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Abstract

In this paper, some necessary and sufficient conditions have been obtained to ensure the existence of nonoscillatory solutions
which are bounded below and above by bounded functions. These conditions are more applicable than some known results in
the references. An example is included to illustrate the results obtained.
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1. Introduction

This paper is concerned with the existence of a positive solution of the neutral differential equations
of the form

d2

dt2 (x(t) − a(t)x(t− τ)) − p(t)f(t, x(t), x(t− σ), x
′(t), x ′(t− σ)) = 0, (1.1)

where t > t0, t0 ∈R, τ > 0, σ > 0, a, p ∈C([t0,∞); R), f ∈ C([t0,∞)×R4; R), f is bounded function,
and x(t) f(t, x(t), x(t − σ), x ′(t), x ′(t − σ)) > 0, x 6= 0. By a solution of (1.1) we mean a function x ∈
C[(t1 −m,∞), R], m = max{τ,σ}, for some t1 > t0, such that x(t)+a(t)x(t− τ) is two times continuously
differentiable on [t1,∞), and x(t) satisfies (1.1) for t > t1. The problem of the existence of the solutions
of neutral differential equations has been studied by several authors in the recent years. For related
results we refer the reader to [10, 11, 12, 8, 15, 16], and the references cited therein. Most authors have
discussed the existence of a bounded solutions by constant, however there are a few authors who have
discussed and gave a conception which guarantees the existence of positive solutions of second order
neutral differential equation which are bounded below and above by positive functions. Tanaka [13]
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obtained sufficient conditions for the existence of positive solutions of higher order nonlinear neutral
differential equations. Weiming et al. [14] studied existence of nonoscillatory solution of second order
neutral differential equations. Culákov et al. [2] studied the existence of nonoscillatory solutions of
second order nonlinear neutral differential equations. Olach et al. [6] obtained some sufficient conditions
for the existence of a positive solution which is bounded with exponential functions. Olach et al. [5] and
[3] obtained some sufficient conditions for the existence of positive solutions which are bounded below
and above by positive functions for the nonlinear neutral differential equations of higher order. Olach
et al. [4] studied the existence of uncountably many positive solutions which are bounded below and
above by positive functions for the first-order nonlinear neutral differential equations. Candan [1] in his
paper presented the existence of positive periodic solutions for first order neutral differential equation
with distributed deviating arguments. They applied Krasnoselskii’s fixed point theorem to obtain the
results of existence of bounded solution x(t) ∈ [m,M]. In this paper some necessary and sufficient
conditions are established to guarantee the existence of positive solution of (1.1) which is bounded below
and bounded above by bounded nonnegative functions, however these conditions are more applicable
than the conditions obtained in Theorem 2.1 [6], [5] and [3]. An example is given to illustrate the results
obtained. The following lemma and theorem will be used to prove the main results in the next section.

Lemma 1.1 ([7], Krasnoselskii’s fixed point theorem). Let X be a Banach space, Ω be a bounded closed convex
subset of X, and let S1,S2 be maps of Ω into X such that S1x+ S2y for every pair x,y ∈ Ω. If S1 is contractive and
S2 is completely continuous, then the equation S1x+ S2x = x has a solution in Ω.

Theorem 1.2 ([9], Lebesgue’s dominated convergence theorem). Let fn be a sequence of functions such that
limn→∞ fn(x) = f(x) almost everywhere in A and such that for every n = 1, 2, 3, · · ·

|fn(x)| 6 g(x) almost everywhere in A,

where g is integrable on A. Then limn→∞ ∫ fn(x)dx = ∫ f(x)dx.

2. The existence of positive solution

In this section the existence of positive solution for (1.1) is investigated. In the following results, some
necessary and sufficient conditions are obtained to ensure the existence of positive solution for (1.1),
which is bounded by two positive functions.

Theorem 2.1. Suppose p(t) > 0 and there exist bounded functions u, v ∈ C1([t0,∞), [0,∞)), a constant δ > 0
such that

u(t)

u(t− τ) + δ
6 a(t) 6

v(t)

v(t− τ)
, a(t) < 1, v(t− τ) > 0, t > t1 > t0 +m, (2.1)

u(t) 6 v(t), t > t0, (2.2)

and there exists k ∈ (t, t1) for t ∈ [t0, t1] such that

(v(t) − v(t1))(1 −
u ′(k)

v ′(k)
) > 0, (2.3)

∫∞
t0

∫∞
s

p(ξ)dξds <∞, s > t0. (2.4)

Then (1.1) has a positive solution which is bounded by the functions u and v.

Proof. Let C([t0,∞), R) be the set of all continuous bounded functions with the norm ‖x‖ = supt>t0
|x(t)|.

