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Abstract 

Genetic algorithm is one of evolutionary algorithms which have been used widely to solve many 

problems such as data clustering. There are lots of genetic data clustering algorithms which have 

worked on fitness function to improve the accuracy of algorithm in evaluation of generated 

chromosomes and have used simple and all purpose crossover and mutation operators such as one 

point crossover and random change mutation. Mutation process randomly modifies the gene values at 

selected locations to increase genetic diversity, by forcing the algorithm to search areas other than the 

current area. Simple non heuristic mutations such as random change mutation increase genetic 

diversity but they also increase execution time and decrease fitness of population. In this paper we 

introduce some new heuristic mutation operators for genetic data clustering. Experimental results 

show that all of proposed mutation operators creates better offspring than random change mutation 

and increases the fitness of population. 

Keywords: Data mining, data clustering, genetic algorithm, mutation operator, partitioning 

1. Introduction 

1.1. Data clustering 

 

Suppose 𝑋 =  𝑥1 , 𝑥2 , ⋯ , 𝑥𝑁  is a set of N instances in m- dimensional data space 𝑅𝑚 .Data clustering 

means partitioning these instances to K clusters 𝐶 =  𝐶1, 𝐶2 , … , 𝐶𝐾  where 𝐶𝑖 ≠ ∅ 𝑖 = 1,2, … , 𝑘 , 

𝐶𝑖 ∩ 𝐶𝑗 = ∅   𝑖 ≠ 𝑗 and  𝐶𝑖
𝐾
𝑖=1 = 𝑋 which means each instance is as similar as possible to its co-

cluster instances according to a distance measure function d x, y  like Euclidean distance. 

 

1.2. K-means algorithm 

 

Although K-means is simple and can be used for a wide variety of data types, it is quite sensitive to 

initial positions of cluster centers and traps in local optima. 
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There are several different data clustering methods, but k-means is a typical clustering algorithm 

which is widely used for clustering data sets and is one of the simplest, non-supervised algorithms and 

also it doesn't need any prior knowledge about the data distribution. The K-means algorithm starts by 

initializing the k cluster centers randomly. The input instances are then allocated to one of the existing 

clusters according to the square of the Euclidean distance from the cluster centers, choosing the 

closest. For each cluster we introduce the mean of instances as new cluster center. 

 

𝑍𝑗 =
 . xi

𝑛𝑗

𝑖=1

𝑛𝑗
 

 (1) 

And 𝑍 =  𝑍1 , 𝑍2 , … , 𝑍𝐾  is the set of cluster centers. The process of reassigning the data points and 

the updating of the cluster centers will be repeated until no more change in the cluster centers and no 

more reassigning of data points. 

 

1.3. Genetic algorithms 

 

Genetic algorithm is a search and optimization technique based on the principles of genetics and 

natural selection proposed by Holland [1] and later refined by De Jong [2], Goldberg [3], and many 

others. It is a heuristic algorithm which mimics the principle of survival of the fittest laid by Charles 

Darwin. Generally, an initial population of chromosomes is generated randomly and while stopping 

criteria didn’t reached, fitness value of each individual will be computed and selection performance 

such as roulette wheel or tournament selection method will be used to select chromosomes with better 

fitness values for producing new offspring. Crossover selected parents will be done on and finally 

mutation will be done on generated offspring. This process will be repeated for some generations and 

the best individual will be introduced as final result.Fig.1 shows the flowchart of genetic data 

clustering algorithm based on K-means. 
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Fig.1.Flowchart of genetic algorithm 
 

 

 

 



Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 12 (2014), 282-294 
 

285 
 

2. Related work 

 

There are several genetic data clustering algorithms but most of them have used random change 

mutation operator which is not heuristic. 

Yongguo Liu et al. [4] have introduced Division–absorption mutation for their proposed automatic 

clustering algorithm. It consists of two sub-operations: division operation and absorption operation. 

Division operation computes a probability for each cluster and divides the sparser clusters and 

Absorption operation finds two nearest clusters and merges them. This algorithm uses Davies–

Bouldin (DB) index to compute Division probability and distance between cluster centers to compute 

absorption probability so it will have problem with arbitrary shape clusters. 

