Journal of mathematics and computer science 11 (2014), 219-234

Compact Topological Semigroups associated with Oids

Abdol Mohammad Aminpour¹, Mehrdad Seilani^{2,*}

¹Department of Mathematical Sciences and Computer, Shahid Chamran University, Ahvaz, Iran.

²Iranian Academic Center for Education Culture and Research(ACECR)

^{*}(Corresponding author) Tel: +98-9166024698, Email: Seilanimaths11@yahoo.com

Article history: **Received July 2014** Accepted August 2014 Available online August 2014

Abstract

The known theory for a discrete oid T shows that how to find a subset T^{∞} of βT which is a compact right topological semigroup (see section 2 for details).In this paper we try to find an analogue of almost periodic functions for oids. We discover, new compact semigroups by using a certain subspace of functions $\mathcal{U}^{\infty}(T)$ of $\mathcal{C}(T)$ for an oid T for which f^{β} is continuous on $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$, where $(T \cup T^{\infty} \cup TT^{\infty})$ is a suitable subspace of βT for a wide range.

Mathematical Society Classification:2010, 54D35.

Keywords: Oid, Jointly continuous function, Compact topological semigroup.

1. Introduction

Let S be a semigroup and topological space. S is called a topological semigroup if the multiplication $(s, t) \rightarrow st: S \times S \rightarrow S$ is jointly continuous. Civin and Yood [4] shows that βS the Stone-Čech compactification of a discrete semigroup S could be given a semigroup structure, which need not be commutative on S and is continuous in the left-hand variable; (that is for fixed $\nu \in \beta S$, the map $\mu \to \mu \nu: \beta S \to \beta S$ is continuous). Indeed the operation on S extends uniquely to βS , so that S contained in it's topological center [5]. Pym [7] introduced the concept of an oid (see Section 2 for precise definition). Oids are important because nearly all semigroups contain them and all oids are oid-isomorphic [6].We shall present our theory in a fairly concrete setting, so that our methods and results will be more readily accessible. Through out this paper we will let T be a commutative standard oid with a discrete topology. Then the compact space βT produces a compact right topological semigroup, "at

infinity" T^{∞} , so that its topological center is empty and it is not commutative(we refer the reader to [2], for these facts). Our aim of the present paper is to introduce a new compact topological semigroup for an oid T, using a certain space of functions on T which have jointly continuous extensions on subspace $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$ of $T^{\infty} \times \beta T$ where $(T \cup T^{\infty} \cup TT^{\infty})$ is a suitable subspace of βT which is as large as possible. C(T) is the C*-algebra of all bounded continuous complex valued functions defined on the discrete space T and $C(T)^*$ is the dual space of C(T); we indicate the supremum norm on $\mathcal{L}(T)$ by $\|.\|$. We define a subset $\mathcal{U}^{\infty}(T)$ containing all $f \in C(T)$ such that f^{β} is jointly continuous on $T^{\infty} \times (T \cup$ $T^{\infty} \cup TT^{\infty}$) where f^{β} is a unique continuous extension f to βT . Then $\mathcal{U}^{\infty}(T)$ is a \mathcal{C}^* -subalgebra of $\mathcal{C}(T)$ (Lemma 3.3), so that $\mathcal{U}^{\infty}(T) \subseteq$ $WAP^{\infty}(T)$ (see[1],for definition). Indeed, $WAP^{\infty}(T)$ need not be a subset of $\mathcal{U}^{\infty}(T)$ (Example4.27). From the functions space $\mathcal{U}^{\infty}(T)$ we shall able to define an equivalence relation $\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ on T^{∞} by $\mu \mathcal{R}_{\mathcal{U}^{\infty}(T)} \nu$ if and only if $f^{\beta}(\mu) = f^{\beta}(\nu)$ for all $f \in \mathcal{U}^{\infty}(T)$. This does determine a closed congruence relation on T^{∞} Which makes the quotient $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ a compact Hausdorff commutative topological semigroup which is a new semigroup to consider. Also, we conclude by establishing some properties of $T^{\infty}/\mathcal{R}_{\mathcal{H}^{\infty}(T)}$, for example $(T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})^{2}$ is not dense in $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ (Proposition 4.14), it contains 2^{c} idempotents (Theorem 5.4) and $K(T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})$, the minimal ideal of $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ contains a free abelian group on 2^{c} generators (Theorem 6.2).

2. Definitions and preliminaries

Let $x = (x(n))_{n \in \mathbb{N}}$ be any sequence consisting of 1's and ∞ 's. Write 1.1 = 1,1. $\infty = \infty$. 1 = 1. We define

$$supp(x(n))_{n\in\mathbb{N}} = \{n\in\mathbb{N}: x(n) = \infty\},\$$

and write

 $T = \{ (x(n))_{n \in \mathbb{N}} : supp(x(n))_{n \in \mathbb{N}} \text{ is finite and non} - empty \}.$

A commutative standard oid is the set T together with the product xy defined in T if and only if $(supp x) \cap (supp y) = \emptyset$ to be (x(n)y(n)). Thus the product x(n)y(n) is required to be defined if and only if either x(n)ory(n) is 1. Obviously, the product in T is associative where defined and $supp(xy) = (supp x) \cup (supp y)$ whenever xy is defined in T (oids are discussed in [7]). Any commutative standard oid T can be considered as $\bigoplus_{n=1}^{\infty} \{1,\infty\} \setminus \{(1,1,...,1)\}$. We use epithet "standard"to indicate that the index set is $\mathbb{N}(in [7],oids could have any index set)$. For $x, y \in T, supp x < supp y$ means that n < m if $n \in supp x$ and $m \in supp y$, and $supp x_{\alpha} \to \infty$ for some net (x_{α}) in T will mean that for arbitrary $k \in \mathbb{N}$ eventually $\min(supp x_{\alpha}) > k$. Then for

a fixed $t \in T$, eventually $supp \ t \leq supp \ x_{\alpha}$ and so eventually tx_{α} is defined in T. Write $u_n = (1, 1, ..., \infty, 1, 1, ...)$ (with ∞ in the *n*th place). Put $= \{u_n : n \in \mathbb{N}\}$. Then U is countable subset of T. Moreover, any $x \in T$ can be written uniquely as a finite product $x = u_{i_1}u_{i_2}...u_{i_k}$ with $i_1 < i_2 < \cdots < i_k$, $supp \ x = \{i_1, ..., i_k\}$. The compact space βT is the Stone-Čech compactification of the discrete space T and if f maps T to some compact space, f^{β} is the unique continuous extension of f to βT . We define

 $T^{\infty} = \{ \mu \in \beta T \colon \mu = \lim_{\alpha} x_{\alpha} \text{ with supp } x_{\alpha} \to \infty \}.$

Obviously, $T \cap T^{\infty} = \emptyset$. For $\mu \in \beta T, \nu \in T^{\infty}$ the product $\mu \nu \in C(T)^*$ is defined by $\mu \nu = \mu \circ L_{\nu}$, where $L_{\nu}f(t) = \lim_{\beta} f(ty_{\beta})$, if $t \in T, f \in C(T)$ and $y_{\beta} \to \nu$ with supp $y_{\beta} \to \infty$. Then $L_{\nu}f \in C(T), L_{\nu}f(t) = (L_t f)^{\beta}(\nu)$. Further, L_{ν} is a bounded linear operator on C(T). Of course $\mu \in \beta T$ is a bounded linear functional on C(T), with $\|\mu\| \leq 1$, if $\mu(f) = f^{\beta}(\mu)$. In fact, the product $(\mu, \nu) \to \mu \nu$: $\beta T \times T^{\infty} \to T^{\infty}$ is defined and is right continuous, and left continuity holds when $\mu = t \in T[1]$. Also $\mu \nu = \lim_{\alpha} \lim_{\beta} x_{\alpha} y_{\beta}$ where (x_{α}) is a net in T with $x_{\alpha} \to \mu$. If $\mu \in T^{\infty}$, then $L_{\mu\nu} = L_{\mu} \circ L_{\nu}$, so that $(\mu, \nu) \to \mu \nu$: $T^{\infty} \times T^{\infty} \to T^{\infty}$ is a binary operation on T^{∞} relative to which that T^{∞} is a compact right topological semigroup. If $\subseteq T$, then 1_A denotes the indicator function of A, that is, the function whose value is 1 on A and 0 on $T \setminus A$.

