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Abstract
In this paper, the oscillation criteria of a class of third order neutral distributed delay differential equations with damping

are investigated. This work is the continuation of the study by Saker [S. H. Saker, Math. Slovaca, 56 (2006), 433–450] and the
extension of the work by Zhang [Q. X. Zhang, L. Gao, Y. H. Yu, Appl. Math. Lett., 25 (2012), 1514–1519] on oscillation properties
of nonlinear third order delay differential equation. By choosing the appropriate functions and using a generalized Riccati
transformation, some new oscillation criteria are presented to insure that every solution of this equation oscillates or converges
to zero. The presented results correct and improve the earlier ones in existing literature. Finally, several illustrative examples are
included.
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1. Introduction

In this article, we consider third order neutral distributed delay differential equations with damping
of the formr1(t)

(
r2(t)

(
x(t) +

∫b
a

p(t,µ)x(σ(t,µ))dµ

) ′) ′ ′

+m(t)

(
r2(t)

(
x(t) +

∫b
a

p(t,µ)x(σ(t,µ))dµ

) ′) ′
+

∫d
c

q(t, ζ)f(x(τ(t, ζ)))dζ = 0.

(1.1)

Throughout the whole paper, we assume that the following hypotheses hold:

(C1) r1(t) ∈ C([t0,∞), (0,∞)), r2(t) ∈ C([t0,∞), (0,∞)), m(t) ∈ C([t0,∞), (0,∞)),∫∞
t0

1
r2(t)

dt = ∞,
∫∞
t0

1
r1(t)

exp(−
∫t
t0

m(s)

r1(s)
ds)dt = ∞;
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(C2) p(t,µ) ∈ C([t0,∞)× [a,b], (0,∞)), 0 6 p(t) ≡
∫b
a

p(t,µ)dµ 6 p < 1;

(C3) σ(t,µ) ∈ C([t0,∞)× [a,b], (0,∞)) and τ(t, ζ) ∈ C([t0,∞)× [c,d], (0,∞)) are not the decreasing func-
tions with respect to µ and ζ, respectively, and satisfy σ(t,µ) 6 t, τ(t, ζ) 6 t, lim

t→∞ inf
µ∈[a,b]

σ(t,µ) = ∞
and lim

t→∞ inf
ζ∈[c,d]

τ(t, ζ) = ∞;

(C4) q(t, ζ) ∈ C([t0,∞)× [c,d], (0,∞));

(C5) f(v) ∈ C((0,∞), (0,∞)),
f(v)

v
> α > 0, v 6= 0.

Define the function by

z(t) = x(t) +

∫b
a

p(t,µ)x(σ(t,µ))dµ. (1.2)

By a solution of (1.1) this means a function x(t) ∈ C([Tx,∞)) which has the property x(t), r2(t)z
′(t),

r1(t)(r2(t)z
′(t)) ′ ∈ C1[Tx,∞) and satisfies (1.1) on [Tx,∞). Our attention is restricted to those solutions

x(t) of (1.1) which satisfy sup{|x(t)| : t1 6 t 6 ∞} > 0 for all t1 > t0. A solution of (1.1) is called oscillatory
if it has arbitrarily large zeros on [Tx,∞) and otherwise it is called nonoscillatory.

Motivated by [4, 8, 10, 18, 21, 24], the study focuses on the oscillation behavior of neutral distributed
delay differential equations with damping. The oscillation of functional differential equations have re-
ceived a great deal of interest in recent years. But we notice that most of the investigations are concerned
with oscillation of first or second order differential equations, while relatively less attention has been paid
to oscillation of third order differential equations, see [1–3, 5–7, 9, 11–16, 18, 20, 22, 24], especially the dis-
tributed delay equations with damping. On the basis of the studies [18] and [24], by using a generalized
Riccati transformation and choosing appropriate functions, the aim of this paper is to establish some new
sufficient conditions which insure that any solution of this equation oscillates or converges to zero. In
fact, by choosing appropriate functions, we shall present several easily verifiable oscillation criteria. The
methods and arguments used in the present paper are different from those used in [4, 8, 10, 21], and the
results correct, extend and improve a number of existing results, especially the results in [18] and [24].

