Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Mönch type Leray–Schauder alternatives for maps satisfying weakly countable compactness conditions

Donal O'Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Abstract

In this paper we discuss weakly Mönch type maps and obtain Leray-Schauder alternatives for such maps.

Keywords: Essential maps, fixed points, nonlinear alternatives, Mönch type maps. **2010 MSC:** 47H10, 54H25.

©2019 All rights reserved.

1. Introduction

Leray–Schauder type alternatives for weakly compact, weakly condensing and weakly Mönch type maps were established in the literature in a variety of settings, see for example [1, 2, 5] and the references therein. Using the notion of an essential map (originally introduced by Granas, see [3]) we present general Leray–Schauder alternative type theorems for general weakly Mönch type maps (see [4, 5]) and our results generalize those in the literature. Our theory is also motivated by recent fixed point theorems in the literature by the author [6, 7] and for completeness we state some of these fixed point result which would be useful in applying the results in Section 2.

Theorem 1.1. Let E be a Banach space, Q a nonempty closed convex subset of E, $x_0 \in Q$ and $F : Q \to K(Q)$ (here K(Q) denotes the family of nonempty, convex, weakly compact subsets of Q) has weakly sequentially closed graph. Assume either

 $\left\{ \begin{array}{ll} A \subseteq Q, \ A = \overline{co} \left(\{x_0\} \cup F(A) \right) \text{ with } C \subseteq A \\ \text{ countable and } C \subseteq \overline{co} \left(\{x_0\} \cup F(C) \right), \\ \text{ implies } \overline{C^w} \text{ is weakly compact,} \end{array} \right.$

or

 $\left\{ \begin{array}{ll} A \subseteq Q, \ A = co\left(\{x_0\} \cup F(A)\right) \text{ with } C \subseteq A \\ \text{ countable and } C \subseteq \overline{co}\left(\{x_0\} \cup F(C)\right), \\ \text{ implies } \overline{C^w} \text{ is weakly compact,} \end{array} \right.$

holds. Then F has a fixed point in Q.

Email address: donal.oregan@nuigalway.ie (Donal O'Regan) doi: 10.22436/jmcs.019.01.04

Received: 2019-01-03 Revised: 2019-02-01 Accepted: 2019-02-08

Remark 1.2. In Theorem 1.1 we can replace E a Banach space with E a Hausdorff locally convex linear topological space provided certain conditions are satisfied (see [7]).

Theorem 1.3. Let E be a Banach space, Q a nonempty closed convex subset of E, $x_0 \in Q$ and $F : Q \to K(Q)$ has weakly sequentially closed graph. Assume the following conditions hold:

 $\left\{ \begin{array}{ll} A\subseteq Q, \ A=\overline{co}\left(\{x_0\}\cup F(A)\right), \ \text{for any} \\ \text{countable set} \ N\subseteq A \ \text{there exists a countable set} \\ P\subseteq A \ \text{with} \ \overline{co}\left(\{x_0\}\cup F(N)\right)\subseteq \overline{P^w}, \end{array} \right.$

and

 $\left\{\begin{array}{ll} A \subseteq Q, \ A = \overline{co}\left(\{x_0\} \cup F(A)\right) \text{ with } C \subseteq A \\ \text{ countable and } \overline{C^w} = \overline{co}\left(\{x_0\} \cup F(C)\right), \\ \text{ implies } \overline{C^w} \text{ is weakly compact.} \end{array}\right.$

Then F has a fixed point in Q.

Theorem 1.4. Let E be a Banach space, Q a nonempty closed convex subset of E, $x_0 \in Q$ and $F : Q \to K(Q)$ has weakly sequentially closed graph. Assume the following conditions hold:

 $\left\{ \begin{array}{l} A\subseteq Q, \ A=co\left(\{x_0\}\cup F(A)\right), \ for \ any \\ countable \ set \ N\subseteq A \ there \ exists \ a \ countable \ set \\ P\subseteq A \ with \ \overline{co}\left(\{x_0\}\cup F(N)\right)\subseteq \overline{P^w}, \end{array} \right.$

and

 $\left\{ \begin{array}{l} A \subseteq Q, \ A = co\left(\{x_0\} \cup F(A)\right) \text{ with } C \subseteq A \\ \text{ countable and } \overline{C^w} = \overline{co}\left(\{x_0\} \cup F(C)\right), \\ \text{ implies } \overline{C^w} \text{ is weakly compact.} \end{array} \right.$

Then F has a fixed point in Q.

