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Abstract
Recently, we introduced iteration-free search vectors of the ABS methods and showed how they can be
used to compute the search directions of primal--dual interior point methods, when the coefficient matrix
of the constraints of the linear programming problem is square. Here, we generalize those results for the
general case when, the coefficient matrix is non-square.
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1. Introduction

Assume that A is anm X n matrix with rank(4)=m. Let ¢, x and s be n-vectors and b be an m-vector.
Then, the primal linear programming problem [5,7] is defined to be the minimization of the objective
functionc” x subject to the functional constraints Ax = b and the non-negativity constraints x > 0. The
dual of this problem is then the maximization of b”y subject to ATy + s = cand s < 0. In the kth
iteration of primal--dual infeasibleinterior point algorithms the search direction is computed by solving

the following system of linear equations [3,8,9]:
k

0 AT I\ /Axk T
<A 0 0 )(AA") =| -y (1)
sk 0 XK/ \ask —rk
where 7k, rlﬁ‘ and 1k are given by Té‘ = Axk — b, v} = AT2* + s* — ¢, vk = —X*S*e + o, ;1. and X*

and S¥ denote the diagonal matrices whose diagonal elements are the components ofthe vectors xk
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(Xk)TSk

and sk, respectively, and 1 = (1, ...,1)T € R™. Moreover, g, € (0,1) and y;, = are centering
parameterand duality gap, respectively.
The ABS class of algorithms was first introduced by Abaffy, Broyden and Spedicato [1,2,6] for solving
linear systems. For simplicity in notation, assumeR™*™ has full row rank. An ABS method for solving the
linear system Ax = b, with b € R™, starts with anarbitrary initial vector x; € R" and an arbitrary
nonsingular matrix H; € R™*™, the so-called Spedicato's parameter. In the ith iteration, having
computed x;, asolution of the firsti — 1 equations of Ax = b, and H; a matrix with rowsgenerating the
null space of the firsti — 1 rows of A, an ABS algorithm computes x;,; asa solution of the firsti
equations of Ax = b and H; 1, with rows generating the null space of the first i rows of 4 as explained
below [1,2]. To compute the search vector, z; (Broyden's parameter) is determined so that zl-THiai *0
and the search vector is set to be q; = HL-TZL-. Then, the solution is updated by x;,; = x; + a;q;, where
the step size a; is given by a; = (b; — a! x;)/al q;. Next, H;.1$ is computed so that Hiy1a; =0,
1 < j < i. This can be accomplished by updating H; (the so called Abaffian) by

Hiyy = H; — HiaiWiTHi/WiTHiai (2)
with w; € R™ (Abaffy's parameter) satisfying WiTHl-al- # 0. It can be shown that [1] in an ABS algorithm,
we have s; = H;a; # 05 if and only ifa; is linearly independent ofay, a,, ..., a;_1 (orequivalently, a; = 0
if and only if a; is linearly dependent onay, ay, ..., a;_1. The rows of H; . generate thenull space of the
first irows of A. If rank(A)=mthen every solution of the first i equations of the system can bewritten as
Xipq + Hl-T+1s, for some choice of s € R™. Let x* be the special solution of the linear system Ax = b,
then there exist a vector s* € R" such thatx™ = x;,1 + Hl-THs*. Indeed let 1,y =b — Ax;y1,
Z = (Hi410i41, -, Hiy1a,,)T and d be the solution of the linear system ZZ'd = (7;41)m—; Where
(Ti+1)m—i denotes the lastm — i components of the vector r;,;. Then, we haves® = Z"d. Ifx; = 0,
then the solution of the system is Pt, where P=(py, ..., p;,) and T = (T4, ..., Tp)-
In Section 2, we describe the ideas of iteration-free search vectors of the ABS algorithm for solving (1). In
Section 3, we show how we can use these iteration-free search vectors, to characterize the ABS solution
of (1), in case m < n. Section 4 is devoted to the concluding remarks.

2. Iteration-free search vectors

In the kth iteration of primal-dual IIPMs to solve linear optimization problems, the search direction
(Axk,AAk,Ask) is computed by solving the linear system (1). We start the ABS algorithm with
x; = 0 € R?™™ and H; = Iy, 1., Where I, .., is the identity matrix. Then, it can be easily verified that
for1 <i < n,if we letz; =w; = (0,0,e]) € R¥"*™, where ¢ is the ith column of the identity matrix
I, then, in the ith iteration of the ABS algorithm forsolving (1), we have

)

e.
l 0 O I"_z ejejT
j=1

where 611- is the jth column of the matrix A. Now let a;'s, 1 < i < m, denote the ith row of the matrix A.

/In 0 0
° 5, 5

0 I - a: e:

pi=<°>' Hga=| " i1 09 3)

By applying the ABS algorithm to the system AAx* = —ré‘, starting with H; = I,, and X; = 0 € R", we
obtain the parameters z; € R", p; € R™ and H;;; € R™", forl < i < mso thatz] Hia; # 0, w/ Hia; #
0,p; = H'z,H .1 = H — Ha;w!'H,/Ww! H;a;. It can be easily verified that for 1 < i < m, if we let
Znyi = (2;,0,0)T € RZ"™™ w, . = (W;,0,0)T € R?™™, where w; and Z; are defined as above, then, in
the (n + i)th iteration of the ABS algorithm applied to solve (1), we have
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ﬁi Hi+1 0 0
Pnti=\0), Hypppy1=| 0 I, —A) 4)