Remark2.1. For $v \in T^{\infty}$ and $\mu \in \beta T$, $v\mu$ can not always be defined in a standard oid T, if we require that multiplication is right continuous. This is true even if $\mu \in T$. If $z_n = u_1u_2 \dots u_n$, $n \in \mathbb{N}$, $u_n \in U$ and $z_{n_i} \to \lambda \in \beta T$ for some subnet $(z_{n_i})of(z_n)$, then for any $t \in T$, $\lim_i tz_{n_i}$ is not defined. But we can define $v\mu$ for standard oids only on a subset of $T^{\infty} \times \beta T$. This subset includes $T^{\infty} \times (T \cup T^{\infty})$. Now let $x_{\alpha} \to \mu$ in βT with supp $x_{\alpha} \to \infty$ and let $\lambda = t\lambda'$ where $t \in T$, $\lambda' \in T^{\infty}$ such that $y_{\beta} \to \lambda'$ with $supp y_{\beta} \to \infty$. Then eventually $supp t < supp x_{\alpha}$ and for such α , eventually $supp x_{\alpha} < supp y_{\beta}$, so that eventually $tx_{\alpha}y_{\beta}$ is defined in T and hence $\lim_{\alpha} \lim_{\beta} (tx_{\alpha}y_{\beta}) = t\mu\lambda' (= \mu t\lambda')$ (see[1], Definition 3.5). Therefore, we can defined $\mu\lambda$ on $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$, whenever $(T \cup T^{\infty} \cup TT^{\infty})$ is a suitable subspace of βT for a wide range.

Definition2.2.(*i*) The **cardinal function** is the map $c: T \to \mathbb{N}$ given by c(x) = card(supp x) (that is, the number of elements of the support of x). Then c extends to a unique continuous extension c^{β} from βT into the one-point compactification $\mathbb{N} \cup \{\infty\}$. If $(supp x) \cap (supp y) = \emptyset$ so that xy is defined in (xy) = c(x) + c(y), and so for $\mu \in \beta T, \nu \in T^{\infty}$ then $c^{\beta}(\mu\nu) = c^{\beta}(\mu) + c^{\beta}(\nu)$. Thus c^{β} is a homomorphism on T^{∞} . We denote 1/c(x) by h(x) for $x \in T$.

(*ii*) The **length function** is the map $l: T \to \mathbb{N}$ by letting l(x) (The length Of support of x) be the integer $i_k - i_1 + 1$ where $supp \ x = \{i_1, \dots, i_k\}$.

Then l extends to a unique continuous extension l^{β} from βT into the onepoint compactification $\mathbb{N} \cup \{\infty\}$. We denote 1/l(x) by r(x) for $x \in T$.

(*iii*) The **z-function** is the map $z: T \to \mathbb{Z}^+$ by letting z(x) be the largest number of consecutive 1's between min(supp x) and max(supp x). Then z extends to a unique continuous extension z^β from βT into the one-point compactification $\mathbb{Z}^+ \cup \{\infty\}$. We denote 1/z(x) + 1 by k(x) for $\in T$.

We next have some useful results which we will need later.

Proposition2.3. For $\mu \in T^{\infty}$, $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$ then $l^{\beta}(\mu\nu) = \infty$.

Proof. Let $v = t \in T$, and let $x_{\alpha} \to \mu$ for some net (x_{α}) in T with $supp \ x_{\alpha} \to \infty$. Then eventually $supp \ t < supp \ x_{\alpha}$, so that eventually $l(tx_{\alpha}) = \infty$. Since $tx_{\alpha} \to t\mu$ in βT and l^{β} is continuous $on\beta T$, from which it follows that $l^{\beta}(\mu t) = l^{\beta}(t\mu) = \infty$. If $v \in T^{\infty}$, and $y_{\beta} \to v$ for some net (y_{β}) in T with $supp \ y_{\beta} \to \infty$, then $l^{\beta}(\mu v) = lim_{\alpha} lim_{\beta} l(x_{\alpha} y_{\beta}) = \infty$, by a similar reason. Suppose that $v = t\lambda, \lambda \in T^{\infty}$. Then $\mu \lambda \in T^{\infty}$, since T^{∞} is a semigroup, Hence $l^{\beta}(\mu v) = l^{\beta}(\mu t\lambda) = l^{\beta}(t\mu\lambda) = \infty$ and the result follows.

The next result is an immediate consequence of Definition2.2(*ii*), Proposition2.3.

Corollary2.4. For $\mu \in T^{\infty}$, $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$. Then $r^{\beta}(\mu \nu) = 0$.

Proposition2.5.Let $\mu \in T^{\infty}$, $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$. Then $z^{\beta}(\mu\nu) = \infty$.

Proof. This uses Definition 2.2(*iii*), the proof is parallel to that of Proposition 2.3.

Corollary2.6. Let $\mu \in T^{\infty}$, $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$. Then $k^{\beta}(\mu\nu) = 0$. Proof is straightforward.

3. Space of jointly continuous functions

Our aim of the present section is to introduce a new kind of C^* -subalgebra of the C^* -algebra C(T). In this section we try to find an analogue of almost periodic functions for oids.

Definition3.1. Let *T* be a commutative standard oid. We use $\mathcal{U}^{\infty}(T)$ to denote the set of all bounded complex valued functions on *T* for which $(\mu, \nu) \rightarrow f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \rightarrow \mathbb{C}$ is jointly continuous. Clearly $\mathcal{U}^{\infty}(T)$ is conjugate closed and contains all constant functions.

Example3.2.(*i*) Let h = 1/c be as in Definition 2.2(*i*). Then by a routine

argument we see that for $\mu \in T^{\infty}, \nu \in (T \cup T^{\infty} \cup TT^{\infty}), c^{\beta}(\mu\nu) = c^{\beta}(\mu) + c^{\beta}(\nu), \text{ and so } (\mu, \nu) \rightarrow h^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \rightarrow \mathbb{C}$ is jointly continuous. Therefore $h \in \mathcal{U}^{\infty}(T)$.

(ii)Let r = 1/l be as in Definition 2.2(ii). Then by Corollary 2.4, $r^{\beta}(\mu v) = 0$ for $\mu \in T^{\infty}$ and $v \in (T \cup T^{\infty} \cup TT^{\infty})$, and so $(\mu, v) \to r^{\beta}(\mu v)$: $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \to \mathbb{C}$ is jointly continuous. Thus $r \in \mathcal{U}^{\infty}(T)$.

