
Journal of mathematics and computer science 12 (2014), 282-294

Some new mutation operators for genetic data clustering

Gholam Hasan Mohebpour, Arash Ghorbannia Delavar

Department of Computer Science, Payame Noor University, PO BOX 19395-3697,

Tehran, Iran

mohebpoor_gh_h@yahoo.com, a_ghorbannia@pnu.ac.ir

Article history:

Received July 2014

Accepted August 2014

Available online August 2014

Abstract

Genetic algorithm is one of evolutionary algorithms which have been used widely to solve many

problems such as data clustering. There are lots of genetic data clustering algorithms which have

worked on fitness function to improve the accuracy of algorithm in evaluation of generated

chromosomes and have used simple and all purpose crossover and mutation operators such as one

point crossover and random change mutation. Mutation process randomly modifies the gene values at

selected locations to increase genetic diversity, by forcing the algorithm to search areas other than the

current area. Simple non heuristic mutations such as random change mutation increase genetic

diversity but they also increase execution time and decrease fitness of population. In this paper we

introduce some new heuristic mutation operators for genetic data clustering. Experimental results

show that all of proposed mutation operators creates better offspring than random change mutation

and increases the fitness of population.

Keywords: Data mining, data clustering, genetic algorithm, mutation operator, partitioning

1. Introduction

1.1. Data clustering

Suppose 𝑋 = 𝑥1 , 𝑥2 , ⋯ , 𝑥𝑁 is a set of N instances in m- dimensional data space 𝑅𝑚 .Data clustering

means partitioning these instances to K clusters 𝐶 = 𝐶1, 𝐶2 , … , 𝐶𝐾 where 𝐶𝑖 ≠ ∅ 𝑖 = 1,2, … , 𝑘 ,

𝐶𝑖 ∩ 𝐶𝑗 = ∅ 𝑖 ≠ 𝑗 and 𝐶𝑖
𝐾
𝑖=1 = 𝑋 which means each instance is as similar as possible to its co-

cluster instances according to a distance measure function d x, y like Euclidean distance.

1.2. K-means algorithm

Although K-means is simple and can be used for a wide variety of data types, it is quite sensitive to

initial positions of cluster centers and traps in local optima.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

283

There are several different data clustering methods, but k-means is a typical clustering algorithm

which is widely used for clustering data sets and is one of the simplest, non-supervised algorithms and

also it doesn't need any prior knowledge about the data distribution. The K-means algorithm starts by

initializing the k cluster centers randomly. The input instances are then allocated to one of the existing

clusters according to the square of the Euclidean distance from the cluster centers, choosing the

closest. For each cluster we introduce the mean of instances as new cluster center.

𝑍𝑗 =
 . xi

𝑛𝑗

𝑖=1

𝑛𝑗

 (1)

And 𝑍 = 𝑍1 , 𝑍2 , … , 𝑍𝐾 is the set of cluster centers. The process of reassigning the data points and

the updating of the cluster centers will be repeated until no more change in the cluster centers and no

more reassigning of data points.

1.3. Genetic algorithms

Genetic algorithm is a search and optimization technique based on the principles of genetics and

natural selection proposed by Holland [1] and later refined by De Jong [2], Goldberg [3], and many

others. It is a heuristic algorithm which mimics the principle of survival of the fittest laid by Charles

Darwin. Generally, an initial population of chromosomes is generated randomly and while stopping

criteria didn’t reached, fitness value of each individual will be computed and selection performance

such as roulette wheel or tournament selection method will be used to select chromosomes with better

fitness values for producing new offspring. Crossover selected parents will be done on and finally

mutation will be done on generated offspring. This process will be repeated for some generations and

the best individual will be introduced as final result.Fig.1 shows the flowchart of genetic data

clustering algorithm based on K-means.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

284

Fig.1.Flowchart of genetic algorithm

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

285

2. Related work

There are several genetic data clustering algorithms but most of them have used random change

mutation operator which is not heuristic.