The paper is organized as follows. We first need to state and prove some lemmas in Section 2, which
will be used in the proof of our main results. We will establish some new criteria of oscillatory behavior for
(1.1) by a generalized Riccati transformation technique in Section 3, and then present some applications
for our results in Section 4.

2. Some preliminary lemmas

Lemma 2.1. Let x(t) be a positive solution of (1.1). Then z(t) has only one of the following two properties:

(I) z(t) > 0, z ′(t) > 0, (r2(t)z
′(t)) ′ > 0;

(II) z(t) > 0, z ′(t) < 0, (r2(t)z
′(t)) ′ > 0,

where t > t1 for sufficiently large t1.

Proof. Let x(t) be a positive solution of (1.1) on [t0,∞). Then we have z(t) > x(t) > 0 from (C2) for t > t1.
Based on (1.2), it follows from (C3) and (C4) that(

r1(t)
(
r2(t)z

′(t)
) ′) ′

+m(t)
(
r2(t)z

′(t)
) ′

= −

∫d
c

q(t, ζ)f(x(τ(t, ζ)))dζ

6 −α

∫d
c

q(t, ζ)x(τ(t, ζ))dζ

< 0.

(2.1)
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Then we have
d

dt

[
exp(

∫t
t1

m(s)

r1(s)
ds)r1(t)

(
r2(t)z

′(t)
) ′]

< 0.

Thus, exp(
∫t
t1

m(s)

r1(s)
ds)r1(t)

(
r2(t)z

′(t)
) ′ is a decreasing function and eventually of one sign, and then from

(C1) we know that (
r2(t)z

′(t)
) ′
< 0 or

(
r2(t)z

′(t)
) ′
> 0,

for t > t2 > t1. We assert that (r2(t)z
′(t)) ′ > 0. Suppose (r2(t)z

′(t)) ′ < 0, then there exists a constant
M > 0 such that

exp(
∫t
t1

m(s)

r1(s)
ds)r1(t)

(
r2(t)z

′(t)
) ′

6 −M.

Integrate the above inequality on [t2, t] to get

r2(t)z
′(t) 6 r2(t2)z

′(t2) −M(

∫t
t2

1
r1(s)

exp(−
∫s
t1

m(η)

r1(η)
dη)ds→ −∞ (t→∞),

by the condition (C1). Thus, there are an integer t3 > t2 and C > 0 such that r2(t)z
′(t) 6 −C for t > t3.

Integrating on [t3, t] to get

z(t) 6 z(t3) −C

∫t
t3

1
r2(s)

ds→ −∞ (t→∞),

from the condition (C1), and then z(t) < 0 which contradicts z(t) > 0. Thus we have (r2(t)z
′(t)) ′ > 0.

Therefore, z(t) has only one of the two properties (I) and (II). This completes the proof.

Lemma 2.2. Let x(t) be a positive solution of (1.1), and z(t) has the property (I). Then

z ′(τ(t)) >
r1(t) (r2(t)z

′(t)) ′ R(τ(t))

r2(τ(t))
,

where τ(t) = τ(t, c), R(t) =
∫t
t0

1
r1(s)

ds, t > t0.

Proof. Let x(t) be a positive solution of (1.1). Since z(t) has the property (I), we know(
r1(t)

(
r2(t)z

′(t)
) ′) ′

< 0,

from (2.1). Then we have

r2(t)z
′(t) = r2(t0)z

′(t0) +

∫t
t0

(
r2(s)z

′(s)
) ′
ds

>
∫t
t0

r1(s) (r2(s)z
′(s)) ′

r1(s)
ds

> r1(t)
(
r2(t)z

′(t)
) ′
R(t).