(iii) Let k = 1/z + 1 be as in Definition 2.2(iii). Then by Corollary 2.6, $k^{\beta}(\mu\nu) = 0$ for $\mu \in T^{\infty}$, $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$, and $so(\mu, \nu) \rightarrow k^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \rightarrow \mathbb{C}$ is jointly continuous ,hence $k \in \mathcal{U}^{\infty}(T)$.

Lemma3.3. $\mathcal{U}^{\infty}(T)$ is a *C**-subalgebra of the *C**-algebra *C*(*T*).

Proof. It is easily seen that $\mathcal{U}^{\infty}(T)$ is a subalgebra of the algebra C(T). To prove that $\mathcal{U}^{\infty}(T)$ is a C^* -subalgebra it is enough to prove that $\mathcal{U}^{\infty}(T)$ is a closed subalgebra of C(T) because the other conditions are satisfied easily. For this purpose, let $(f_n)_{n\in\mathbb{N}}$ be any sequence in $\mathcal{U}^{\infty}(T)$, $f \in C(T)$ with $||f_n - f|| \to 0$, as $n \to \infty$. Suppose that $\mu_{\alpha} \to \mu$ in T^{∞} , $\nu_{\alpha} \to \nu$ in $(T \cup T^{\infty} \cup TT^{\infty})$. Then given $\varepsilon > 0$, choose $k \in \mathbb{N}$ such that $||f_n - f|| < \varepsilon/3$ for all $n \ge k$. Fix $n_0 > k$. Then choose α_0 such that $\alpha > \alpha_0$,

$$\begin{split} \left| f_{n_0}^{\beta}(\mu_{\alpha}\nu_{\alpha}) - f_{n_0}^{\beta}(\mu\nu) \right| &< \varepsilon/3. \text{ For such } \alpha, \text{ then} \\ \left| f^{\beta}(\mu_{\alpha}\nu_{\alpha}) - f^{\beta}(\mu\nu) \right| &\leq \left| f^{\beta}(\mu_{\alpha}\nu_{\alpha}) - f_{n_0}^{\beta}(\mu_{\alpha}\nu_{\alpha}) \right| + \left| f_{n_0}^{\beta}(\mu_{\alpha}\nu_{\alpha}) - f_{n_0}^{\beta}(\mu\nu) \right| \\ &+ \left| f_{n_0}^{\beta}(\mu\nu) - f^{\beta}(\mu\nu) \right| \\ &\leq \left\| f^{\beta} - f_{n_0}^{\beta} \right\| + \left| f_{n_0}^{\beta}(\mu_{\alpha}\nu_{\alpha}) - f_{n_0}^{\beta}(\mu\nu) \right| + \left\| f_{n_0}^{\beta} - f^{\beta} \right\| \\ &< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon. \end{split}$$

Hence $\lim_{\alpha} f^{\beta}(\mu_{\alpha}\nu_{\alpha}) = f^{\beta}(\mu\nu)$ and so $(\mu,\nu) \to f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$ is jointly continuous, as desired.

Our next result will be useful in later.

Theorem3.4.Let $f \in \mathcal{U}^{\infty}(T), \eta \in T^{\infty}$. Then $L_{\eta}f \in \mathcal{U}^{\infty}(T)$.

Proof. It is easy to check that $\nu\eta \in (T \cup T^{\infty} \cup TT^{\infty})$ whenever $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$. From this and that the product $(\mu, \nu) \to \mu\nu$: $\beta T \times T^{\infty} \to \beta T$ is right continuous, it follows that the map $\nu \to \nu\eta$ is continuous of $(T \cup T^{\infty} \cup TT^{\infty})$ into itself. Therefore the composite map $(\mu, \nu) \to (\mu, \nu\eta) \to f^{\beta}(\mu\nu\eta)$ is continuous from $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$ to \mathbb{C} for each $f \in \mathcal{U}^{\infty}(T)$. Thus

$$f^{\beta}(\mu\nu\eta) = \mu\nu\eta(f) = \mu\nu\circ L_{\eta}(f) = \mu\nu(L_{\eta}f) = (L_{\eta}f)^{\beta}(\mu\nu).$$

It follows that, $(\mu, \nu) \rightarrow (L_{\eta}f)^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \rightarrow \mathbb{C}$ is continuous, and therefore by Definition 3.1, $L_{\eta}f \in \mathcal{U}^{\infty}(T)$, as desired. \Box **Definition3.5.** For $f \in \mathcal{U}^{\infty}(T)$ and $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$, we define $L_{\nu}f^{\beta}(\mu) = f^{\beta}(\mu\nu)$, where $\mu \in T^{\infty}$.

Remark3.6.*It is easy to check that* $L_{\nu}f^{\beta}$ *is continuous on compact space*

 T^{∞} , since $(\mu, \nu) \rightarrow \mu\nu$: $\beta T \times T^{\infty} \rightarrow \beta T$ is right continuous and left continuity holds when $\mu = t \in T$. Moreover, L_{ν} is a bounded linear operator with $||L_{\nu}|| \leq 1$.

Theorem3.7.Let $f \in C(T)$. Then $(\mu, \nu) \to f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \to \mathbb{C}$ is jointly continuous if and only if $\nu \to L_{\nu}f^{\beta}: (T \cup T^{\infty} \cup TT^{\infty}) \to C(T^{\infty})$ is norm continuous.

Proof. Define $\psi: T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \to \mathbb{C}$ by $\psi(\mu, \nu) = f^{\beta}(\mu\nu)$. Then ψ Is a bounded function, since f^{β} is continuous on βT . It follows readily that $\mu \to \psi(\mu, \nu): T^{\infty} \to \mathbb{C}$ is a continuous function for each $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$. Let $C(T^{\infty})$ have the uniform norm. Since T^{∞} is a compact space and $(T \cup T^{\infty} \cup TT^{\infty})$ is a subspace of $\beta T, \psi$ is jointly continuous if and only if the mapping $\nu \to \psi(0, \nu): (T \cup T^{\infty} \cup TT^{\infty}) \to C(T^{\infty})$ is continuous (see[10], Chapter 1, Lemma 1.8(*a*)).

Lemma3.8. If $\nu \to L_{\nu} f^{\beta} : T^{\infty} \to C(T^{\infty})$ is norm-continuous, then $\{L_{\nu} f^{\beta} : \nu \in T^{\infty}\}$ is relatively norm compact $in_{C}(T^{\infty})$

Proof is straightforward.

The next result is an immediate consequence of Definition 3.1, Theorem 3.7 and Lemma 3.8.

Corollary3.9. Let $f \in \mathcal{U}^{\infty}(T)$. Then $\{L_{\nu}f^{\beta} : \nu \in T^{\infty}\}$ is a norm relatively compact in $C(T^{\infty})$.

4. Compact topological semigroups

In this section by starting with $\mathcal{U}^{\infty}(T)$ we will produce a new compact

Commutative topological semigroup, and make an investigation of it's properties.

Assume that au is the topology induced on a compact right topological

Semigroup T^{∞} by βT and $\tau_{\mathcal{U}^{\infty}(T)}$ is the weak topology induced on T^{∞} by the family{ f^{β} : $f \in \mathcal{U}^{\infty}(T)$ }. Then the identity map from (T^{∞}, τ) onto $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$ is continuous, thus $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$ is compact [9].

Definition4.1.For $\mu, \nu \in T^{\infty}$, define $\mu \mathcal{R}_{\mathcal{U}^{\infty}(T)}\nu$ if and only if $f^{\beta}(\mu) = f^{\beta}(\nu)$ For all $f \in \mathcal{U}^{\infty}(T)$. Clearly $\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is a closed relation on $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$.