Yongguo Liu et al. [4] have introduced Division–absorption mutation for their proposed automatic

clustering algorithm. It consists of two sub-operations: division operation and absorption operation.

Division operation computes a probability for each cluster and divides the sparser clusters and

Absorption operation finds two nearest clusters and merges them. This algorithm uses Davies–

Bouldin (DB) index to compute Division probability and distance between cluster centers to compute

absorption probability so it will have problem with arbitrary shape clusters.

Hong He and YonghongTan [5] have used a Two-stage mutation. In the first stage the algorithm

emphasizes on detecting the number of clusters and in the second stage it will emphasize on finding

correct cluster centers. L.E. Agustin-Blas et al. [6] have also used split and merge mutation operator

with a different chromosome representation.

Dongxia Chang et al. [7] have introduced six new mutation operators in their message-based

similarity measure genetic clustering algorithm. These mutation operators add, delete or change a

gene or split or merge two clusters randomly but they are not heuristic operators.

Amin Aalaei et al. [8] have used random change mutation operator for their matrix based

chromosome structure to exchange binary value of tow genes with each other.

Jose A. Castellanos-Garzon and Fernando Diaz [9] have proposed a new hierarchical clustering

method using genetic algorithms for the analysis of gene expression data. They have used a mutation

operator which works dendrogram. The individuals (chromosomes) represent dendrograms on a given

data set, encoded as an ordered set of clusterings, where each clustering is an ordered set of clusters.

All the above mutation operators have been proposed for variable length chromosomes and we need

mutation operators with fix length chromosome for clustering with predefined number of clusters.

3. Problem encoding

3.1 Chromosome representation

For any GA, a chromosome representation and program encoding will be used to describe each

individual in the population of interest. The representation method determines how the problem is

structured in the algorithm and the genetic operators that are used. Each chromosome is made up of a

sequence of genes. In genetic algorithm clustering, each chromosome is a representation of one of

possible solutions for clustering of a data set.

In our method, an integer-valued problem-specific chromosome representation is used. Each

chromosome has a fixed length of K ∗ log2 N where K in the number of clusters and N is the number

of data points in dataset. So we have k genes in each chromosome. Each gene is made up of index of

center data point of a cluster. In the chromosome structure of proposed algorithm is not ordered which

means the place of genes is not important and any permutation of genes produces the same

chromosome.

This structure will not produce any infeasible chromosome but illegal chromosomes can be produced.

In proposed structure repetition of genes produces illegal chromosomes because a data point cannot

be center point of more than one cluster. So to be able to detect production of illegal chromosomes

during crossover and mutation, we sort the genes in ascending order. The advantages of this

chromosome structure are small length, fast detection of illegal chromosomes, fast detection of

repetitive chromosomes and faster mutation and crossover operations.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

286

3.2. Evaluation and fitness function

The fitness function has an important effect on success of a genetic algorithm. In this paper which we

want to examine efficiency of a mutation operator we use the simplest fitness function for genetic data

clustering. Objective function of k-means is defined as follow:

𝐸 = 𝑥 − 𝑐𝑖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 (2)

𝑐𝑖 is the center instance of ith cluster and E is the sum of the squared error of all instances in dataset.

This Objective function tries to produce k clusters so that the instances in the same cluster are as

compact as possible while the instances in different clusters are as separated as possible. The fitness

function that we use is defined as bellow:

Fi =
𝟏

𝑬

 (3)

3.3. Selection

Parents are selected according to their fitness. The better the chromosomes are, the more chances to

be selected they have. Imagine a roulette wheel where are placed all chromosomes in the population,

every has its place big accordingly to its fitness function

In rank-based wheel selection the individuals are sorted in a list based on their fitness value. The

position of the individuals within the list is called rank of the individual so all individuals have the

same chance to be selected. Rank-based wheel selection is used when we have individuals with big

fitness values and want to prevent form effect of them on selection

A common selection approach assigns a probability of selection Pi to each individual i based on its

fitness value. The probability Pi for each individual is defined by Equation (4)

pi =
Fi

 Fj
pop size
j=1

 (4)

Fi Equals the fitness of individual i. The use of roulette wheel selection limits the genetic algorithm to

maximization, because the evaluation function must map the solutions to a fully ordered set of values

on R+. Extensions, such as windowing and scaling, have been proposed to allow for minimization and

negativity.