Theorem 1.5. Let Q be a nonempty, closed, convex subset of a metrizable locally convex linear topological space E and let $x_0 \in Q$. Suppose $F : Q \to K(Q)$ has weakly sequentially closed graph and assume the following conditions hold:

 $\left\{ \begin{array}{l} A \subseteq Q, \ A = co\left(\{x_0\} \cup F(A)\right) \ with \ \overline{C^w} = \overline{A^w} \ (= \overline{A}) \\ \text{and} \ C \subseteq A \ countable, \ implies \ \overline{A^w} \ (= \overline{A}) \ is \ weakly \ compact, \end{array} \right.$

and

F maps separable sets in Q to separable sets in Q.

Then F has a fixed point in Q.

Remark 1.6. In Theorem 1.5 we can replace E metrizable with E a Šmulian space (i.e., E is such that if the weak closure of a subset Ω of E is weakly compact then

- (i) Ω is weakly sequentially compact; and
- (ii) if $x \in \overline{\Omega^w}$ then there exists a sequence (x_n) in Ω with $x_n \rightharpoonup x$).

2. Main results

Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of X. In this section we consider a class **A** of maps.

Definition 2.1. We say $F \in M(\overline{U^w}, X)$ if $F : \overline{U^w} \to 2^X$ and $F \in \mathbf{A}(\overline{U^w}, X)$. Here $\overline{U^w}$ denotes the weak closure of U in X.

Definition 2.2.

- (i) We say $F \in M^{\mathcal{M}}(\overline{U^{w}}, X)$, if $F \in \mathcal{M}(\overline{U^{w}}, X)$ and if $D \subseteq \overline{U^{w}}$ and $D \subseteq \overline{co}(\{0\} \cup F(D))$ with $C \subseteq D$ countable and $C \subseteq \overline{co}(\{0\} \cup F(C))$, then $\overline{C^{w}}$ is weakly compact.
- (ii) We say $G \in M^{MM}(\Omega, X)$ (here $\Omega \subseteq X$), if $G \in M(\Omega, X)$ and if $D \subseteq \Omega$, $D = \overline{co} (\{0\} \cup G(D))$ with $C \subseteq D$ countable and $C \subseteq \overline{co} (\{0\} \cup G(C))$ (or $\overline{C^{w}} = \overline{co} (\{0\} \cup G(C))$), then $\overline{C^{w}}$ is weakly compact.

Definition 2.3. We say $F \in M^{\mathcal{M}}_{\partial U}(\overline{U^{w}}, X)$, if $F \in M^{\mathcal{M}}(\overline{U^{w}}, X)$ and $x \notin F(x)$ for $x \in \partial U$. Here ∂U denotes the weak boundary of U in X.

Definition 2.4. Let $F \in M^{M}_{\partial U}(\overline{U^{w}}, X)$. We say $F : \overline{U^{w}} \to 2^{X}$ is essential in $M^{M}_{\partial U}(\overline{U^{w}}, X)$ if for any map $J \in M^{M}_{\partial U}(\overline{U^{w}}, X)$ with $J|_{\partial U} = F|_{\partial U}$ there exists an $x \in U$ with $x \in J(x)$.

Remark 2.5.

- (i) Note if $F \in M^{\mathcal{M}}_{\partial U}(\overline{U^{w}}, X)$ is essential in $M^{\mathcal{M}}_{\partial U}(\overline{U^{w}}, X)$, then there exists an $x \in U$ with $x \in F(x)$ (take J = F in Definition 2.4).
- (ii) In Definition 2.2 (and throughout the paper) we could replace $\{0\}$ with $\{x_0\}$ where $x_0 \in X$ is fixed.

We begin with a nonlinear alternative of Leray–Schauder type (a more general result will be presented in Theorem 2.14).

Theorem 2.6. Let X be a Hausdorff locally convex topological vector space, U a weakly open subset of X and $F \in M^{\mathcal{M}}(\overline{U^{w}}, X)$. Assume the following conditions hold:

(the zero map (denoted by 0) is in
$$M(U^w, X)$$

and 0 is essential in $M^M_{all}(\overline{U^w}, X)$, (2.1)

$$x \notin tF(x)$$
 for every $x \in \partial U$ and $t \in (0,1)$, (2.2)

and

$$\mu F \in \mathcal{M}(\overline{U^{w}}, X) \text{ for any weakly continuous}$$

map $\mu : \overline{U^{w}} \to [0, 1] \text{ with } \mu(\partial U) = 0.$ (2.3)

Let $\Omega = \{x \in \overline{U^w} : x \in t F(x) \text{ for some } t \in [0,1]\}$ and we suppose

$$\Omega$$
 is weakly compact. (2.4)

Then there exists an $x \in \overline{U^w}$ with $x \in F(x)$.