Remark4.2.*It should be noted from Definition 3.1, It follows that if* $f \in \mathcal{U}^{\infty}(T), (\mu, \nu) \to f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty}) \to \mathbb{C}$ is separately continuous, so that $f^{\beta}(\mu\nu) = f^{\beta}(\nu\mu)$ for all $\mu, \nu \in T^{\infty}$. Therefore $f \in W_{1}^{\infty}(T)$ (see [1], for details).

Proposition4.3. $\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ *Is a congruence relation on* T^{∞} .

Proof. To prove that $\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is congruence, we use Remark 4.2 and Theorem 3.4. Let $\mu \mathcal{R}_{\mathcal{U}^{\infty}(T)}\mu'^{\text{and}} \nu \mathcal{R}_{\mathcal{U}^{\infty}(T)}\nu'^{\text{where }} \mu, \nu, \mu', \nu' \in T^{\infty}$. Pick $f \in \mathcal{U}^{\infty}(T)$. Then

$$f^{\beta}(\mu\nu) = (L_{\nu}f)^{\beta}(\mu) = (L_{\nu}f)^{\beta}(\mu') = f^{\beta}(\mu'\nu) = f^{\beta}(\nu\mu') = (L_{\mu'}f)^{\beta}(\nu)$$
$$= (L_{\mu'}f)^{\beta}(\nu') = f^{\beta}(\nu'\mu') = f^{\beta}(\mu'\nu')$$
Thus any \mathcal{D}_{μ} with as claimed

Thus $\mu \nu \mathcal{R}_{\mathcal{U}^{\infty}(T)} \mu' \nu'$, as claimed.

Proposition4.4. $(T^{\infty}, \tau_{u^{\infty}(T)})$ is a compact topological semigroup.

Proof. We know that $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$ is a compact space. Now let (μ_{α}) be a net in T^{∞} converging to μ in $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$. Then $\mu_{\alpha_{\beta}} \to \mu_{0}$ in (T^{∞}, τ) for some subnet $(\mu_{\alpha_{\beta}})$ of (μ_{α}) . Since identity map from (T^{∞}, τ) onto $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$ is continuous, it follows that $\mu_{\alpha_{\beta}} \rightarrow \mu_0$ in $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$. Hence for each $f \in \mathcal{U}^{\infty}(T)$, $f^{\beta}(\mu_0) = \lim_{\beta} f^{\beta}(\mu_{\alpha_{\beta}}) = f^{\beta}(\mu)$. So $\mu_0 \ \mathcal{R}_{\mathcal{U}^{\infty}(T)}\mu$. Similarly if $\nu_{\alpha} \to \nu$ and $\nu_{\alpha_{\beta}} \to \nu_0$ in $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$ then $v_0 \mathcal{R}_{\mathcal{U}^{\infty}(T)}v$. Hence, as $\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is a congruence relation on T^{∞} by Proposition 4.3, then $\mu_0 \nu_0 \mathcal{R}_{\mathcal{U}^{\infty}(T)} \mu \nu$, so that $f^{\beta}(\mu_0 \nu_0) = f^{\beta}(\mu \nu)$ for all $f \in \mathcal{U}^{\infty}(T)$. Now let $\mu_{\alpha} \to \mu, \nu_{\alpha} \to \nu$ in $(T^{\infty}, \tau_{\mathcal{U}^{\infty}(T)})$, let $(\mu_{\alpha_{\beta}}\nu_{\alpha_{\beta}})$ be a subnet of $(\mu_{\alpha}\nu_{\alpha})$. Using compactness of (T^{∞}, τ) we find subnets $(\mu_{\alpha_{\beta_{\gamma}}})$, $(\nu_{\alpha_{\beta_{\gamma}}})$ with $\mu_{\alpha_{\beta_{\gamma}}} \to \mu_0$, $\nu_{\alpha_{\beta_{\gamma}}} \to \nu_0 in(T^{\infty}, \tau)$. Then for each $f \in \mathcal{U}^{\infty}(T)$, we have $\lim_{\gamma} f^{\beta}(\mu_{\alpha_{\beta_{\gamma}}} \nu_{\alpha_{\beta_{\gamma}}}) = f^{\beta}(\mu_{0}\nu_{0}) = f^{\beta}(\mu\nu)$, since $(\mu, \nu) \to f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \to \mathbb{C}$ is jointly continuous, hence $\mu_{\alpha} \nu_{\alpha} \rightarrow \mu \nu$, as required.

Corollary4.5.Let the quotient semigroup $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ have the quotient topology. Then $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is compact Hausdorff topological semigroup.

Proof. Use Definition 4.1 and Proposition 4.3.

Corollary4.6. $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is a commutative semigroup.

Proof. Take $\mu, \nu \in T^{\infty}$ and $f \in \mathcal{U}^{\infty}(T)$. Then $f^{\beta}(\mu\nu) = f^{\beta}(\nu\mu)$ (Remark 4.2), and thus $\mu\nu \mathcal{R}_{\mathcal{U}^{\infty}(T)}\nu\mu$, which implies the assertion.

We conclude this section with some results (both algebraic, topological) on $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$.

Theorem 4.7. $K(T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})$ the minimal ideal of $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is compact topological group.

Proof. This follows from Corollaries 4.5,4.6 and Corollary 1.5.3[3].

Remark4.8. For each $n \in \mathbb{N}$, write $H_n = \{\mu \in T^{\infty}: c^{\beta}(\mu) = n\}$ and $H_{\infty} = \{\mu \in T^{\infty}: c^{\beta}(\mu) = \infty\}$. Then $T^{\infty} = H_1 \cup H_2 \cup ... \cup H_n \cup ... \cup H_{\infty}$. Hence H_n is clopen and each $\mu \in H_n$ is a limit of a net (x_{α}) in Twith $c(x_{\alpha}) = n$ for each α . Further, $H_n H_m \subseteq H_{n+m}$ for all $m, n \in \mathbb{N}$, so $H_1 \cup H_2 \cup ... \cup H_n \cup ...$ is a sub semigroup of T^{∞} . Recall that by Definition 2.2(ii), l is the length function and $r(x) = 1/l(x), x \in T$.

Lemma4.9.Let $\xi \in H_n$ for some $n \in \mathbb{N}$ with $l^{\beta}(\xi) < \infty$, let $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ be the quotient map. Then $\pi(\xi)$ is not a product. Proof. Let $g_l \pi = l^{\beta}$. Then g_l is a continuous functions on $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$, since r = 1/l and $r \in \mathcal{U}^{\infty}(T)$ (Example 3.2 (ii)) and that $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ have the quotient topology (see [9], Chapter 3, Theorem 9). If $\pi(\xi) = \pi(\xi_1)\pi(\xi_2)$ for some $\xi_1, \xi_2 \in T^{\infty}$, then $l^{\beta}(\xi) = l^{\beta}(\xi_1\xi_2) = \infty$ (Proposition2.3), which contradicts $l^{\beta}(\xi) < \infty$.

Theorem4.10. $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ has no identity. *Proof.* If $\pi(e)$ is an identity element for $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$, where $e \in T^{\infty}$, then $\pi(\xi) = \pi(e)\pi(\xi) = \pi(\xi)\pi(e)$ for all $\xi \in T^{\infty}$, which is impossible by Lemma 4.9.