In roulette wheel selection, the individuals are mapped to sector of a circle which has a circumference

equal with one, such that each individual’s sector is equally sized to its fitness. A random number is

generated and the individual whose segment spans the random number is selected. The process

repeats until the desired number of individuals is obtained (called mating population). This technique

is analogous to a roulette wheel with each slice proportionally sized to the fitness.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

287

3.4 Crossover

Crossover is a process that exchanges information between two parent chromosomes for generating

offspring chromosomes and occurs with a user specified probability, called the crossover

probability 𝑃𝑐 .

In this paper we have used One Point Crossover [10] with crossover probability 𝑃𝑐=1 to make our

experimental conditions as same as possible. In one point crossover a cutoff point between 1 and

length of chromosome (0<C<L) is randomly selected to divide each parent chromosome in to two

parts then left part of the first parent and right part of the second parent generate the first offspring and

right part of the first parent and left part of the second parent generate the second offspring.

3.5. Stopping criteria

The only criterion that we have chosen is number of generations. As we reached predefined number of

generations we will stop the algorithm and introduce the best individual as clustering result.

3.6. Random Change Mutation

In Random Change Mutation we choose a gene, and change it with a data point in data space which

has been selected. In data clustering it means that we change one of cluster centers with a data point in

data space. Both operations of choosing a gene and changing it with a data point in data space will be

done randomly.

4. Proposed mutations

Mutation process randomly modifies the gene values at selected locations to increase genetic

diversity, by forcing the algorithm to search areas other than the current focus and occurs with a user

specified probability, called the mutation probability 𝑃𝑚 . Genetic diversity helps not to converge to

local optima solutions.

Swap mutation operator which changes the position of two genes randomly, inversion mutation which

reverses the order of one or more genes or insertion mutation which cuts some genes form

chromosome and paste them in another place can just be used in ordered chromosomes and are not

useful in our clustering problem.

4.1. Same Cluster Random Change Mutation

In Same Cluster Random Change Mutation we choose a gene, and change it with a data point in data

space which is in the same cluster with the chosen gene. Both operations of choosing a gene and

changing it with a data point in the same cluster will be done randomly.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

288

4.2. Maximum Neighbor Random Change Mutation

In Maximum Neighbor Random Change Mutation we choose a gene randomly, and change it with a

data point in data space according to number of neighbors and roulette wheel mechanism. Number of

neighbors will be computed in a radius which can be user defined or program specific.

At the beginning of genetic algorithm we will compute the distance of each data point and all other

data points for just one time and will use it during the whole algorithm. If the radius is not determined

with the user, we find the distance of each data point and nearest neighbor of it and take the median of

these distances as a radius to count the number of Neighbors of each data points in this radius. Then

according to number of neighbors, we will choose one of data points with roulette wheel to change it

with the selected gene.

4.3. Same Cluster Maximum Neighbor Random Change Mutation

In Same Cluster Maximum Neighbor Random Change Mutation we choose a gene randomly, and

change it with a data point in the same cluster according to number of neighbors and roulette wheel

mechanism. Computing the radius and number of neighbors has the same algorithm with Maximum

Neighbor Random Change Mutation but we just examine the same cluster data points.

4.4. Nearest To Center Change Mutation

In Nearest To Center Change Mutation we choose a gene randomly, and change it with ith data point

in the list of data points which have been sorted according to their distance to center of data space in

ascending order. (i is a random number 1<i<N).

