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Abstract
In this paper, we apply the new implementation of reproducing kernel Hilbert space method to give the
approximate solution to some third-order boundaryvalue problems with variable coefficients. In this
method, the analytical solution is expressed in the form of a series. At the end, two examples are given to
illustrate implementation, accuracy and effectiveness of the method.
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1. Introduction

Reproducing kernel Hilbert space method is a promising method which has beenapplied more
and more for solving various problems such asordinary differential equations, partial differential
equations,differential-difference equations, integral equations, and etc. inthe previous decades
[1]-[22]. Approximate solutionof the Fredholm integral equation of the first kind in the
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reproducing kernel Hilbert space was presented by Du and Cui [3,4], solution of a system of
linear Volterraintegral equations was discussed by Yang et al. [5],solvability of a class of
Volterra integral equations with weaklysingular kernel using reproducing kernel Hilbert

space method were investigated in [6,7,8],Geng[9] explained how to solve the Fredholm
integralequation of the third kind in the reproducing kernel Hilbertspace method. These are a
bunch of extensive works related to reproducing kernel Hilbertspace method for solving integral
equations.

In 1986, Cui Minggen[10] gave the reproducing kernel space W3 [a, b] and its reproducing
kernel. This technique has successfully been treated singular linear two-point boundary value
problems [11,12],singular nonlinear second-order boundary value problems [13,14,15,16],
nonlinear system of boundary value problems [17],third-order boundary value problems [18,19],
fifth-order boundary value problems [20], and nonlinear partialdifferential equations [21] in
recent years.

This paper investigates the approximate solution of the following third-order boundary

value problem using new implementation of reproducing kernel Hilbertspace method

{y"' @) +p@y() = f(x), 0= x<1, o
y(0)=4, y(0) =B, y'(1)=¢C,

wherep(x), f(x) are analytical known functions defined on theinterval [0,1], unknown function

y(x) is continuouson the interval [0,1] and A, B, C are finite real constants.

Several numerical techniques have been proposed to solve high-order differential equations

[23,24,25].

As we known, Gram-Schmidt orthogonalization process isnumerically unstable and in addition it

may take a lot oftime to produce numerical approximation. Here, instead ofusing orthogonal

process, we successfully make use of thebasic functions which are obtained by reproducing

kernel Hilbertspace method.

This paper is organized as follows. In thefollowing section, we introduce some useful definitions

and theorems. Section 3 is devoted to solve Eq. (1) by new implementation of reproducing kernel

Hilbert space method. Two numerical examples are presented in Section 4. We end the paper

with a few conclusions.

2. Reproducing Kernel Spaces

In this section, we follow the recent work of [1]-[22] and represent some useful materials.

Definition 1.
Let (H,<.,.>4)be a Hilbert space of real-valued functions on some nonempty set X. A
functionk: X’ x X — R is said to be the reproducing kernel of A if and only if

1. k(x,.) EH, Vx € X,

2. < (), k(x,.)>y=¢kx), VpEH, VXEX, (reproducing property).
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It is known that the reproducing kernel of a reproducing kernel Hilbertspace is unique and the
existence of a reproducing kernel is according to the Riesz Representation Theorem. The
reproducing kernel k of a Hilbert space H quite determines the space. Each set of functions
{p:}721 which converges strongly to a function ¢@in #, converges also in the pointwise sense. In
addition, this convergence is uniform on every subset of X’ on which x = k(x, x) is bounded.

Definition 2.
W0,1] = {y(x)|y" (x) is an absolute continuous real valued function and y™® (x)

€ L?[0,1],  y(0) =y'(0) =y'(1) = 0}.
The inner product and the norm in the function space W5 [0,1] are defined as follows.

( 1
| <u,v>y0=u"(0)v"(0) + f u® ()v® (x)dx,
0

L ||uI|W24 = [<uu>y.

Let's assume that function R(x,t) € W,[0,1]satisfies the following generalized differential

equations
( 0%R(x, 1)
T
7
R(X, 1) __0’R(x,1) =0,
J at’ (2)
04R(x,1) _ 94R(x,0)
att ’ att '
9°R(x,1) _ d°R(x,0)
\ 9t5 ’ at>

whereé is the Dirac delta function. Therefore, the following theorem holds.