Thus

r2(τ(t))z
′(τ(t)) > r1(τ(t))

(
r2(τ(t))z

′(τ(t))
) ′
R(τ(t))

> r1(t)
(
r2(t)z

′(t)
)
R(τ(t)).

Hence, we obtain

z ′(τ(t)) >
r1(t) (r2(t)z

′(t)) ′ R(τ(t))

r2(τ(t))
,

which completes the proof.
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Lemma 2.3. Let x(t) be a positive solution of (1.1), and z(t) has the property (II). If∫∞
t0

1
r2(v)

∫∞
v

1
r1(u)

∫∞
u

∫d
c

q(s, ζ)dζdsdudv = ∞, (2.2)

then lim
t→∞ x(t) = 0.

Proof. Let x(t) be a positive solution of (1.1). According to the property (II), we have z(t) > 0, z ′(t) < 0,
then lim

t→∞ z(t) = l > 0. We assert that l = 0. Suppose that l > 0, then we get l+ ε > z(t) > l for ε > 0 and

t > t1 > t0. By choosing ε <
l(1 − p)

p
, from (C2) and property (II) we have

x(t) = z(t) −

∫b
a

p(t,µ)x(σ(t,µ))dµ

> z(t) − z(σ(t,a))
∫b
a

p(t,µ)dµ

> l− p(t)z(σ(t,a))
> l− p(l+ ε)

> kz(t),

where k =
l(1 − p) − pε

l+ ε
> 0. Then from (C5), we get

(
r1(t)

(
r2(t)z

′(t)
) ′) ′

+m(t)
(
r2(t)z

′(t)
) ′

6 −α

∫d
c

q(t, ζ)x(τ(t, ζ))dζ

6 −kαz(τ(t,d))
∫d
c

q(t, ζ)dζ

= −q1(t)z(τ1(t)),

where q1(t) = kα

∫d
c

q(t, ζ)dζ, τ1(t) = τ(t,d). Thus(
exp(

∫t
t1

m(s)

r1(s)
ds)r1(t)

(
r2(t)z

′(t)
) ′) ′

6 −exp(
∫t
t1

m(s)

r1(s)
ds)q1(t)z(τ1(t)).

Integrating the above inequality from t to ∞, we obtain

r1(t)
(
r2(t)z

′(t)
) ′

> exp(−
∫t
t1

m(s)

r1(s)
ds)

∫∞
t

exp(
∫σ
t1

m(s)

r1(s)
ds)q1(σ)z(τ1(σ))dσ.

From z(τ1(t)) > l and
d

dt
exp(

∫t
t1

m(s)

r1(s)
ds) > 0, we have

(
r2(t)z

′(t)
) ′
>

l

r1(t)

∫∞
t

q1(s)ds.

Integrate the above inequality on [t,∞) to get

−r2(t)z
′(t) > l

∫∞
t

1
r1(u)

∫∞
u

q1(s)dsdu.

Further integrating on [t1,∞) leads to∫∞
t1

1
r2(v)

∫∞
v

1
r1(u)

∫∞
u

∫d
c

q(s, ζ)dζdsdudv <
z(t1)

kαl
,

which contradicts (2.2), and then we have l = 0. According to z(t) > x(t) > 0, we obtain lim
t→∞ x(t) = 0.
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3. Main results

In this section, we obtain new oscillatory criteria for (1.1) by using the generalized Riccati transforma-
tion. Let

D = {(t, s) : t0 6 s 6 t <∞}, D0 = {(t, s) : t0 6 s < t <∞}.

A function H ∈ C1(D,R) is said to belong to X class (H ∈ X) if it satisfies

(i) H(t, t) = 0, t > t0, H(t, s) > 0, (t, s) ∈ D0;

(ii)
∂H(t, s)
∂s

6 0, (t, s) ∈ D, and there exists h(t, s) ∈ C(D0,R) such that

∂H(t, s)
∂s

= −h(t, s)
√
H(t, s).

Then we present the following main results of this article.