Hong He and YonghongTan [5] have used a Two-stage mutation. In the first stage the algorithm 

emphasizes on detecting the number of clusters and in the second stage it will emphasize on finding 

correct cluster centers. L.E. Agustin-Blas et al. [6] have also used split and merge mutation operator 

with a different chromosome representation. 

Dongxia Chang et al. [7] have introduced six new mutation operators in their message-based 

similarity measure genetic clustering algorithm. These mutation operators add, delete or change a 

gene or split or merge two clusters randomly but they are not heuristic operators.  

Amin Aalaei et al. [8] have used random change mutation operator for their matrix based 

chromosome structure to exchange binary value of tow genes with each other.  

Jose A. Castellanos-Garzon and Fernando Diaz [9] have proposed a new hierarchical clustering 

method using genetic algorithms for the analysis of gene expression data. They have used a mutation 

operator which works dendrogram. The individuals (chromosomes) represent dendrograms on a given 

data set, encoded as an ordered set of clusterings, where each clustering is an ordered set of clusters. 

 

All the above mutation operators have been proposed for variable length chromosomes and we need 

mutation operators with fix length chromosome for clustering with predefined number of clusters. 

 

3. Problem encoding 

 

3.1 Chromosome representation  

 

For any GA, a chromosome representation and program encoding will be used to describe each 

individual in the population of interest. The representation method determines how the problem is 

structured in the algorithm and the genetic operators that are used. Each chromosome is made up of a 

sequence of genes. In genetic algorithm clustering, each chromosome is a representation of one of 

possible solutions for clustering of a data set.  

In our method, an integer-valued problem-specific chromosome representation is used. Each 

chromosome has a fixed length of K ∗ log2 N where K in the number of clusters and N is the number 

of data points in dataset. So we have k genes in each chromosome. Each gene is made up of index of 

center data point of a cluster. In the chromosome structure of proposed algorithm is not ordered which 

means the place of genes is not important and any permutation of genes produces the same 

chromosome. 

This structure will not produce any infeasible chromosome but illegal chromosomes can be produced. 

In proposed structure repetition of genes produces illegal chromosomes because a data point cannot 

be center point of more than one cluster. So to be able to detect production of illegal chromosomes 

during crossover and mutation, we sort the genes in ascending order. The advantages of this 

chromosome structure are small length, fast detection of illegal chromosomes, fast detection of 

repetitive chromosomes and faster mutation and crossover operations. 
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3.2. Evaluation and fitness function 

 

The fitness function has an important effect on success of a genetic algorithm. In this paper which we 

want to examine efficiency of a mutation operator we use the simplest fitness function for genetic data 

clustering. Objective function of k-means is defined as follow: 

𝐸 =    𝑥 − 𝑐𝑖 
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

 (2) 

𝑐𝑖  is the center instance of ith cluster and E is the sum of the squared error of all instances in dataset. 

This Objective function tries to produce k clusters so that the instances in the same cluster are as 

compact as possible while the instances in different clusters are as separated as possible. The fitness 

function that we use is defined as bellow: 

Fi =
𝟏

𝑬
 

 (3) 

 

3.3. Selection 

 

Parents are selected according to their fitness. The better the chromosomes are, the more chances to 

be selected they have. Imagine a roulette wheel where are placed all chromosomes in the population, 

every has its place big accordingly to its fitness function 

In rank-based wheel selection the individuals are sorted in a list based on their fitness value. The 

position of the individuals within the list is called rank of the individual so all individuals have the 

same chance to be selected. Rank-based wheel selection is used when we have individuals with big 

fitness values and want to prevent form effect of them on selection  

A common selection approach assigns a probability of selection Pi to each individual i based on its 

fitness value. The probability Pi for each individual is defined by Equation (4) 

pi =
Fi

 Fj
pop  size
j=1

  (4) 

 

Fi  Equals the fitness of individual i. The use of roulette wheel selection limits the genetic algorithm to 

maximization, because the evaluation function must map the solutions to a fully ordered set of values 

on R+. Extensions, such as windowing and scaling, have been proposed to allow for minimization and 

negativity. 

In roulette wheel selection, the individuals are mapped to sector of a circle which has a circumference 

equal with one, such that each individual’s sector is equally sized to its fitness. A random number is 

generated and the individual whose segment spans the random number is selected. The process 

repeats until the desired number of individuals is obtained (called mating population). This technique 

is analogous to a roulette wheel with each slice proportionally sized to the fitness.  
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3.4 Crossover 

 

Crossover is a process that exchanges information between two parent chromosomes for generating 

offspring chromosomes and occurs with a user specified probability, called the crossover 

probability 𝑃𝑐 . 

