering the full ),,( 21 St  

model and two special cases: Skew-normal and Skew-cauchy. The Akaike information criterion (AIC) is 

used to compare the estimated models (Leroux (1992)). As is well known, a model with a minimum AIC 

value is to be preferred. Therefore the St  fit appears to be preferable. These points are further illustrated 

in Figure 3, where a histogram of the data is plotted together with the fitted densities. 

Table 5: MLE estimates and Log-likelihood values. 

St SC SN  Model 

21.370376 22.7597 20.797082  

2.972035 1.38549 4.137343 2 

2.140406 0.5401 3.62291  

5.613827 - -  

-235.9303 -247.5523 -237.8347 
Log-likelihood 

479.8606 501.1046 481.6694 
AIC 
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kLAIC 2)log(2  . 

 L  and k  are the maximized log likelihood and number of parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Histogram of BMI of 102 Australian athletes. The lines represent distributions fitted using 

maximum likelihood estimation. 

However, the goodness of fit test for this data Skew-Normal and Skew-Cauchy rejection of SN  and SC  

models, but we can not reject the hypothesis of an underlying skew-t population for data set. (See for 

details [8]). The results are summarized in Table 6  . The critical points, the corresponding value of the 

test statistics and range of valueP   given in Table 6  . 

Table 6: Critical points and values of the test statistics for the BMI data 

Model SN SC St 

Test statistics  0.9461928nr 
 

*  0.9754747nr 
 

Rn = 0.7682234 Cn = 0.976186 

1% 0.9114055 0.9738395 0.7342562 0.7389985 

2.5% 0.9374606 0.9798094 0.7750845 0.7833815 

5% 0.9520816 0.9834587 0.8154029 0.8275803 

10% 0.9666230 0.9868670 0.8645460 0.8802931 

15% 0.9742942 0.9885898 0.8909212 0.9097902 

0.5% 0.9895192 0.9936363 0.9714623 0.9748160 

P value  (0.025,0.05) (0.025,0.05) (0.025,0.05) (0.5,1) 
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It is important to mention that all the calculations shown in this work were obtained using routines written 

in R. This routines uses the sn package and are freely available up on request. 
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