Theorem 3.1. Assume that (2.2) holds. If there exists ρ(t) ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫t
t0

(
C(s) −

B2(s)

4A(s)

)
ds = ∞, (3.1)

where

A(t) =
τ ′(t)R(τ(t))

ρ(t)r2(τ(t))
, B(t) =

ρ ′(t)

ρ(t)
−
m(t)

r1(t)
, C(t) = α(1 − p)ρ(t)q(t), (3.2)

and q(t) =
∫d
c

q(t, ζ)dζ, then every solution x(t) of (1.1) either oscillates or converges to zero.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may assert x(t) > 0
on [t1,∞), and then x(σ(t,µ)) > 0, (t,µ) ∈ [t1,∞) × [a,b], x(τ(t, ζ)) > 0, (t, ζ) ∈ [t1,∞) × [c,d] for
sufficiently large t1. By Lemma 2.1, we know that z(t) has the property (I) or the property (II).

When z(t) has property (I), it follows from (C2) and (C3), we have

x(t) = z(t) −

∫b
a

p(t,µ)x(σ(t,µ))dµ

> z(t) −
∫b
a

p(t,µ)z(σ(t,µ))dµ

> (1 − p(t))z(t)

> (1 − p)z(t).

Then (
r1(t)

(
r2(t)z

′(t)
) ′) ′

+m(t)
(
r2(t)z

′(t)
) ′

6 −α(1 − p)

∫d
c

q(t, ζ)z(τ(t, ζ))dζ

6 −α(1 − p)z(τ(t))q(t).

Let

w(t) = ρ(t)
r1(t) (r2(t)z

′(t)) ′

z(τ(t))
, t > t1.
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Then from Lemma 2.2, we obtain

w ′(t) = ρ ′(t)
r1(t) (r2(t)z

′(t)) ′

z ′(τ(t))
+ ρ(t)

(
r1(t) (r2(t)z

′(t)) ′
) ′

z(τ(t))
− ρ(t)

z ′(τ(t))τ ′(t)r1(t) (r2(t)z
′(t)) ′

z2(τ(t))

6
ρ ′(t)

ρ(t)
w(t) − ρ(t)

[
m(t) (r2(t)z

′(t)) ′

z(τ(t))
+
α(1 − p)z(τ(t))q(t)

z(τ(t))

]
− ρ(t)

τ ′(t)R(τ(t))(r1(t) (r2(t)z
′(t)) ′)2

r2(τ(t))z2(τ(t))

6 −C(t) +B(t)w(t) −A(t)w2(t)

6 −C(t) +
B2(t)

4A(t)
.

Integrate the above inequality from t2 to t, then we have∫t
t1

(
C(s) −

B2(s)

4A(s)

)
ds 6 w(t2),

from w(t) > 0, which contradicts (3.1), and then the solution x(t) of (1.1) is oscillatory.
When z(t) has property (II), from (2.2) we know lim

t→∞ x(t) = 0 by Lemma 2.3. The proof is complete.

Remark 3.2. The proof of Theorem 3.1 is based on Bu−Au2 6
B2

4A
for A > 0,u ∈ R.

Theorem 3.3. Assume that (2.2) holds. If there exist H ∈ X and ρ(t) ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

1
H(t, t0)

∫t
t0

(
H(t, s)C(s) −

h2
1(t, s)

4A(s)

)
ds = ∞, (3.3)

where

h1(t, s) = h(t, s) −B(s)
√
H(t, s), (3.4)

and A(t),B(t),C(t) are defined in (3.2), then every solution x(t) of (1.1) either oscillates or converges to zero.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may assert x(t) > 0, t >
t1 > t0, x(σ(t,µ)) > 0, (t,µ) ∈ [t1,∞)× [a,b], x(τ(t, ζ)) > 0, (t, ζ) ∈ [t1,∞)× [c,d]. By Lemma 2.1, we
know that z(t) has property (I) or property (II).

When z(t) has the property (I), we proceed as in the proof of Theorem 3.1 and have

w ′(t) 6 −C(t) +B(t)w(t) −A(t)w2(t).