In this paper we have used One Point Crossover [10] with crossover probability 𝑃𝑐=1 to make our 

experimental conditions as same as possible. In one  point crossover a cutoff point between 1 and 

length of chromosome (0<C<L) is randomly selected to divide each parent chromosome in to two 

parts then left part of the first parent and right part of the second parent generate the first offspring and 

right part of the first parent and left part of the second parent generate the second offspring. 

 

3.5. Stopping criteria  

 

The only criterion that we have chosen is number of generations. As we reached predefined number of 

generations we will stop the algorithm and introduce the best individual as clustering result. 

 

3.6. Random Change Mutation 

 

In Random Change Mutation we choose a gene, and change it with a data point in data space which 

has been selected. In data clustering it means that we change one of cluster centers with a data point in 

data space. Both operations of choosing a gene and changing it with a data point in data space will be 

done randomly. 

 

4. Proposed mutations 

 

Mutation process randomly modifies the gene values at selected locations to increase genetic 

diversity, by forcing the algorithm to search areas other than the current focus and occurs with a user 

specified probability, called the mutation probability 𝑃𝑚 . Genetic diversity helps not to converge to 

local optima solutions. 

Swap mutation operator which changes the position of two genes randomly, inversion mutation which 

reverses the order of one or more genes or insertion mutation which cuts some genes form 

chromosome and paste them in another place can just be used in ordered chromosomes and are not 

useful in our clustering problem. 

 

4.1. Same Cluster Random Change Mutation 

 

In Same Cluster Random Change Mutation we choose a gene, and change it with a data point in data 

space which is in the same cluster with the chosen gene. Both operations of choosing a gene and 

changing it with a data point in the same cluster will be done randomly. 
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4.2. Maximum Neighbor Random Change Mutation 

 

In Maximum Neighbor Random Change Mutation we choose a gene randomly, and change it with a 

data point in data space according to number of neighbors and roulette wheel mechanism. Number of 

neighbors will be computed in a radius which can be user defined or program specific.  

At the beginning of genetic algorithm we will compute the distance of each data point and all other 

data points for just one time and will use it during the whole algorithm. If the radius is not determined 

with the user, we find the distance of each data point and nearest neighbor of it and take the median of 

these distances as a radius to count the number of Neighbors of each data points in this radius. Then 

according to number of neighbors, we will choose one of data points with roulette wheel to change it 

with the selected gene. 

 

4.3. Same Cluster Maximum Neighbor Random Change Mutation 

 

In Same Cluster Maximum Neighbor Random Change Mutation we choose a gene randomly, and 

change it with a data point in the same cluster according to number of neighbors and roulette wheel 

mechanism. Computing the radius and number of neighbors has the same algorithm with Maximum 

Neighbor Random Change Mutation but we just examine the same cluster data points.  

 

4.4. Nearest To Center Change Mutation 

 

In Nearest To Center Change Mutation we choose a gene randomly, and change it with ith data point 

in the list of data points which have been sorted according to their distance to center of data space in 

ascending order. (i is a random number 1<i<N). 

 

4.5. Less population Change Mutation 

 

In Less population Change Mutation we choose the gene which is the center of cluster with less 

population than other clusters and change it with another data point randomly. 

 

4.6. Same cluster population Change Mutation 

 

In Same cluster population Change Mutation we choose the gene which is the center of cluster with 

less population than other clusters and change it with a data point in the same cluster randomly. 

In all of above proposed mutations if the chosen data point is one of the current genes of chromosome 

or leads to production of a chromosome which we have it currently in new generation, we will repeat 

the choose operation again. 
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5. Experimental results 

 

We have implemented proposed genetic clustering algorithm and all explained mutation operators 

with java language in Netbeans IDE 7.1 environment and used weka.jar library of weka 3.6.6 software 

which contains necessary classes for implementing data clustering algorithms. To compare mutation 

operators we need to have the same parameters in each execution. So for each data set we have made 

10 random initial populations with Population Size equal to 100. For every data set we will execute 

the algorithm 10 times with each initial population and record fitness of each generation elite, sum of 

fitness of each generation and the fitness of final result. Table 1 shows execution parameters. 