4.5. Less population Change Mutation

In Less population Change Mutation we choose the gene which is the center of cluster with less

population than other clusters and change it with another data point randomly.

4.6. Same cluster population Change Mutation

In Same cluster population Change Mutation we choose the gene which is the center of cluster with

less population than other clusters and change it with a data point in the same cluster randomly.

In all of above proposed mutations if the chosen data point is one of the current genes of chromosome

or leads to production of a chromosome which we have it currently in new generation, we will repeat

the choose operation again.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

289

5. Experimental results

We have implemented proposed genetic clustering algorithm and all explained mutation operators

with java language in Netbeans IDE 7.1 environment and used weka.jar library of weka 3.6.6 software

which contains necessary classes for implementing data clustering algorithms. To compare mutation

operators we need to have the same parameters in each execution. So for each data set we have made

10 random initial populations with Population Size equal to 100. For every data set we will execute

the algorithm 10 times with each initial population and record fitness of each generation elite, sum of

fitness of each generation and the fitness of final result. Table 1 shows execution parameters.

Table 1.Execution parameters

Population Size 100

Number Of Generations 20

Pc 1

Pm 1

Reinsertion Type complete

Selection Type Roulette Wheel

Fitness Type Squared Error

Crossover Type One Point Crossover

Table 2 shows the datasets of our experimental results which consists of 9 famous real life and 5

artificial datasets [11] .Fig 2 shows these artificial datasets.

Table 2.Datasets

 Dataset instances attributes clusters

sonar 208 60 2

Ionosphere 351 34 2

iris 150 4 3

tae 151 5 3

wine 178 13 3

vehicle 846 18 4

glass 214 9 6

ecoli 336 7 8

vowel 990 10 11

DS 2 680 2 2

DS 3 600 2 3

DS 4 750 2 4

DS 5 1200 2 5

DS 6 1600 2 6

DS 7 1100 2 7

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

290

Fig.2.Artificial datasets (a) DS 2 (b) DS 3 (c) DS 4 (d) DS 5 (e) DS 6 (f) DS 7

After 100 executions of proposed genetic data clustering on each dataset with one of mutation

operators, Table 3 shows the average of Fitness of final result of executions, Table 4 shows the

average of fitness of best elite of generations and Table 5 shows the average of sum of fitness of

generations for artificial datasets. Fig .3 also shows Comparison of mutation operators in average of

fitness of final result for some artificial datasets.

Table 3.Fitness value of final elite

Mutation DS 2 DS 3 DS 4 DS 5 DS 6 DS 7

Less Population Change 0.000778 0.001727 0.001075 0.000769 0.000619 0.000936

Same Cluster Population Change 0.000818 0.001757 0.001092 0.000733 0.000563 0.000884

Nearest To Center Change 0.000949 0.001981 0.001372 0.000894 0.000683 0.001072

Random Change 0.000817 0.001637 0.001031 0.000662 0.000517 0.000812

Maximum Neighbor Random Change 0.000814 0.001580 0.000661 0.000559 0.000496 0.000638

Same Cluster Maximum Neighbor Random Change 0.000856 0.001710 0.001070 0.000694 0.000597 0.000877

Same Cluster Random Change 0.000851 0.001746 0.001185 0.000770 0.000580 0.000949

Table 4.Average of fitness of best elite of generations for artificial data sets

Mutation DS 2 DS 3 DS 4 DS 5 DS 6 DS 7

Less Population Change
0.000782 0.001701 0.001071 0.000743 0.000595 0.000922

Same Cluster Population Change
0.000819 0.001740 0.001102 0.000720 0.000549 0.000863

Nearest To Center Change
0.000947 0.001943 0.001321 0.000839 0.000638 0.000987

Random Change
0.000809 0.001617 0.001038 0.000654 0.000511 0.000806

Maximum Neighbor Random Change
0.000813 0.001569 0.000781 0.000592 0.000498 0.000706