0 0 0 O
Let A = (&, ..., @,), where the ith column of this matrix is constructed asfollows. Let|x|? = ¥ ; xiz and
d; =@y, 4 =. Now, we define &; =a;, —Y/23(@a)a, for2<i<nand @ = d./||dll, for

2 <i<n. The vectors g;, 1 <j <m, are orthonormal. Using A, we define the matrices N; € RM*m,
Mj, € R™™, C; € R™™ and B;, € R™™, forl < j < m, according to the followingrelations:
k
1 T AT S _ i e T 5T
Ny =—=—ee A", M} =% N, G =1, —Xi_, Aej ¢/ AT (5)

N AT x]

and

Bf = Hyy M}, B, =B +B 'ANG_; — HyuMiG_y  (6)
In the following Theorem, we provide the ABS parameters forthe (n + m + i)th, 1 < i < m, iteration of
the algorithmapplied to solve (1). The proof can be found in [4].

Theorem: For 1 < i < m, let

0
— —| A 2n+m
Wnim+i = Zn+m+i = <Aei> €R

0
Then, in the (n + m + i)th iteration of the ABS algorithmapplied to solve (1), we have
0 Hni1 Bi —BiA
Pn+m+i = Aei~ v Hpngmtivr = 0 ¢, —-CA) (7
—A" A 0 0 0

where the matrices ¢;and B are defined by (5) and(6), respectively.

2. Computing the search directions

In this section, we provide the search directions of primal-dual IIPMs using the search vectors obtained
in Section 2 for the Newton system (1) for the general case where, m < n. In this case, we first derive an
efficient formula to compute B}*. Then, using properties of the ABS algorithm, we characterize the
solution of system (1) from the solution of the first 2n + m equations. Consider the case in whichm < n
and B* is not zero matrix. For 1 < i < m, we define

Ul = (u,...,u}) €e Rm*, DF = (éley, ..., ele;) € R™H (8)
where,
k
-1 s
§=r——m>m, f=—22, 1<j<i 9)
[ial g

anduf = Aey, uf = uj~' + 8;Ae;el ATuj™", for 1 <j < i—1andu; = Ae;. The following theorem
provides an efficient formula to computeB};, 1<i<m.

Theorem: Let 1 < i < m and the matrices Dl-k and U; be defined as in (8). Then,
i

By = Fnsa DU = s ) gfq @, (10)
j=

Proof: We proceed by induction. For i = 1, we have

Bl% = Hm+1D{(U1 = Hm+1€{cel(u%)T
which is true by the definition of B,% in (6). Suppose that (10}) istrueuptoi =1,2,...,t — 1. Fori = t,
from (5), (6) and (9) we have
Bi, = Bf™' + B{T'AN.C,_ — Hp 1 M{:C, 1 (11)
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— k t—1
M{C._, = —ketet TAT (1 Ae; ejTAT) = —cke,el AT (12)
HE
eel AT t=1 _ -
NGCq=——2t" (1, — Z Ae el AT | = 5keel AT (13)
|| j=1

Using the hypothesis of the induction and (11), (12) and (13), we can write
Bk = B}é_l + 6FBL Y Ae el AT + ek H,, 1e.el AT
=Hyi1 25215 ¢ (0~ 1) +ef Hyy el AT +6F YT ele J(ut 1) Aecel AT
=Hps1 (ekeel A7 + izt el e (™) + 6% (™)  Ae,el AT))
_ T _
=m+1 Z]t'=1 sjkej(ujt) = Hy 41 DEU,
This completes the induction.

It is worth mentioning that the matrices U; and H,,, .1need to be computed only once in the first
iteration of the IIPMs, and Djk is a diagonal matrix. Here, using properties of the ABS algorithm, we

construct the solution of system (1) for the case m < n. Let S(kn_m) = Yiem+1 sjkeje_jT_m,Xé‘n_m) =

2 m+1xke] & —m ZHT = m+15(n “m) ~ B,iAXé‘n_m), where ¢; is the ith column of the identity
matrix I, _,, . Assume that
Sm+1€m+1 Sk en (Z*yr
(Zk)Tz H2n+m+1 0 J""H2n+m+1 0 =< 0 )
X +1€m+1 Xy en 0
We note that
(z ") .
zk(z%)" = (2*,0,0) Zx(Zk) .
0
The residual vector of system (1) in thesolution of the first 2Zm + n equations is:
—7¢ 0 AT I PA* 0
e —<A 0 o) A" =( 0 3 )
—rk sk 0 xk/ \—rk —aTAgk ) \—rf — S*PA* + X¥r}k + x* AT Apk

where the last equality obtains from the fact that ((Ak)TPT, (BTAT, (—rk — ATA,B")T)is the solution
of thefirst 2m + n equations. Let (rk) denotes the last n — mcomponents of the vector r¥,

i.e.,(rk)n_m = (—sz Skpak + Xkrk + XkATABk) Now, let d¥
satisfiesZ¥ (Zk)Tdk=(rk )n_m .Thus, using properties of the ABS algorithms, the solution of (1) is as
follows:

Axck P HT 4 0 0 (Z‘k)Tdk
(Alk>= —Ap* |+ BT 00 0
Ask o — AT 4Bk —-AT(B™MT 0 0 0

-7,

/ Pak 4 HL 4 (Z%) d
=| Ak + B (ZF) d*
\ — ATABk — AT(B]T)T(Z—k)Tdk
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2. Conclusions

We generalized iteration free search vectors of the ABS algorithms. Then we used these iteration free
search vectors to characterize the solution of the Newton systems of primal-dual infeasible interior
point methods.
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