Table 1.Execution parameters 

Population Size 100 

Number Of Generations 20 

Pc 1 

Pm 1 

Reinsertion Type complete 

Selection Type Roulette Wheel 

Fitness Type Squared Error 

Crossover Type One Point Crossover 

 

Table 2 shows the datasets of our experimental results which consists of 9 famous real life and 5 

artificial datasets [11] .Fig 2 shows these artificial datasets.  

Table 2.Datasets 

 Dataset instances attributes clusters 

sonar 208 60 2 

Ionosphere 351 34 2 

iris 150 4 3 

tae 151 5 3 

wine 178 13 3 

vehicle 846 18 4 

glass 214 9 6 

ecoli 336 7 8 

vowel 990 10 11 

DS 2 680 2 2 

DS 3 600 2 3 

DS 4 750 2 4 

DS 5 1200 2 5 

DS 6 1600 2 6 

DS 7 1100 2 7 
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Fig.2.Artificial datasets (a) DS 2 (b) DS 3 (c) DS 4 (d) DS 5 (e) DS 6 (f) DS 7 

After 100 executions of proposed genetic data clustering on each dataset with one of mutation 

operators, Table 3 shows the average of Fitness of final result of executions, Table 4 shows the 

average of fitness of best elite of generations and Table 5 shows the average of sum of fitness of 

generations for artificial datasets. Fig .3 also shows Comparison of mutation operators in average of 

fitness of final result for some artificial datasets. 

 

Table 3.Fitness value of final elite 

Mutation DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 

Less Population Change  0.000778 0.001727 0.001075 0.000769 0.000619 0.000936 

Same Cluster Population Change  0.000818 0.001757 0.001092 0.000733 0.000563 0.000884 

Nearest To Center Change  0.000949 0.001981 0.001372 0.000894 0.000683 0.001072 

Random Change  0.000817 0.001637 0.001031 0.000662 0.000517 0.000812 

Maximum Neighbor Random Change  0.000814 0.001580 0.000661 0.000559 0.000496 0.000638 

Same Cluster Maximum Neighbor Random Change  0.000856 0.001710 0.001070 0.000694 0.000597 0.000877 

Same Cluster Random Change  0.000851 0.001746 0.001185 0.000770 0.000580 0.000949 

 

 

Table 4.Average of fitness of best elite of generations for artificial data sets 

Mutation DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 

Less Population Change  
0.000782 0.001701 0.001071 0.000743 0.000595 0.000922 

Same Cluster Population Change  
0.000819 0.001740 0.001102 0.000720 0.000549 0.000863 

Nearest To Center Change  
0.000947 0.001943 0.001321 0.000839 0.000638 0.000987 

Random Change  
0.000809 0.001617 0.001038 0.000654 0.000511 0.000806 

Maximum Neighbor Random Change  
0.000813 0.001569 0.000781 0.000592 0.000498 0.000706 

Same Cluster Maximum Neighbor Random Change  
0.000854 0.001701 0.001073 0.000695 0.000573 0.000867 

Same Cluster Random Change  
0.000849 0.001725 0.001159 0.000738 0.000564 0.000904 
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Table 5.Average of sum of fitness of generations for artificial data sets 

Mutation DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 

Less Population Change 0.064115 0.144946 0.088200 0.061810 0.051312 0.075828 

Same Cluster Population Change 0.072587 0.155481 0.097389 0.062610 0.048038 0.074528 

Nearest To Center Change 0.083092 0.181120 0.120057 0.074200 0.056783 0.085600 

Random Change 0.061170 0.123517 0.079986 0.050516 0.039922 0.061039 

Maximum Neighbor Random Change 0.061462 0.122417 0.061277 0.048523 0.038299 0.055702 

Same Cluster Maximum Neighbor Random Change 0.072374 0.147012 0.093950 0.060413 0.049426 0.076052 

Same Cluster Random Change 0.071299 0.147258 0.098780 0.063062 0.048753 0.076482 

 

Table 6 shows the average of Fitness of final result of executions. Table 7 shows the average of 

fitness of best elite of generations and Table 8 shows average of sum of fitness of generations for real 

life datasets. Fig .4 also shows Comparison of mutation operators in average of fitness of final result 

for some real life datasets. 