Multiplying the above inequality by H(t, s) and integrating the inequality from t1 to t, we obtain∫t
t1

H(t, s)C(s)ds 6 w(t1)H(t, t1) −

∫t
t1

(
h1(t, s)

√
H(t, s)w(s) +H(t, s)A(s)w2(s)

)
ds

= w(t1)H(t, t1) −

∫t
t1

(√
H(t, s)A(s)w(s) +

h1(t, s)
2
√
A(s)

)2

ds

+

∫t
t1

h2
1(t, s)

4A(s)
ds,

(3.5)
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where h1(t, s) is defined as (3.4). Then

1
H(t, t1)

∫t
t1

(
H(t, s)C(s) −

h2
1(t, s)

4A(s)

)
ds 6 w(t1),

which contradicts (3.3). Thus the solution x(t) of (1.1) is oscillatory.
When z(t) has property (II), from (2.2) we know lim

t→∞ x(t) = 0 by Lemma 2.3. The proof is complete.

Theorem 3.4. Assume that (2.2) holds. If there exist H ∈ X, ρ(t) ∈ C1([t0,∞), (0,∞)) and ϕ ∈ C([t0,∞),R)
such that

0 < inf
s>T

[
lim inf
t→∞ H(t, s)

H(t, T)

]
6 ∞, (3.6)

lim sup
t→∞

1
H(t, T)

∫t
T

h2
1(t, s)
A(s)

ds <∞,

∫∞
t0

A(t)ϕ2
+(t)dt = ∞,

and

ϕ(T) 6 lim sup
t→∞

1
H(t, T)

∫t
T

(
H(t, s)C(s) −

h2
1(t, s)

4A(s)

)
ds, (3.7)

for t > T > t0, where

ϕ+(t) = max{ϕ(t), 0}, (3.8)

A(t),B(t),C(t) and h1(t, s) are defined in (3.2) and (3.4), respectively, then every solution x(t) of (1.1) either
oscillates or converges to zero.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Proceeding as in the proof of Theorem 3.3, when z(t)
has property (I), from (3.5) we have

lim sup
t→∞

1
H(t, T)

∫t
T

(
H(t, s)C(s) −

h2
1(t, s)

4A(s)

)
ds

6w(T) − lim inf
t→∞ 1

H(t, T)

∫t
T

(√
H(t, s)A(s)w(s) +

h1(t, s)
2
√
A(s)

)2

ds.

It follows from (3.7) that
ϕ(T) 6 w(T),

and then

lim inf
t→∞ 1

H(t, T)

∫t
T

(√
H(t, s)A(s)w(s) +

h1(t, s)
2
√
A(s)

)2

ds 6 w(T) −ϕ(T) <∞.

Thus we know

lim inf
t→∞ 1

H(t, T)

∫t
T

(
H(t, s)A(s)w2(s) +

√
H(t, s)h1(t, s)w(s)

)
ds <∞.
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Here we assert ∫∞
t1

A(s)w2(s)ds <∞.

Suppose
∫∞
t1

A(s)w2(s)ds = ∞. From (3.6), we have

inf
s>T

[
lim inf
t→∞ H(t, s)

H(t, T)

]
> µ,

for µ > 0, then
H(t, t2)

H(t, T)
> µ for t > t2 > t1. There exists M1 > 0 such that

∫t
t1

A(s)w2(s)ds >
M1

µ
.

Thus for t > t2,

1
H(t, T)

∫t
t2

H(t, s)A(s)w2(s)ds =
1

H(t, T)

∫t
t2

−
∂H(t, s)
∂s

∫s
t2

A(η)w2(η)dηds

>
1

H(t, T)
M1

µ

∫t
t2

−
∂H(t, s)
∂s

ds

=
M1

µ

H(t, t2)

H(t, T)
>M1.

Hence, we have

lim inf
t→∞ 1

H(t, T)

∫t
T

H(t, s)A(s)w2(s)ds = ∞.