Then C([t0,∞), R) is a Banach space. We define a closed, bounded, and convex subset Ω of C([t0,∞), R)
as follows

Ω = {x(t) ∈ C([t0,∞), R) : u(t) 6 x(t) 6 v(t), t > t0}.
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By (2.4) it follows that

lim
t→∞

∫∞
t

∫∞
s

p(ξ)dξds = 0, s > t.

It follows that for every ε > 0, there exists t1 > t0 such that∫∞
t

∫∞
s

p(ξ)dξds < ε, s > t > t1.

For simplicity let f(t, x(t)) = f(t, x(t), x(t− σ), x ′(t), x ′(t− σ)), we now define maps S1, S2 ∈C([t0,∞), R)
as follows

(S1x)(t) =

{
(S1x)(t1), t0 6 t 6 t1,
a(t)x(t− τ), t > t1,

(S2x)(t) =

{
(S2x)(t1) + v(t) − v(t1), t0 6 t 6 t1,
−
∫∞
t

∫∞
s p(ξ) f(ξ, x(ξ))dξds, t > t1.

We will show that for any x,y ∈ Ω we have S1x+ S2y ∈ Ω. Let x,y ∈ Ω and t > t1 we obtain

(S1x)(t) + (S2y)(t) = a(t)x(t− τ) −

∫∞
t

∫∞
s

p(ξ) f(ξ, x(ξ))dξds

6 a(t) v(t− τ)

6 v(t).

For t ∈ [t0, t1], we have

(S1x)(t) + (S2y)(t) = (S1x)(t1) + (S2y)(t1) + v(t) − v(t1)

6 v(t1) + v(t) − v(t1)

= v(t).

Since f(t, x(t)) is bounded so we get

lim
t→∞

∫∞
t

∫∞
s

p(ξ) f(ξ, x(ξ))dξds = 0, s > t.

Hence, for t > t1 we get

(S1x)(t) + (S2y)(t) = a(t)x(t− τ) −

∫∞
t

∫∞
s

p(ξ) f(ξ, x(ξ))dξds

> a(t)u(t− τ) − (1 − a(t)) ε)

> a(t) (u(t− τ) + ε),

(2.5)

by choosing δ = ε, and using condition (2.1) it follows from (2.5)

(S1x)(t) + (S2y)(t) > u(t), t > t1.

Let t ∈ [t0, t1], then by Cauchy mean value theorem in virtue of (2.3), for t ∈ [t0, t1] there exists k ∈ (t, t1)
such that

u ′(k)( v(t1) − v(t) ) = v
′(k)(u(t1) − u(t) ),

v ′(k)u(t) = v ′(k)u(t1) + u
′(k)( v(t) − v(t1)),

u(t) = u(t1) +
u ′(k)

v ′(k)
( v(t) − v(t1)),

u(t) 6 u(t1) + v(t) − v(t1), t0 > t > t1.
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Then for t ∈ [t0, t1] and for any x,y ∈ Ω, we obtain

(S1x)(t) + (S2y)(t) = (S1x)(t1) + (S2y)(t1) + v(t) − v(t1)

> u(t1) + v(t) − v(t1) > u(t).

Thus we have proved that S1x+ S2y ∈ Ω for any x,y ∈ Ω. We will show that S1 is a contraction mapping
on Ω. For x,y ∈ Ω and t > t1 we have

‖S1x− S1y‖ = sup
t>t1

|a(t)x(t− τ) − a(t)y(t− τ)|

= sup
t>t1

a(t) |x(t− τ) − y(t− τ)|

6 c1 sup
t>t1

|x(t− τ) − y(t− τ)|, (where a(t) 6 c1 < 1)

= c1‖x− y‖.

Also for t ∈ [t0, t1], we get

‖S1x− S1y‖ = sup
t06t6t1

|(S1x)(t) − (S1y)(t)|

= |a(t1)x(t1 − τ) − a(t1)y(t1 − τ)|

= a(t1) |x(t1 − τ) − y(t1 − τ)|

6 a(t1) sup
t06t6t1

|x(t− τ) − y(t− τ)|

= a(t1) ‖x− y‖.

We conclude that S1 is a contraction mapping on Ω. We now show that S2 is completely continuous. First
we will show that S2 is continuous. Let xk = xk(t) ∈ Ω be such that limk→∞ xk(t) = x(t). Since Ω is
closed, we conclude that x(t) ∈ Ω. For t > t1 we have

‖(S2xk)(t) − (S2x)(t)‖ = sup
t>t1

|(S2xk)(t) − (S2x)(t)|

6 |

∫∞
t

∫∞
s

p(ξ)
(
f(ξ, xk(ξ)) − f(ξ, x(ξ)

)
dξds|

6
∫∞
t

∫∞
s

|p(ξ)
(
f(ξ, xk(ξ)) − f(ξ, x(ξ))

)
dξds|.