Remark 4.11. It is easy to verify that, $l^{\beta}(e) = \infty$, whenever $\pi(e)$ is an idempotent $inT^{\infty}/\mathcal{R}_{U^{\infty}(T)}$. We denote the set of all idempotents in $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ by $E(T^{\infty}/\mathcal{R}_{U^{\infty}(T)})$. Thus we obtain that $E(T^{\infty}/\mathcal{R}_{U^{\infty}(T)}) \subseteq {\pi(\xi): \xi \in T^{\infty}, l^{\beta}(\xi) = \infty}$.

Proposition4.12. Let $\xi \in H_n$ for some $n \in \mathbb{N}$ with $l^{\beta}(\xi) < \infty$. Then $\pi(\xi)$ *is not a left zero.*

Proof. Left zeros are idempotents and we saw above that $l^{\beta}(\xi) = \infty$ if ξ is an idempotent.

We next have the following theorem.

Theorem4.13. $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is not a left zero semigroup.

Proposition4.14. $(T^{\infty}/\mathcal{R}_{U^{\infty}(T)})^2$ is not dense in $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$. *Proof.* Let $g_r \pi = r^{\beta}$, where $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is the quotient map. Then g_r is continuous on $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$, since $r \in \mathcal{U}^{\infty}(T)$ (Example 3.2 (ii)), and that

 $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ have the quotient topology. By Corollary 2.4,

$$(T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})^2 \cap g_r^{-1}(0,1) = \emptyset$$

But $g_r^{-1}(0,1)$ is a non-empty open set in $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$, as claimed. \Box

Remark4.15. Let $\mu_0 \in T^{\infty}$ be the cluster point of the sequence $(u_n u_{n+3})_{n=1}^{\infty}$ in βT , where $u_n \in U$ for all $n \in \mathbb{N}$, let $g_r \pi = r^{\beta}$ (Proposition 4.14). Then $r^{\beta}(\mu_0) = 1/4$ and since by Corollary 2.4, $r^{\beta}((T^{\infty})^2) = 0$ which implies that $\pi(\mu_0)$ is not the limit of a net of elements $(T^{\infty}/\mathcal{R}_{U^{\infty}(T)})^2$. Thus we obtain an alternative proof of the Proposition 4.14 which will be required in the next result.

Theorem4.16. $T^{\infty}/\mathcal{R}_{\mathcal{H}^{\infty}(T)}$ is not a left (resp, right) simple semigroup.

Proof. Indeed, $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}\pi(\mu_{0}) \subseteq (T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})^{2}$, and $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}\pi(\mu_{0})$ is closed in $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$. Thus $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}\pi(\mu_{0}) \neq T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ by Proposition 4.14, so $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is not a left simple semigroup. Thus $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is not a group (see [3], for more details).

From Theorem 4.16 and Definition 1.5.6[3], we get the following result.

Corollary4.17. $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is not topologically left (resp, right) simple.

Corollary4.18. $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is not cancellative (and hence is not group). *Proof.* Use Theorem 4.16 and Corollaries 3.13,3.14[3].

Remark4.19. If for each $k \in \mathbb{N}$, let $x_m^{(k)} = u_m u_{m+1} \dots u_{m+k-1}$, $m \in \mathbb{N}$ and $y_n = u_n u_{n+1} \dots u_{n^2}$, $n \in \mathbb{N}$, where $u_n \in U$ for all n, then $supp x_m^{(k)} \to \infty$, $supp y_n \to \infty$. Let $\mu^{(k)}$, $\nu \in T^{\infty}$ be the cluster points of $(x_m^{(k)})_{m=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ In βT respectively. Then $l^{\beta}(\mu^{(k)}) = k$, $l^{\beta}(\nu) = \infty$. Now, suppose that $g_l \pi = l^{\beta}$ (Lemma 4.9). Then $g_l \pi(\mu^{(k)}) = l^{\beta}(\mu^{(k)}) = k$, $g_l \pi(\nu) = l^{\beta}(\nu) = \infty$, which implies that g_l and l^{β} map $T^{\infty}/\mathcal{R}_{U^{\infty}}(T)$ and T^{∞} onto the one-point compactification $\mathbb{N} \cup \{\infty\}$ respectively.

Next we shall prove the following result.

Proposition 4.20. $(g_l^{-1}(\infty))^2$ is not dense in $g_l^{-1}(\infty)$ (and hence is not dense in $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$).

Proof. Let k be as in Definition 2.2 (iii). Define $g_k \pi = k^\beta$, where $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ is the quotient map. Then g_k is a continuous function on $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$, since $k \in \mathcal{U}^{\infty}(T)$ (Example 3.2 (iii)). Suppose now that, $(y_n)_{n=1}^{\infty}, v \in T^{\infty}$ be as in Remark 4.19. Then $\pi(v) \notin g_l^{-1}(\infty)$, since $l^\beta(v) = \infty$ and $g_l \pi = l^\beta$. On the other hand, $k^\beta(v) = 1$, since $z(y_n) = 0$ (see Definition 2.2 (iii)). But $(g_l^{-1}(\infty))^2 \subseteq (T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})^2$, an application of Corollary 2.6 then shows that $g_k(g_l^{-1}(\infty))^2 = (T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})^2$.

0.Hence, $\pi(\nu) \notin cl(g_l^{-1}(\infty))^2$, which implies the desired conclusion.

Recall that by Definition 2.2(*i*), c^{β} is a continuous homomorphism on T^{∞} , and h = 1/c, $h \in \mathcal{U}^{\infty}(T)$ (Example 3.2 (i)). Let $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ be the quotient map, and let $g_{c}\pi = c^{\beta}$. Then g_{c} is a continuous homomorphism on $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$. Let $\mu^{(k)}$, ν be as in Remark 4.19. Then $c^{\beta}(\mu^{(k)}) = k$, $c^{\beta}(\nu) = \infty$, and so we obtain that g_{c} maps $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$ onto the one-point compactification $\mathbb{N} \cup \{\infty\}$.

The proof of the following proposition is essentially the same as that of Proposition4.20.

Proposition 4.21. $(g_c^{-1}(\infty))^2$ is not dense in $g_c^{-1}(\infty)$ (and hence is not dense in $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$).

Theorem 4.22.Let $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ be the quotient map. Then the set $\{\pi(\xi): \xi \in T^{\infty}, l^{\beta}(\xi) < \infty\}$ is not dense in $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$.

Proof. Let $(y_n)_{n=1}^{\infty}$, $\nu \in T^{\infty}$ be as in Remark 4.19. Put $Y = \{y_n : n \in \mathbb{N}\}$ and let 1_Y

be the indicator function of Y. Then $1_Y^{\beta}(\nu) = 1$. We complete the proof by showing

that $1_Y \in \mathcal{U}^{\infty}(T)$. To see this, suppose that $\mu \in T^{\infty}$, $\eta \in (T \cup T^{\infty} \cup TT^{\infty})$

and let $x_{\alpha} \to \mu$ for some net (x_{α}) in *T* with $supp x_{\alpha} \to \infty$. If $\eta = t \in T$, then

eventually supp $t < supp x_{\alpha}$ and for such α , eventually supp $x_{\alpha} < supp y_n$, so

that eventually
$$tx_{\alpha} \notin Y$$
. Hence $1_{Y}^{\beta}(t\mu) = 0$. If $\eta \in T^{\infty}$ and $y_{\beta} \to \eta$ for some
 $\operatorname{net}(y_{\beta})\operatorname{in}T$ with $suppy_{\beta} \to \infty$, then $1_{Y}^{\beta}(\mu v) = \lim_{\alpha} \lim_{\beta} 1_{Y}(x_{\alpha}y_{\beta}) = 0$ by a
similar reason. Finally, if $\eta = t\lambda$, $\lambda \in T^{\infty}$. Then $\mu\lambda \in T^{\infty}$, since T^{∞} is a
semigroup and hence $1_{Y}^{\beta}(\mu\eta) = 1_{Y}^{\beta}(t\mu\lambda) = 0$. Consequently, $1_{Y} \in \mathcal{U}^{\infty}(T)$.
 $\operatorname{Let}g_{1_{Y}}\pi = 1_{Y}^{\beta}$. Then $g_{1_{Y}}$ is continuous on $T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)}$. Take $\xi \in T^{\infty}$
with $l^{\beta}(\xi) = k, k \in \mathbb{N}$. There exists a $\operatorname{net}(z_{\gamma})$ in T such that $z_{\gamma} \to \xi$ with
 $supp z_{\gamma} \to \infty$. It follows that, eventually $l(z_{\gamma}) = k$, hence eventually $z_{\gamma} \notin Y$.