The reminder of the proof is similar to that of similar theorems in [17, 19, 23] and hence is omitted. Then
we get that the solution x(t) of (1.1) is oscillatory.

When z(t) has property (II), from (2.2) we find lim
t→∞ x(t) = 0 by Lemma 2.3. The proof is complete.

4. Examples

In this section, we will give several examples to illustrate our main results.

Example 4.1. We consider the equation(
1

(t+ 1)2

(
x(t) +

∫ 0

−1

(
1
2
+

2
3
e−2t + µ

)
x(t+

µ

2
)dµ

) ′) ′′

+
1
t

(
1

(t+ 1)2

(
x(t) +

∫ 0

−1

(
1
2
+

2
3
e−2t + µ

)
x(t+

µ

2
)dµ

) ′) ′′

+

∫ 0

−1
et+ζ(3 + sinx(t+ ζ))x(t+ ζ)dζ = 0, t > 1.

(4.1)

Based on (4.1), we find that r1(t) = 1, r2(t) =
1

(t+ 1)2 , p(t,µ) =
1
2
+

2
3
e−2t + µ, p =

2
3

, a = c = −1, b =

d = 0, t0 = 1, σ(t,µ) = t +
µ

2
6 t,µ ∈ [−1, 0], m(t) =

1
t

, τ(t, ζ) = t + ζ 6 t, ζ ∈ [−1, 0], q(t, ζ) =
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et+ζ, f(v) = (3 + sinv)v, α = 2. It is clear that the conditions (C1)–(C5) are satisfied. By choosing
H(t, s) = (t− s)2, ρ(t) = 1, from Theorem 3.3 we have h(t, s) = 2, q(t) = (1 − e−1)et, R(t) = t− 1, τ(t) =

t− 1, A(t) = t2(t− 2), B(t) = −
1
t

, C(t) =
2(1 − e−1)

3
et, h1(t, s) = 1 +

t

s
, and

lim sup
t→∞

1
H(t, t0)

∫t
t0

(
H(t, s)C(s) −

h2
1(t, s)

4A(s)

)
ds = ∞.

Hence by Theorem 3.3, every solution x(t) of (1.1) is oscillatory or x(t)→ 0 as t→∞.

Example 4.2. Consider the equation(
e−t

(
x(t) +

∫ 2

1

µ

3t
x(

1
2
tµ)dµ

) ′) ′′
+

1
t

(
e−t

(
x(t) +

∫ 2

1

µ

3t
x(

1
2
tµ)dµ

) ′) ′′

+

∫ 1

0
tζx(t− ζ)dζ = 0, t > 1.

(4.2)

Here from (4.2), we note that r1(t) = 1, r2(t) = e
−t, p(t,µ) =

µ

3t
, p =

1
2

, a = 1, b = 2, c = 0, d = 1, t0 =

1, σ(t,µ) =
1
2
tµ 6 t,µ ∈ [1, 2], m(t) =

1
t

, τ(t, ζ) = t− ζ 6 t, ζ ∈ [0, 1], q(t, ζ) = tζ, f(v) = v, α = 1.

Consequently the conditions (C1)–(C5) are satisfied. Choose H(t, s) = (t− s)2, ρ(t) = et, ϕ(t) = t, then

from Theorem 3.4 we have h(t, s) = 2, q(t) =
t

2
, R(t) = t− 1, τ(t) = t, A(t) = t− 1, B(t) = 1−

1
t

, C(t) =
1
4
tet, h1(t, s) = 1 +

t

s
− t+ s, and

lim sup
t→∞

1
H(t, T)

∫t
T

(
H(t, s)C(s) −

h2
1(t, s)

4A(s)

)
ds > T = ϕ(T).

Clearly, it is easy to check that the other conditions of Theorem 3.4 are also satisfied. Thus, we can
conclude from Theorem 3.4 that every solution x(t) of (1.1) is oscillatory or x(t)→ 0 as t→∞.
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