According to (2.5), we get∫∞
t1

∫∞
s

p(ξ) f(ξ, x(ξ), x(ξ− σ), x ′(ξ), x ′(ξ− σ))dξds <∞. (2.6)

Since
lim
k→∞ f(t, xk(t)) = f(t, x(t)),

then by applying the Lebesgue dominated convergence Theorem 1.2, we obtain

lim
k→∞ ‖(S2xk)(t) − (S2x)(t)‖ = 0.

This means that S2 is continuous. We now show that S2Ω is relatively compact. It is sufficient to show
by Arzelá-Ascoli theorem that the family of functions {S2x : x ∈ Ω} is uniformly bounded and equicon-
tinuous on [t0,∞]. The uniform boundedness follows from the definition of Ω. For the equicontinuity we
only need to show that for any given ε > 0 the interval [t0,∞] can be decomposed into finite subintervals
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in such a way that on each subinterval all functions of the family have a change of amplitude less than ε.
Then with regard to (2.6), for x ∈ Ω and any ε > 0, we take t∗ > t1 large enough so that∫∞

t∗

∫∞
s

p(ξ) f(ξ, x(ξ), x(ξ− σ), x ′(ξ), x ′(ξ− σ))dξds <
ε

2
.

Then, for x ∈ Ω, t∗ 6 T1 < T2, we have

‖(S2x)(T2) − (S2x)(T1)‖ 6 |−

∫∞
T2

∫∞
s

p(ξ) f(ξ, x(ξ))dξds

+

∫∞
T1

∫∞
s

p(ξ) f(ξ, x(ξ))dξds|

6
∫∞
T2

∫∞
s

p(ξ) f(ξ, x(ξ))dξds

+

∫∞
T1

∫∞
s

p(ξ) f(ξ, x(ξ))dξds,

hence we get
‖(S2x)(T2) − (S2x)(T1)‖ <

ε

2
+
ε

2
= ε.

For x ∈ Ω and t1 6 T1 < T2 6 t∗, it yields

|(S2xk)(T2) − (S2x)(T1)| 6 |−

∫∞
T2

∫∞
s

p(ξ) f(ξ, x(ξ))dξds

+

∫∞
T1

∫∞
s

p(ξ) f(ξ, x(ξ))dξds|

6
∫T2

T1

∫∞
s1

p(ξ) f(ξ, x(ξ), x(ξ− σ), x ′(ξ), x ′(ξ− σ))dξds

6 max
t16s6t∗

{

∫∞
s

p(ξ) f(ξ, x(ξ), x(ξ− σ), x ′(ξ), x ′(ξ− σ))dξ} (T2 − T1).

Thus there exists δ1 = ε
M , where M = maxt16s6t∗{

∫∞
s p(ξ) f(ξ, x(ξ), x(ξ− σ), x ′(ξ), x ′(ξ− σ))dξ} such

that
|(S2x(T2) − (S2x(T1)| < ε, if 0 < T2 − T1 < δ1.

Finally for any x ∈ Ω, t0 6 T1 < T2 6 t1, there exists k1 ∈ (T1, T2) and δ2 = ε
|v ′(k1)|

> 0 such that

|(S2x)(T2) − (S2x)(T1)| = |v(T2) − v(T1)|

= |v ′(k1)| (T2 − T1) < ε, if 0 < T2 − T1 < δ2.

Then {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞), and hence S2Ω is relatively
compact subset of C([t0,∞), R). By Lemma 1.1 there is an x0 ∈ Ω such that S1x0 + S2x0 = x0. We conclude
that x0(t) is a positive solution of (1.1). The proof is complete.

Corollary 2.2. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), [0,∞)), a constant δ > 0 and a
positive integer n such that

u(t)

u(t− τ) + δ
+n− 1 6 na(t) 6

v(t)

v(t− τ)
+ (n− 1)a(t), a(t) < 1,

u(t) > 0, v(t) > 0, t > t1 > t0 +m,
(2.7)

in addition to the conditions (2.2), (2.3), (2.4) hold. Then (1.1) has a positive solution which is bounded by the
functions u and v.

Proof. We claim that condition (2.7) implies condition (2.1), we will use the induction to show it when
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n = 1 there is nothing to prove, when n = 2 then it follows from condition (2.7)

u(t)

u(t− τ) + δ
+ 1 6 2a(t) 6

v(t)

v(t− τ)
+ a(t),

u(t)

u(t− τ) + δ
6

1
2
(

u(t)

u(t− τ) + δ
+ a(t))

6
1
2
(

u(t)

u(t− τ) + δ
+ 1)

6 a(t)

6
1
2
(
v(t)

v(t− τ)
+ a(t))

6
v(t)

v(t− τ)
,

we can treat similarly to show it when n = 3, 4, · · · . Hence all conditions of Theorem 2.1 hold, then
according to Theorem 2.1, equation (1.1) has a positive solution which is bounded by the functions u and
v.