Theorem 1.Under the assumptions of Eq. (2), Hilbert space W5 [0,1]isa reproducing kernel
Hilbertspace with the reproducing kernel function R(x,t), namely for any y(t) € W,'[0,1]and
each fixed x € [0,1], there exists R(x, t) € W,[0,1], t € [0,1], such that

<y()R(x,.) >ys= y(x).

Whilex # t, function R(x,t) is the solution of the followingconstant linear homogeneous
differential equation with 8 orders,
98R(x, t) B
a8
with the boundary conditions:

(3)
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.
d7R(x,1)
Rx 1) ——5==0,
) 04R(x,1): 3%R(x,0) (4)
ot4 ! att '
9°R(x,1) 9°R(x,0)
\ 9t5 =0 ats

We know that Eq. (3) has characteristic equation A2 = 0, and theeigenvalue 1 = 0 is a root
whose multiplicity is 8. Hence, the general solution of Eq. (2) is

8
(z c;(x) t71, t<x

R(x,t) = { i (5)

Lz d;(x) t71, t > x.
i=1

Now, we are ready to calculate the coefficients c;(x)and d;(x), i = 1,...,8. Since

~

08R(x, 1) _ st
ot8 (t=x),
we have

O*R(x,x*) O*R(x,x~

(xx )= (xx ), k=0,..,6,

otk otk 6)
d’R(x,x*)  9’R(x,x7) _

otk otk

Then, using Egs. (4) and (6), the unknown coefficients of Eq. (5) are uniquely obtained (in
Apendix A).

Definition 3.

wi[0,1]

= {y(x)|y(x) is an absolute continuous real valued function on the interval [0,1] and y (x)
€ L%[0,1]}.

The inner product and the norm in the function space W, [0,1] are defined as follows.

1
<u,v >p1=u(0)v(0) + f u (x)v' (x)dx,

0
k||u||W21 = ’< U U >yl

Theorem 2.Hilbert space W, [0,1] is a reproducing kernel space with the reproducing kernel
function
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(14t t<x,
Q(x,t) _{1+x, t>x,

that is, for any y(t) € W3 [0,1]and each fixed x € [0,1], it follows that
<y(),Q(x,.) >yp=yx).

3. Reproducing Kernel Hilbert Space Method

We suppose that Eq. (1) has a unique solution. To deal with the system, we consider Eg. (1) as
Ly(x) = f(x), 0<x<1, (7)

where Ly(x) =y"'(x) + p(x) y(x), it is clear that L is the bounded linear operator of

W,H0,1] » W4[0,1]. We shall give the representation of analytical solution of Eq. (7) in the

spaceW,'[0,1]. Set ¢;(x) = Q(x;,x)and ¥;(x) = L*¢;(x), i = 1,2, ..., where Q(x;,x) is the

reproducing kernel of W3} [0,1]and LL* is the adjoint operator of L.

Theorem 3.Let {x;};2,; be a dense subset of interval $[0,1]$, then {y;(x)}i=; is a complete
system of W5'[0,1] and 1, (x) = L, R(x, t)|¢=x,» Where the subscript ¢ in the operator LL indicates
that the operator LLapplies to the functionof t.

Usually, a normalized orthogonal system is constructed from {y;(x)};=, by using the Gram-
Schmidt algorithm, and then the approximate solution be obtained by calculating a truncated
series based on these functions. However, Gram-Schmidt algorithm has some drawbacks such as
numerical instability and high volume of computations. Here, to fix these flaws, we state the
following Theorem in which the following notation are used.

& @ f Bu 0 0
a:[dszl' a:[ﬁz CF= f"z B= 321:322 0 '
ad el U Bur Bz - Bun
311 Y2 Yy [lgll lglz lgm]
p=|72 : V22 . d’:ZN P = Y21 .1/122 . IPgN i
Yni Uwe o Y Lﬂm e %NJ

where lpl] =< [Ll/)l ,lpi >, l/;l] =< IL'(/J] ,l/;i >, f; =< f,l/)l' >, ﬁii > O, l,] = 1,...,N.
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Theorem 4.Suppose that {y;(x)}{2, a linearly independent set in W,}[0,1]and {¥J; (x)}

normalized orthogonal system in W5[0,1], such that ¥;(x) = ¥L_; B Wi (x). If y(x) =
Y aap(x) = yy(x) = XL @ (x) = XL, 4 (x)then Wa = F.