 

Fig.3. Comparison of mutation operators in average of fitness of final result for artificial 
datasets. 
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Table 6.Fitness value of final elite  

Mutation sonar Ionosphere iris tae wine vehicle glass ecoli vowel 

Less Population Change 0.003545 0.001127 0.008462 0.000463 0.000039 0.000014 0.003331 0.013098 0.000474 

Same Cluster Population Change 0.003542 0.001092 0.008602 0.000450 0.000039 0.000014 0.003251 0.012179 0.000461 

Nearest To Center Change 0.003793 0.001245 0.009518 0.000478 0.000042 0.000014 0.003441 0.013709 0.000501 

Random Change 0.003436 0.001093 0.008176 0.000461 0.000037 0.000014 0.003209 0.012273 0.000474 

Maximum Neighbor Random Change 0.003573 0.001132 0.008378 0.000456 0.000038 0.000013 0.003047 0.012868 0.000480 

Same Cluster Maximum Neighbor Random Change 0.003573 0.001161 0.009027 0.000445 0.000041 0.000014 0.003299 0.012967 0.000466 

Same Cluster Random Change 0.003442 0.001074 0.008709 0.000444 0.000040 0.000014 0.003265 0.012190 0.000443 

 

 

Table 7.Average of fitness of best elite of generations for real life data sets 

Mutation sonar Ionosphere iris tae wine vehicle glass ecoli vowel 

Less Population Change 0.003538 0.001124 0.008439 0.000461 0.000038 0.0000140 0.003309 0.012924 0.000473 

Same Cluster Population Change 0.003530 0.001092 0.008491 0.000452 0.000039 0.0000136 0.003238 0.012291 0.000463 

Nearest To Center Change 0.003782 0.001239 0.009491 0.000477 0.000443 0.0000145 0.003390 0.013431 0.000493 

Random Change 0.003449 0.001100 0.008161 0.000458 0.000037 0.0000137 0.003198 0.012306 0.000473 

Maximum Neighbor Random Change 0.003588 0.001130 0.008421 0.000460 0.000038 0.0000130 0.003115 0.012725 0.000477 

Same Cluster Maximum Neighbor Random Change 0.003569 0.001161 0.008964 0.000448 0.000040 0.0000139 0.003302 0.012839 0.000468 

Same Cluster Random Change 0.003452 0.001080 0.008621 0.000039 0.000042 0.0000136 0.003268 0.012243 0.000443 

 

 

 

Table 8.Average of sum of fitness of generations for real life data sets 

Mutation sonar Ionosphere Iris tae wine vehicle glass ecoli vowel 

Less Population Change 0.325497 0.114004 0.100158 0.039446 0.003127 0.001179 0.292188 1.212852 0.045078 

Same Cluster Population Change 0.323180 0.094399 0.727181 0.038622 0.003349 0.001111 0.280782 1.131965 0.044142 

Nearest To Center Change 0.353476 0.285848 0.884550 0.043544 0.003895 0.001213 0.295614 1.259608 0.047117 

Random Change 0.309992 0.091235 0.603596 0.038158 0.002994 0.001098 0.283310 1.106031 0.044361 

Maximum Neighbor Random Change 0.327014 0.099970 0.617972 0.038701 0.002696 0.000975 0.270380 1.141883 0.044721 

Same Cluster Maximum Neighbor Random Change 0.325757 0.102010 0.775866 0.038410 0.003556 0.001172 0.289711 1.195008 0.044360 

Same Cluster Random Change 0.309962 0.087706 0.724886 0.037655 0.003158 0.001126 0.278136 1.112881 0.042142 
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Fig.4. Comparison of mutation operators in average of fitness of final result for real life 
datasets. 

 

6. Conclusions 

 

In this paper we introduced 6 heuristic mutation operators for genetic data clustering which all of 

them averagely increase the fitness of final result, fitness of generation elite and sum of fitness of 

generations more than Random Change Mutation. According to experimental results, the best one of 

those is Nearest To Center Change Mutation .The second one is Less Population Change Mutation 

and the third one is Same Cluster Maximum Neighbor Random Change Mutation. We have used 

introduced heuristic mutation operators just in genetic data clustering and we can examine the 

usability and efficiency of proposed mutation operators for other problems as future work. 
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