Example 2.3. Consider the following non-linear neutral differential equation

d2

dt2 (x(t) − a(t) x(t− 1)) + p(t) (e−t + 2e−t+ 3
2 ) = 0, t >

1
2

, (2.8)

where 1
4 6 a(t) < 1, p(t) = 9

4 e
− t

2 , f(t, x(t)) = e−t + 2e−t+ 3
2 .

Solution: Let u(t) = e−4 + e−2t and v(t) = 3
2 − e−t, t > 1

2 . The condition (2.2) clearly satisfies, now we
will show that the condition (2.1) holds, choose δ = 1

2 then it follows that

e−4 + e−2t

e−4 + e−2(t−1) + 1
2

< a(t) <
3
2 − e

−t

3
2 − e

−(t−1)
, for all t >

3
2

.

To see condition (2.3) consider that

(
3
2
− e−t − (

3
2
− e−1))(1 −

−2 e−2k

e−k
) >

1
e
(1 + 2 e−k) > 0, for all k.

It remains to show that condition (2.4) holds∫∞
t0

∫∞
s

p(t)dtds =

∫∞
1
2

∫∞
s

9
4
e−

t
2 dtds = 9e−

1
4 .

Then all conditions of Theorem 2.1 (or Corollary 2.2) are satisfies. According to Theorem 2.1 (or Corollary
2.2), equation (2.8) has a positive solution which is bounded by the functions u and v.

Theorem 2.4. Suppose p(t) > 0 and there exist bounded functions u, v ∈ C1([t0,∞), [0,∞)), a constant c > 0
such that

u(t) 6 v(t), t > t0, (2.9)

v(t− τ) − v(t1 − τ) − u(t− τ) + u(t1 − τ) > 0, t ∈ [t0, t1], (2.10)
1

u(t− τ)

( ∫∞
t

∫∞
s

p(ξ) f(ξ, v(ξ), v(ξ− τ), v ′(s), v ′(ξ− τ))dξds
)

6 a(t) − 1

6
1

v(t− τ)

( ∫∞
t

∫∞
s

p(ξ) f(ξ, u(ξ), u(ξ− τ),u ′(s),u ′(ξ− τ))dξds
)

6 c < 1, t > t1.

(2.11)

Then (1.1) has a positive solution which is bounded by the functions u and v.
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Proof. The proof is similar to the proof of Theorem 2.1 and will be omitted.

Corollary 2.5. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), [0,∞)), a constant c > 0 such that
(2.9), (2.11) hold in addition to the condition

v ′(t− τ) 6 u ′(t− τ), t ∈ [t0, t1]. (2.12)

Then (1.1) has a positive solution which is bounded by the functions u and v.

Proof. We only need to prove that condition (2.12) implies (2.10). Let t ∈ [t0, t1] and set

H(t) = v(t− τ) − v(t1 − τ) − u(t− τ) + u(t1 − τ).

Then with regard to (2.12), it follows that

H ′(t) = v ′(t− τ) − u ′(t− τ).

Since H(t1) = 0 and H ′(t) 6 0 for t ∈ [t0, t1], this implies that

H(t) = v(t− τ) − v(t1 − τ) − u(t− τ) + u(t1 − τ) > 0, t0 6 t 6 t1.

Hence all conditions of Theorem 2.4 are satisfied.

Corollary 2.6. Suppose that there exists a function v ∈ C1([t0,∞), (0,∞)), a constant c > 0 and t1 > t0 +m
such that

a(t) = 1 +
1

v(t− τ)

∫∞
t

p(s) f(s, v(s), v(s− τ), v ′(s), v ′(s− τ))ds) 6 δ < 1, t > t1.

Then (1.1) has a solution x(t) = v(t− τ), t > t1.

Proof. We put u(t− τ) = v(t− τ) and apply Theorem 2.4.

Conclusion
This paper is concerned with establishing some sufficient conditions to ensure the existence of a

positive solution which is bounded by two bounded functions. Two main results were obtained with
corollaries.
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[6] B. Dorociaková, R. Olach, Existence of Positive Solutions of Delay Differential Equations, Tatra Mt. Math. Publ., 43
(2009), 63–70. 1

[7] L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York,
(1995). 1.1

[8] E. K. Essel, E. Yankson, On The Existence of Positive Periodic Solutions for Totally Nonlinear Neutral Differential Equa-
tions of The Second-Order With Functional Delay, Opuscula Math., 34 (2014), 469–481. 1
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