Proof.Suppose that y(x) € W,[0,1]then y(x) = X2, @ p;(x) = ¥, a;;(x). Now, by
truncating N-term of the two series, because of yy (x) = ¥V, a; (x) = XN, a;9;(x) and since

P;(x0) = Yiem1 B i (x) s0

N N N i N N
Daw =) e =) &l Y funto | = ) (Z aiﬁik> e

i=1 i=1 i=1 k=1 k=1 i=k
Due to the linear independence of {y; (x)}2,.ax = YN, @B, k = 1, ..., N therefore

a = B'a. (8)

Eq. (7), imply Lyy(x) = f(x). Fori =1, ..., N we have

<Ly >=<f i >= Za<m¢,,¢l> <f >

= ZN:a Eﬁlkiﬁ]z <Ly, >= zﬁlk <f,p >

j
Tl k=1 1=
N i
=>Z a; Zﬁlk<[[‘l/)l e > Bl = Zﬁzk <f. ¢ >
P s

=D 4 (BB, = Zﬁlk <f o>

i=1
= (B¥YB")a = BF.

Eq. (8), imply B Wa = BF, hence

|

Ya = [ ]

It is necessary to mention that here we solve the system Wa = F which obtained without using
the Gram-Schmidt algorithm.

4. Numerical examples

To illustrate the effectiveness and the accuracy of the proposed method, two numerical examples
are considered in this section. Figures 1,2,3 and 4 show that the approximate solution and its
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derivatives up to third-order, converge to the exact solution and its derivatives. We solved these

examplesby the reproducing kernel Hilbert space method with x; = 1;;_111 =1,..,NforN =5.

wlexact]

0.74 —_— — — v[approximate]

T T
.8 1

x wvalue
Figure 1: Comparison between approximate solution and the exact
solution for Example 1 for N = 5.

Example 1.We consider the following third-order BVP

{ym x) —xy(x) = (x3 — 2x? — 5x — 3)e%,
y(0) =0, y (0) =1, y (1) = —e.
The exact solution of the above system is y(x) = x(1 — x)e*.

0.4 Errorv)
— — Erron()
— - Emox(y?)
----- Error(y'")]
= .34
=
o
=
=
=
£ 0.2
2
=
0-11 -l
- Lol B s d
T e L. Lot
. = e =z -
K e g e —— et L .
-2 — T = i - T =i
o 02 0.4 0.6 0.8 1

= walue

Figure 2: The absolute error between approximate solution and the exact
solutionand its derivatives for Example 1 for N = 5.

Example 2.Consider the following third-order BVP

{ y () —xy(x) = (1 —x)e¥, 0<x<1,
y(0) =1, y'(0) =1, y' (1) =e.
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The exact solution of the above system is y(x) = e*.

w[exact]

- 002 — — w[approximate]

—D.0g

-0 .06

v valug

-0.08

-0.10

-0.12

-0 14

) 02 04 06 08 1

= walue

Figure 3: Comparison between approximate solution and the exact
solution for Example 2 for N = 5.

4. Conclusions
In this paper, we introduced the new implementation of reproducing kernel Hilbert space method

to obtain the approximate solution to some third-order boundary value problems with variable
coefficients. The reliability of the method and reduction of the amount of computation gives this
method a wider applicability. The obtained numerical results confirm that the method is rapidly
convergentand show that the approximate solutionconverge to the exact solution.

0 .05 Error(y)
— — Ermron(v')
— - Emor(¥7}
----- Error(3")]
= 0.02-
(= -
=3 *
e H
= .
= P :
2 . L T
o014 S L i
N . * - z ~ %
—~ LT -~ B
"‘\_h_ s : :
— T -~ .
e Tw — — i T :
e —_— - ‘\-- - — -
0 T T ==
o 02 0.4 0.6 0.8 1

= wvalue

Figure 4: The absolute error between approximate solution and the exact
solutionand its derivatives for Example 2 for N = 5.
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Apendix A.
2

X
c1=¢c=0, c3= 7(—14x4 + 3x° + 45372 — 30262x + 21x3), ¢4
2
X
= —?(sz + 30262 — 20212x — 7x* + 35x2),
x(x —1)? (2x + 1)(x — 1) x’ x©
el BT T 7! -

2
X
= F(—14x4 + 3x° + 45372 — 30262x), d,

x% 4 X i
= — 7 (2x° +30262 - 20212x ~ 7a*), ds =~ 50, ds = 5= 4y
_x*(x—2) _ x*(3-2x)
BT A TR
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