Therefore $1_Y^{\beta}(\xi) = 0$, so $g_{1_Y}\pi(\xi) = 0$. On the other hand, $g_{1_Y}\pi(\nu) = 1_Y^{\beta}(\nu) = 1$ and hence $\pi(\nu) \notin cl\{\pi(\xi): \xi \in T^{\infty}, l^{\beta}(\xi) < \infty\}$, which implies the desired conclusion. For remainder of this section we consider the more general results of describing about inclusion between $\mathcal{U}^{\infty}(T)$ and $WAP^{\infty}(T)$ (see[1], for more details).

Theorem 4.23. For $f \in C(T)$, if $(\mu, \nu) \to f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \to \mathbb{C}$ is separately continuous, then $(\mu, \nu, \eta) \to f^{\beta}(\mu\nu\eta): T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty}) \times T^{\infty} \to \mathbb{C}$ is also separately continuous.

Proof. Let (μ_{α}) is a net in T^{∞} converging to $\mu \in T^{\infty}$ and let $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$, $\eta \in T^{\infty}$.

(*i*) If $v \in T^{\infty}$, then as is readily verified that $f^{\beta}(\mu_{\alpha}v\eta) \rightarrow f^{\beta}(\mu v\eta)$, since $v\eta \in T^{\infty}$ and $(\mu, v) \rightarrow \mu v: \beta T \times T^{\infty} \rightarrow \beta T$ is right continuous. (*ii*) If $v = t\lambda$, $t \in T$ and $\lambda \in T^{\infty}$. Then $\lambda \eta \in T^{\infty}$ since T^{∞} is semigroup and $t\mu_{\alpha} \rightarrow t\mu$ in T. Using Definition 3.5[1] and that $(\mu, v) \rightarrow \mu v: \beta T \times T^{\infty} \rightarrow \beta T$ is right continuous, it follows that $f^{\beta}(\mu_{\alpha}v\eta) \rightarrow f^{\beta}(\mu v\eta)$. (*iii*) If $v = t \in T$, then by a similar argument, $f^{\beta}(\mu_{\alpha}v\eta) \rightarrow f^{\beta}(\mu v\eta)$. Let (η_{α}) is an et in T^{∞} converging to $\eta \in T^{\infty}$. Take $\mu \in T^{\infty}$, $v \in (T \cup T^{\infty} \cup TT^{\infty})$. (*i*) Let $v \in T^{\infty}$. Then $\mu v \in T^{\infty}$. In fact $\eta_{\alpha} \rightarrow \eta$ in $(T \cup T^{\infty} \cup TT^{\infty})$ and by hypothesis, $(\mu, v) \rightarrow f^{\beta}(\mu v)$ is separately continuous on $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$.

(*ii*) Let $v = t\lambda$, $t \in T$ and $\lambda \in T^{\infty}$. Then $\mu\lambda \in T^{\infty}$. Indeed, $t\eta_{\alpha} \to t\eta$ in $(T \cup T^{\infty} \cup TT^{\infty}) \subseteq \beta T$ and $(\mu, \nu) \to f^{\beta}(\mu\nu)$ is separately continuous on $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$, hence $f^{\beta}(\mu\nu\eta_{\alpha}) \to f^{\beta}(\mu\nu\eta)$.

(iii) Let $v = t \in T$. The proof is similar.

Finally, suppose that (ν_{α}) is a net $in(T \cup T^{\infty} \cup TT^{\infty})$ converging to $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$, and let $\mu, \eta \in T^{\infty}$. Then $\nu_{\alpha}\eta \to \nu\eta in(T \cup T^{\infty} \cup TT^{\infty})$. But $(\mu, \nu) \to f^{\beta}(\mu\nu)$ is separately continuous on $T^{\infty} \times (T \cup T^{\infty} \cup TT^{\infty})$, hence $f^{\beta}(\mu\nu_{\alpha}\eta) \to f^{\beta}(\mu\nu\eta)$. This proves our assertion.

Theorem4.24. For $f \in C(T)$, let $both(\mu, \nu) \to f^{\beta}(\mu\nu): T^{\infty} \times (T \cup T^{\infty}) \to \mathbb{C}$ and $(\mu, \nu, \eta) \to f^{\beta}(\mu\nu\eta): T^{\infty} \times (T \cup T^{\infty}) \times T^{\infty} \to \mathbb{C}$ are separately continuous. Then $f \in W_2^{\infty}(T)$.

Proof. We use Theorem 3.11[1]. Suppose $\mu, \nu, \eta \in T^{\infty}$, and (x_{α}) isanet in *T* converging to μ with $supp x_{\alpha} \to \infty$. Then $f^{\beta}(x_{\alpha}\eta\nu) \to f^{\beta}(\mu\eta\nu)$, since $(\mu, \nu) \to \mu\nu$: $\beta T \times T^{\infty} \to \beta T$ is right continuous, and $\eta\nu \in T^{\infty}$. By hypothesis, $(\mu, \nu) \to f^{\beta}(\mu\nu)$ is separately continuous on $T^{\infty} \times (T \cup T^{\infty})$, hence from Remark 4.2, and that T^{∞} is a semigroup we see that

$$f^{\beta}(\mu\eta\nu) = f^{\beta}(\nu\mu\eta) = f^{\beta}(\eta\nu\mu) \quad , \quad f^{\beta}(\eta\mu\nu) = f^{\beta}(\nu\eta\mu) = f^{\beta}(\mu\nu\eta).$$

On the other hand, $\lim_{\alpha} f^{\beta}(x_{\alpha}\eta\nu) = \lim_{\alpha} f^{\beta}(\eta x_{\alpha}\nu) = f^{\beta}(\eta\mu\nu)$, since $(\mu, \nu, \eta) \rightarrow f^{\beta}(\mu\nu\eta)$ is separately continuous on $T^{\infty} \times (T \cup T^{\infty}) \times T^{\infty}$ and $x_{\alpha} \rightarrow \mu$ in $(T \cup T^{\infty})$. Thus $f^{\beta}(\mu\eta\nu) = f^{\beta}(\eta\mu\nu)$, and we have that $f \in W_{2}^{\infty}(T)$, as desired.

Definition 3.1 and the preceding theorems now imply that the following result.

Corollary 4.25.Let T be a commutative standard oid. Then $\mathcal{U}^{\infty}(T) \subseteq W_2^{\infty}(T)$.

Corollary 4.26.Let T be a commutative standard oid. Then $\mathcal{U}^{\infty}(T) \subseteq WAP^{\infty}(T)$.

