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Abstract 
The purpose of this paper is to obtain the approximate solution of fourth-order parabolic partial 

differential equations by the reduced differential transform method (RDTM).This method provides the 

solution in the form of a convergent series with easily calculable terms. Comparing RDTM with some 

other methods in the literature  shows present approach is very simple, effective, powerful and can be 

easily applied to other linear or nonlinear PDEs in science and engineering. 
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1. Introduction 

There are many problems arising in science and engineering are modeled using  linear or nonlinear 
partial differential equations (PDEs). Boundary and initial value problems in PDEs occur in fluid 
mechanics, mathematical physics, astrophysics, biology, materials science, electromagnetism, image 
processing, computer graphics, etc. PDEs are categorized into different types, including elliptic, 
parabolic, and hyperbolic PDEs. In this article we concentrate our discussion on fourth-order 
parabolic PDEs. These PDEs describe various physical phenomenon including deformation of beams, 
viscoelastic and inelastic flows, transverse vibrations of a homogeneous beam, plate deflection 
theory,  engineering and applied sciences [1-12].  In recent years, various methods have been 
proposed for solving the fourth-order parabolic PDEs, such that adomian decomposition method 
(ADM) [13,14], variational iteration method (VIM) [15,16], B-spline methods [17-19], homotopy 
perturbation method (HPM) [20] and  homotopy analysis method (HAM) [21]. 

In this paper, we applied the RDTM, which is the modified version of differential transform method 
(DTM),  to fourth-order parabolic PDEs. RDTM doesn't require any discretization or linearization and 
it reduces significantly the computational work. Also, it provides an analytical approximation, in many 
cases an exact solution, in a rapidly convergent sequence with elegantly computed terms. 
computational work.  
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2. Reduced differential transform method (RDTM) 

In this section, some basic definitions and properties for RDTM, which could be found in [22-26], 
have been reviewed. 

Definition 2.1. Consider a function of n+1 variables 
1 2( , ) ( , ,... , )nu x t u x x x t  where  ,nx R

 1 2( , ,..., )nx x x x .  The reduced differential transform of ( , )u x t with respect to t  is defined by 
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In Eq.(1) ( )kU x is the transformed function and ( , )u x t  is the original function. 

Definition 2.2.  The reduced differential inverse transform of  ( )kU x  is defined as follows: 
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From Eq.(1) and Eq.(2) , we get  
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Notice that the RDTM is close to the one dimensional DTM because the RDTM is considered as the 
standard DTM of ( , )u x t  with respect to the variable t. However, the corresponding recursive 
algebraic equation is the function of the variable  1 2( , ,..., )nx x x x .  

The following theorems that can be deduced from Eqs.(1)-(3) are given below: 

Theorem 1. If     ( , ) ( , ) ( , )f x t g x t h x t , then     ( ) ( ) ( )
k k k
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Theorem 3. If    ( , ) ( , ) ( , )f x t g x t h x t , then 
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Theorem 4. If     1 2
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Theorem 8. If  


 
1

( , ) cos
n

i ii
f x t tx , then 

 



  
   

  
  


1

( ) cos
! 2

k

k

n

i ii

k
F x

k
x  



   Birol Ibis / J. Math. Computer Sci.    12 (2014), 124-131 
 

126 
 

3. Applications of RDTM to fourth-order parabolic PDEs 

In this section, in order to show the applicability and efficiency of the RDTM for solving the fourth-
order parabolic PDEs, some illustrative examples are given. 

Example 3.1 Firstly, consider the following one dimensional non-homogeneous fourth-order 
parabolic PDE [13]. 

 
   

        
   

2 4
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6
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7!

u u
x x x x t x t

t x
             (4) 

subject to the initial condition  
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u
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t
                  (5) 

whose exact solution is 

 76
( , ) cos

7!
u x t x t                   (6) 

By applying the RDTM on Eq.(4), the following recursive equation is obtained: 
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where ( )kF x is the transformation of the function 
 

   
 
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the reduced differential transform ( )kF x is, 
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From Eq.(1), the initial conditions given in Eq. (5) can be transformed at  0t  as 

 7
0 1

6
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7!
U x x U x                     (9) 

Substituting Eqs.(8)-(9) into Eq.(7) and by straightforward iterative steps, the following ( )kU x  (for 
k=0,1,2,...,n) values are obtained. 
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Then, using the inverse transformation Eq.(2), the 8th order approximate solution as, 
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which is the first eight terms of the poisson series of the exact solution Eq.(6). 

Example 3.2 Now, Consider the following singular fourth-order parabolic PDE in two space variables 
[14] 

     
          
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subject to the initial condition  
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whose exact solution is 

 
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Using above theorems, the transformed form of Eq. (11) is find as 
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From Eq.(1), the initial conditions given in Eq. (12) can be transformed at  0t  as 
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Substituting Eq.(15) into Eq.(14) and by straightforward iterative steps, the following ( )kU x  (for 
k=0,1,2,...,n) values are obtained. 
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              (16) 

Then, using the inverse transformation Eq.(2), we get the 8th order approximate solution as, 
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which is the first eight terms of the poisson series of the exact solution Eq.(13). 

Example 3.3  Consider the following PDE in three space variables [14] 
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
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subject to the initial condition  
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whose exact solution is 

       ( , , , ) cos cos cos tu x y z t x y z x y z e               (19) 

Using the RDTM, , the transformed form of Eq. (17) can be viewed as the following recursive formula 
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From Eq.(1), the initial conditions given in Eq.(18) can be transformed at  0t  as 

          0 1( , , ) ( , , ) cos cos cosU x y z U x y z x y z x y z            (21) 

Substituting Eq.(21) into Eq.(20) and by straightforward iterative steps, we get the following ( )kU x  
(for k=0,1,2,...,n) values. 
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          (22) 

Then, using the inverse transformation Eq.(2), we get the nth order approximate solution as, 
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n
k

k
k
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which is the first eight terms of the poisson series of the exact solution Eq.(19). 

Example 3.4 As the last example, consider the following three dimensional non-homogeneous 
fourth-order PDE [14] 

   
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
   
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        (24) 

whose exact solution is 
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Applying RDTM to Eq.(23), the following recursive formula is obtained: 
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where ( )kF x is  the transformation of the function  
 
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From theorem 8, the redeuced differential transform ( )kF x is, 


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From Eq.(1), the initial conditions given in Eq.(24) can be transformed at  0t  as 

   0 1( , , ) , ( , , ) 0
x y z

U x y z U x y z
y z x

              (28) 

Substituting Eq.(27) and Eq.(28) into Eq.(26) and by straightforward iterative steps, the following 
( )kU x  (for k=0,1,2,...,n) values are obtained. 
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Then, using the inverse transformation Eq.(2), we get the nth order approximate solution as, 
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1

2! 4! 6!

( , ) ( )
n

k
k

k
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which is the first eight terms of the poisson series of the exact solution Eq.(25). 

4. Conclusion  
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In this paper, we introduced the modified version of the DTM, namely the reduced differential 
transform method (RDTM) for solving fourth-order parabolic PDEs. The main advantage of the RDTM 
is to provide the user an analytical approximation to the solution, in many cases, an exact solution, in 
a rapidly convergent sequence with elegantly computed terms. The solution procedure of the RDTM 
is simpler and effective than other analytic methods such as the Adomian Decomposition Method 
(ADM), the Variational Iteration Method (VIM), the Homotopy Perturbation Method (HPM) and 
Spline methods. The results show that the RDTM is a powerful and effectiveness method for solving 
linear and nonlinear PDEs. 
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