Same Cluster Maximum Neighbor Random Change
0.000854 0.001701 0.001073 0.000695 0.000573 0.000867

Same Cluster Random Change
0.000849 0.001725 0.001159 0.000738 0.000564 0.000904

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

291

Table 5.Average of sum of fitness of generations for artificial data sets

Mutation DS 2 DS 3 DS 4 DS 5 DS 6 DS 7

Less Population Change 0.064115 0.144946 0.088200 0.061810 0.051312 0.075828

Same Cluster Population Change 0.072587 0.155481 0.097389 0.062610 0.048038 0.074528

Nearest To Center Change 0.083092 0.181120 0.120057 0.074200 0.056783 0.085600

Random Change 0.061170 0.123517 0.079986 0.050516 0.039922 0.061039

Maximum Neighbor Random Change 0.061462 0.122417 0.061277 0.048523 0.038299 0.055702

Same Cluster Maximum Neighbor Random Change 0.072374 0.147012 0.093950 0.060413 0.049426 0.076052

Same Cluster Random Change 0.071299 0.147258 0.098780 0.063062 0.048753 0.076482

Table 6 shows the average of Fitness of final result of executions. Table 7 shows the average of

fitness of best elite of generations and Table 8 shows average of sum of fitness of generations for real

life datasets. Fig .4 also shows Comparison of mutation operators in average of fitness of final result

for some real life datasets.

Fig.3. Comparison of mutation operators in average of fitness of final result for artificial
datasets.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

292

Table 6.Fitness value of final elite

Mutation sonar Ionosphere iris tae wine vehicle glass ecoli vowel

Less Population Change 0.003545 0.001127 0.008462 0.000463 0.000039 0.000014 0.003331 0.013098 0.000474

Same Cluster Population Change 0.003542 0.001092 0.008602 0.000450 0.000039 0.000014 0.003251 0.012179 0.000461

Nearest To Center Change 0.003793 0.001245 0.009518 0.000478 0.000042 0.000014 0.003441 0.013709 0.000501

Random Change 0.003436 0.001093 0.008176 0.000461 0.000037 0.000014 0.003209 0.012273 0.000474

Maximum Neighbor Random Change 0.003573 0.001132 0.008378 0.000456 0.000038 0.000013 0.003047 0.012868 0.000480

Same Cluster Maximum Neighbor Random Change 0.003573 0.001161 0.009027 0.000445 0.000041 0.000014 0.003299 0.012967 0.000466

Same Cluster Random Change 0.003442 0.001074 0.008709 0.000444 0.000040 0.000014 0.003265 0.012190 0.000443

Table 7.Average of fitness of best elite of generations for real life data sets

Mutation sonar Ionosphere iris tae wine vehicle glass ecoli vowel

Less Population Change 0.003538 0.001124 0.008439 0.000461 0.000038 0.0000140 0.003309 0.012924 0.000473

Same Cluster Population Change 0.003530 0.001092 0.008491 0.000452 0.000039 0.0000136 0.003238 0.012291 0.000463

Nearest To Center Change 0.003782 0.001239 0.009491 0.000477 0.000443 0.0000145 0.003390 0.013431 0.000493

Random Change 0.003449 0.001100 0.008161 0.000458 0.000037 0.0000137 0.003198 0.012306 0.000473

Maximum Neighbor Random Change 0.003588 0.001130 0.008421 0.000460 0.000038 0.0000130 0.003115 0.012725 0.000477

Same Cluster Maximum Neighbor Random Change 0.003569 0.001161 0.008964 0.000448 0.000040 0.0000139 0.003302 0.012839 0.000468

Same Cluster Random Change 0.003452 0.001080 0.008621 0.000039 0.000042 0.0000136 0.003268 0.012243 0.000443

Table 8.Average of sum of fitness of generations for real life data sets

Mutation sonar Ionosphere Iris tae wine vehicle glass ecoli vowel

Less Population Change 0.325497 0.114004 0.100158 0.039446 0.003127 0.001179 0.292188 1.212852 0.045078