The proof now follow by the preceding Corollary, Remark 4.2 and Definition 4.1[1].

Example 4.27. We have already seen that $\mathcal{U}^{\infty}(T) \subseteq WAP^{\infty}(T)$. Now we show that the converse is not true. For this purpose, consider two sets $E = \{(x(n))_{n \in \mathbb{N}} \in T: x(1) = 1\}$ and $F = \{(x(n))_{n \in \mathbb{N}} \in T: x(1) = \infty\}$. Then $T = E \cup F$. Now let $(u_{2m})_{m \in \mathbb{N}}$ and $(u_{2n+1})_{n \in \mathbb{N}}$ be two sequences in T such that $u_{2m}, u_{2n+1} \in U$ for all m, n. Take $u_1 \in U$. Put $D = \{u_1 u_{2m} u_{2n+1} : m > n\} \subseteq F$. Define $f: T \to \mathbb{C}$ by

 $f(x) = \begin{cases} 1/c(x) & , & x \in E \\ 1 & , & x \in D \\ 0 & , & otherwise \end{cases} (x \in T)$

Then $f \in W_1^{\infty}(T)$ (Example 3.7[1]). We show that $f \in W_2^{\infty}(T)$ (Definition 3.9[1]). Assume that $(x_{\alpha}), (y_{\beta})$ and (z_{γ}) be nets in T with $upp x_{\alpha} \to \infty$, $supp y_{\beta} \to \infty$ and $supp z_{\gamma} \to \infty$. Then (for all sufficiently large α, β, γ) $x_{\alpha}(1) =$ $1, y_{\beta}(1)$ and $z_{\gamma}(1) = 1$, so that $x_{\alpha}, y_{\beta}, z_{\gamma} \in E$. It is therefore easy To verify that $f \in W_2^{\infty}(T)$, since $h = 1/c \in W_2^{\infty}(T)$ (Example 3.10[1]) hence $f \in WAP^{\infty}(T)$. To prove that $f \notin U^{\infty}(T)$, we remind the reader that for $anyf \in U^{\infty}(T), f^{\beta}(t\mu v) = f^{\beta}(tv\mu)$ where $t \in Tand_{\mu, \nu} \in T^{\infty}$. We assume that μ, ν be the cluster points of the sequences $(u_{2m})_{m \in \mathbb{N}^{\prime}}, (u_{2n+1})_{n \in \mathbb{N}}$ in βT respectively. Then $\mu, \nu \in T^{\infty}$, since $supp \ u_{2m} \to \infty$ and $supp \ u_{2n+1} \to \infty$.

Hence, $\lim_{m} \lim_{n} f(u_{1}u_{2m}u_{2n+1}) = 0$, $\lim_{n} \lim_{m} f(u_{1}u_{2m}u_{2n+1}) = 1$, so that Both iterated limits of $f(u_{1}u_{2m}u_{2n+1})$ exist. But $\lim_{m} \lim_{n} f(u_{1}u_{2m}u_{2n+1}) = f^{\beta}(u_{1}\mu\nu)$, and $\lim_{n} \lim_{m} f(u_{1}u_{2m}u_{2n+1}) = f^{\beta}(u_{1}\nu\mu)$, which is clearly impossible. Thus $f \notin \mathcal{U}^{\infty}(T)$, asclaimed.

5. Idempotents

Recall that T^{∞} is a compact right topological semigroup and $\mathcal{R}_{U^{\infty}(T)}$ is a relation on T^{∞} (Definition 4.1). Then $\mathcal{R}_{U^{\infty}(T)}$ is congruence and under certain topology on T^{∞} , is also a closed relation, so that the quotient space $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is a compact topological semigroup (Corollary 4.5), which is commutative (Corollary 4.6). In this section we are concerned with obtaining of idempotents $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$. In connection with the present section special suboids of an oid Tplay an important role. Each special suboid corresponds to a strictly increasing sub sequence of \mathbb{N} . A more details analysis of special suboids can be found in[1]. For an infinite subset $A \subseteq \mathbb{N}$, the special suboid of an oid T corresponding to

The strictly increasing sequence of A is denoted by S(A). Then S(A) produces a compact right topological semigroup $S^{\infty}(A)$ which is a sub semigroup of T^{∞} . Indeed, $\pi(S^{\infty}(A))$ is a compact commutative sub semigroup of $T^{\infty}(T^{\infty}/\mathcal{R}_{U^{\infty}(T)})$, where $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is the quotient map.

- **Proposition5.1.** Let $A \subseteq \mathbb{N}$ be an in finite set and let $1_{S(A)}$ be the indicator function of S(A). Then $1^{\beta}_{S(A)}(\mu\nu) = 1^{\beta}_{S(A)}(\mu)1^{\beta}_{S(A)}(\nu)$ for all $\mu \in T^{\infty}$ and $\nu \in (T \cup T^{\infty} \cup TT^{\infty})$.
- *Proof.* It is a straightforward argument that $1_{S(A)}(xy) = 1_{S(A)}(x)1_{S(A)}(y)$ For $x, y \in T$ such that $(supp x) \cap (supp y) = \emptyset$. Suppose that $t \in T, \mu \in T^{\infty}$ such that $x_{\alpha} \to \mu$ for some net (x_{α}) in T with $supp x_{\alpha} \to \infty$. Then even-Tually $supp t < supp x_{\alpha}$, so that eventually $1_{S(A)}(tx_{\alpha}) = 1_{S(A)}(t)1_{S(A)}(x_{\alpha})$.

Since {0,1} is a compact commutative semigroup with the usual multiplication, and $t\mu = \lim_{\alpha} tx_{\alpha}$, it follows that $1^{\beta}_{S(A)}(t\mu) = 1_{S(A)}(t)1^{\beta}_{S(A)}(\mu)$. Now let $\nu \in T^{\infty}$ with $y_{\beta} \to \nu$ for some net (y_{β}) in *T* such that $supp \ y_{\beta} \to \infty$. Then by a similar reason, we see that

$$1_{S(A)}^{\beta}(\mu\nu) = \lim_{\alpha} \lim_{\beta} 1_{S(A)}(x_{\alpha}y_{\beta}) = \lim_{\alpha} 1_{S(A)}(x_{\alpha})1_{S(A)}^{\beta}(\nu) = 1_{S(A)}^{\beta}(\mu)1_{S(A)}^{\beta}(\nu).$$

Finally if $\nu = t\lambda$, $t \in T$, $\lambda \in T^{\infty}$, then $\mu\lambda \in T^{\infty}$, and $\mu\nu = \mu t\lambda = t\mu\lambda$. Thus, by above paragraph, we obtain that $1^{\beta}_{S(A)}(\mu\nu) = 1^{\beta}_{S(A)}(\mu)1^{\beta}_{S(A)}(\nu)$, as desired.

Corollary5.2. For an infinite set $A \subseteq \mathbb{N}$, the indicator function $1_{S(A)}$ of S(A) is in $\mathcal{U}^{\infty}(T)$.

Proof. To show that $1_{S(A)} \in \mathcal{U}^{\infty}(T)$, it is adequate by Theorem 3.7, to show that $v \to L_v f^{\beta} : (T \cup T^{\infty} \cup TT^{\infty}) \to C(T^{\infty})$ is norm-continuous. Assume that (v_{α}) be any net in $(T \cup T^{\infty} \cup TT^{\infty})$ such that $v_{\alpha} \to v$ in $(T \cup T^{\infty} \cup TT^{\infty})$. Then $1_{S(A)}^{\beta}(v_{\alpha}) \to 1_{S(A)}^{\beta}(v)$. Thus for $\varepsilon > 0$, there exists α_0 such that for $\alpha \ge \alpha_0$, $\left|1_{S(A)}^{\beta}(v_{\alpha}) - 1_{S(A)}^{\beta}(v)\right| < \varepsilon/2$. However, by definition of $1_{S(A)}$, we have $1_{S(A)}^{\beta}(\mu) \in \{0,1\}$ for all $\mu \in T^{\infty}$, which is clearly that from Proposition 5.1, and for $\alpha \ge \alpha_0$, $\left|1_{S(A)}^{\beta}(\mu)1_{S(A)}^{\beta}(v_{\alpha}) - 1_{S(A)}^{\beta}(\mu)1_{S(A)}^{\beta}(v)\right| = \left|1_{S(A)}^{\beta}(\mu)\right| \left|1_{S(A)}^{\beta}(v_{\alpha}) - 1_{S(A)}^{\beta}(v)\right| < \varepsilon/2$ $\varepsilon/2$ ($\mu \in T^{\infty}$). Hence, for $\alpha \ge \alpha_0$, $\left|L_{\mu_{\alpha}}1_{S(A)}^{\beta} - L_{\mu}1_{S(A)}^{\beta}\right| < \varepsilon$ and the proof of the corollary is complete.

Proposition5.3. If A, B be two infinite subsets of \mathbb{N} with $A \cap B$ is finite. Then $\pi(S^{\infty}(A)) \cap \pi(S^{\infty}(B)) = \emptyset$, where $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is quotient map.

Proof. This uses Corollary 5.2, the proof is essentially the same as that of Proposition7.1[1].

We finish the present section by giving the following main result. Inconnection with this result we will use non-principal ultrafilters on \mathbb{N} . We remind the reader that, if \mathcal{F} is a non-principal ultrafilter on \mathbb{N} and $A \in \mathcal{F}$, Then A is an infinite set. Moreover, the number of non-principal ultrafilters on \mathbb{N} is 2^c [8]. Here is the main result of this section.

Theorem5.4. $T^{\infty}/\mathcal{R}_{\mathcal{H}^{\infty}(T)}$ contains at least 2^{c} idempotents.

Proof. This uses Proposition5.3, the proof is parallel to that of Theorem7.2[1].

6. Free abelian groups

In connection with Theorem 4.7, of the Section 4, it should be mentioned that, it is possible for a compact commutative topological semigroup $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ have a minimal idempotent with a unique minimal left ideal and a unique minimal right ideal, so that $K(T^{\infty}/\mathcal{R}_{U^{\infty}(T)})$, the minimal ideal of $T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is a maximal group(see[3], for more details). The aim of this Section is the search for existence in $K(T^{\infty}/\mathcal{R}_{U^{\infty}(T)})$ a free abelian group on 2^{c} generator. Let us first give the following result. **Lemma6.1**.Let ψ is an arbitrary function from \mathbb{N} to \mathbb{R} , let $f: T \to \mathbb{C}$ be defined by $f(t) = expi\Sigma\{\psi(n): n \in supp t\}$. Then $f \in \mathcal{U}^{\infty}(T)$.

Proof. It is easily seen that $f^{\beta}(t\mu) = f(t)f^{\beta}(\mu)$ for $t \in T, \mu \in T^{\infty}$, since f is an oid-map (that is, f(st) = f(s)f(t) whenever $s, t \in T$ with $(supp s) \cap (supp t) = \emptyset$). Moreover, f^{β} is a homomorphism of T^{∞} to the circle group \mathbb{T} . Thus $f^{\beta}(\mu v) = f^{\beta}(\mu)f^{\beta}(v)$ for $\mu \in T^{\infty}$, $v \in (T \cup T^{\infty} \cup TT^{\infty})$. To prove that $f \in \mathcal{U}^{\infty}(T)$, we show that $v \to L_{v}f^{\beta}: (T \cup T^{\infty} \cup TT^{\infty}) \to C(T^{\infty})$ is norm-continuous (Theorem 3.7). Now suppose that (v_{α}) be any net in $(T \cup T^{\infty} \cup TT^{\infty})$.

Then $f^{\beta}(\nu_{\alpha}) \to f^{\beta}(\nu)$, hence for $\varepsilon > 0$, there exists α_{0} such that for $\alpha \geq \alpha_{0}, |f^{\beta}(\nu_{\alpha}) - f^{\beta}(\nu)| < \varepsilon/2$. But since, $|f^{\beta}(\mu)| = 1$ for all $\mu \in \beta T$, it follows directly that for $\alpha \geq \alpha_{0}$ and for all $\mu \in T^{\infty}$, $|f^{\beta}(\mu)f^{\beta}(\nu_{\alpha}) - f^{\beta}(\mu)f^{\beta}(\nu)| = |f^{\beta}(\mu)||f^{\beta}(\nu_{\alpha}) - f^{\beta}(\nu)| < \varepsilon/2$. Thus, for $\alpha \geq \alpha_{0}, ||L_{\nu_{\alpha}}f^{\beta} - L_{\nu}f^{\beta}|| < \varepsilon$, that is $f \in \mathcal{U}^{\infty}(T)$.

We remind the reader that, if $M = \{\mu \in T^{\infty}: c^{\beta}(\mu) = 1\}$, then it is easy to verify that $M = \{\mu \in T^{\infty}: \mu \in cl\{u_m: m \in \mathbb{N}\}\}$, and $card(M) = 2^c$ (see [2], Remark5.8). Recall that, $\pi: T^{\infty} \to T^{\infty}/\mathcal{R}_{U^{\infty}(T)}$ is the quotient map which is a Continuous epimorphism. We now give the following result which is the last major result of this section.

Theorem6.2. $K(T^{\infty}/\mathcal{R}_{\mathcal{U}^{\infty}(T)})$ contains a free abelian group on 2^{c} generators. *Proof.* This use Lemma6.1 and Corollary 4.26, the proof is similar to that

of Theorem 8.1[1].

References

- A.M. Aminpour, "Spaces of functions determind by iterated limits "at infinity" on an oid", Proc. Cambridge Phill. Soc.111(1992), 127–142.
- [2] A. M. Aminpour, "A sub semigroup of some Stone-Čech compactification", Math. Nachr. 158(1992), 207–218.
- [3] J.F. Berglund, H.D.Junghennand P.Milnes, "Analysis on semigroups", Wiley, New York (1989).
- [4] P. Civin and B. Yood, "The second conjugate space of a Banach algebra as an algebra", Pacific J.Math.11(1961), 847–870.

- [5] N. Hindman and J.S. Pym, "Free groups and semigroups in $\beta \mathbb{N}$ ". Semigroup Forum 30(1984), 177–193.
- [6] T. Papazyan, "Oids, finite sums and the structure of the Stone-Čech compactification of a discrete semigroups", SemigroupForum42(3)(1991), 265–277.
- [7] J.S. Pym, "Semigroup structure in Stone-Čech compactification".J.London. Math. Soc.(2)36(1987), 421–428.
- [8] R.C. Walker, "The Stone-Čech compactification", Springer-Verlag, Berlin (1974).

[9]J.L.Kelley, "General topolog", Van Nostrand (1955).

- [10] J.F. Berglund, H.D. Junghenn and P. Milnes, "Compact right topological semigroups and
 - Generalization of almost periodicity ",LectureNotes in Math.Vol.663,Springer-Verlag, Berlin,

(1973).