Same Cluster Population Change 0.323180 0.094399 0.727181 0.038622 0.003349 0.001111 0.280782 1.131965 0.044142

Nearest To Center Change 0.353476 0.285848 0.884550 0.043544 0.003895 0.001213 0.295614 1.259608 0.047117

Random Change 0.309992 0.091235 0.603596 0.038158 0.002994 0.001098 0.283310 1.106031 0.044361

Maximum Neighbor Random Change 0.327014 0.099970 0.617972 0.038701 0.002696 0.000975 0.270380 1.141883 0.044721

Same Cluster Maximum Neighbor Random Change 0.325757 0.102010 0.775866 0.038410 0.003556 0.001172 0.289711 1.195008 0.044360

Same Cluster Random Change 0.309962 0.087706 0.724886 0.037655 0.003158 0.001126 0.278136 1.112881 0.042142

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

293

Fig.4. Comparison of mutation operators in average of fitness of final result for real life
datasets.

6. Conclusions

In this paper we introduced 6 heuristic mutation operators for genetic data clustering which all of

them averagely increase the fitness of final result, fitness of generation elite and sum of fitness of

generations more than Random Change Mutation. According to experimental results, the best one of

those is Nearest To Center Change Mutation .The second one is Less Population Change Mutation

and the third one is Same Cluster Maximum Neighbor Random Change Mutation. We have used

introduced heuristic mutation operators just in genetic data clustering and we can examine the

usability and efficiency of proposed mutation operators for other problems as future work.

References

[1] John H. Holland, Adaptation in Natural and Artificial Systems, the University of Michigan Press, 1975.
[2] De Jong, Kenneth A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral

thesis, Dept. Computer and Communication Sciences, University of Michigan, Ann Arbor.
[3] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning,Addison –Wesley, New

York ,1989.
[4] Yongguo Liu , Xindong Wu, Yidong Shen , Automatic clustering using genetic algorithms, Applied

Mathematics and Computation 218 (2011) 1267–1279.
[5] Hong He, YonghongTan, A two-stage genetic algorithm for automatic clustering, Neurocomputing 81 (2012)

49–59.
[6] L.E. Agustin-Blas , S. Salcedo-Sanz , S. Jimenez-Fernandez , L. Carro-Calvo , J. Del Ser ,J.A. Portilla-

Figueras, A new grouping genetic algorithm for clustering problems, Expert Systems with Applications 39

(2012) 9695–9703.
[7] Dongxia Chang , Yao Zhao , Changwen Zheng , Xianda Zhang , A genetic clustering algorithm using a

message-based similarity measure, Expert Systems with Applications 39 (2012) 2194–2202.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294

294

[8] Amin Aalaei, Hamed Fazlollahtabar, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mohammad Hassan Yahyanejad,

A genetic algorithm for a creativity matrix cubic space clustering: A case study in Mazandaran Gas Company,

Applied Soft Computing 13 (2013) 1661–1673.
[9] Jose A. Castellanos-Garzon , Fernando Diaz, An evolutionary computational model applied to cluster analysis

of DNA microarray data, Expert Systems with Applications 40 (2013) 2575–2591.
[10] Riccardo Poli , W. B. Langdon,Genetic programming with one-point crossover,In P. K. Chawdhry, R. Roy,

and R. K. Pant, editors, Second On-line World Conference on Soft Computing in Engineering Design and

Manufacturing. Springer-Verlag London, 23-27 June 1997.
[11] http://repository.seasr.org/Datasets/UCI/arff/
[12] R. Maghsoudi , A. Ghorbannia Delavar, S. Hoseyny, R. Asgari, Y. Heidari, Representing the New Model for

Improving K-Means Clustering Algorithm based on Genetic Algorithm, The Journal of Mathematics and

Computer Science Vol .2 No.2 (2011) 329-336.