Remark 2.7. Note $0 \in M^{\mathcal{M}}(\overline{U^{w}}, X)$, since if $D \subseteq \overline{U^{w}}$, $D \subseteq \overline{\operatorname{co}}(\{0\} \cup 0(D))$ with $C \subseteq D$ countable and $C \subseteq \overline{\operatorname{co}}(\{0\} \cup 0(C))$ then since $0(x) = \{0\}$ for $x \in C$ we have (trivially) that $\overline{C^{w}}$ is weakly compact.

Proof. Suppose $x \notin F(x)$ for $x \in \partial U$ (otherwise we are finished). Let Ω be as in the statement of Theorem 2.6 and note (2.1) guarantees that $\Omega \neq \emptyset$. Also note $\Omega \cap \partial U = \emptyset$ (see (2.2), $x \notin F(x)$ for $x \in \partial U$ is assumed at the beginning of the proof, and $0 \in M_{\partial U}^{M}(\overline{U^{w}}, X)$). Now X = (X, w), the space X endowed with the weak topology, is completely regular. Thus there exists a weakly continuous map $\mu : \overline{U^{w}} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define a map R by $R(x) = \mu(x) F(x)$ and note (2.3) guarantees that $R \in M(\overline{U^{w}}, X)$. We now show $R \in M^{M}(\overline{U^{w}}, X)$. To see this let $D \subseteq \overline{U^{w}}$ and $D \subseteq \overline{co} (\{0\} \cup R(D))$ with $C \subseteq D$ countable and $C \subseteq \overline{co} (\{0\} \cup R(C))$. Note $R(C) \subseteq co (\{0\} \cup F(C))$, $R(D) \subseteq co (\{0\} \cup F(D))$ so

$$\overline{\operatorname{co}}\left(\{0\} \cup \mathsf{R}(\mathsf{D})\right) \subseteq \overline{\operatorname{co}}\left(\{0\} \cup \operatorname{co}\left(\{0\} \cup \mathsf{F}(\mathsf{D})\right)\right) = \overline{\operatorname{co}}\left(\operatorname{co}\left(\{0\} \cup \mathsf{F}(\mathsf{D})\right)\right) = \overline{\operatorname{co}}\left(\{0\} \cup \mathsf{F}(\mathsf{D})\right),$$

and $\overline{co}(\{0\} \cup R(C)) \subseteq \overline{co}(\{0\} \cup F(C))$. Thus

$$\mathsf{D} \subseteq \overline{\mathsf{co}} \left(\{ 0 \} \cup \mathsf{R}(\mathsf{D}) \right) \subseteq \overline{\mathsf{co}} \left(\{ 0 \} \cup \mathsf{F}(\mathsf{D}) \right),$$

and

$$C \subseteq \overline{\operatorname{co}} \left(\{0\} \cup \mathsf{R}(\mathsf{C}) \right) \subseteq \overline{\operatorname{co}} \left(\{0\} \cup \mathsf{F}(\mathsf{C}) \right).$$

Then since $F \in M^{M}(\overline{U^{w}}, X)$ we have that $\overline{C^{w}}$ is weakly compact. Thus $R \in M^{M}(\overline{U^{w}}, X)$. Next notice if $x \in \partial U$ then $R(x) = \{0\}$ (note $\mu(\partial U) = 0$) and since $0 \in U$ then $x \notin R(x)$. As a result $R \in M^{M}_{\partial U}(\overline{U^{w}}, X)$) with $R|_{\partial U} = 0|_{\partial U}$ and since 0 is essential in $M^{M}_{\partial U}(\overline{U^{w}}, X)$ then there exists a $x \in U$ with $x \in R(x) = \mu(x) F(x)$. Thus $x \in \Omega$ so $\mu(x) = 1$ and as a result $x \in F(x)$.

Remark 2.8. Suppose

- (i) $\mathbf{A}(\overline{\mathbf{U}^{w}}, \mathbf{X})$ is the class of maps $F : \overline{\mathbf{U}^{w}} \to \mathbf{K}(\mathbf{X})$ with weakly sequentially closed graph and F takes relatively weakly compact sets into relatively weakly compact sets; and
- (ii) X is a Eberlein–Šmulian space (i.e., X is a Šmulian space and X is such that the weak closure of a subset C of X is weakly compact, if and only if, C is weakly sequentially compact).

Then (2.3) and (2.4) hold.

To show (2.4) first we show Ω is weakly sequentially closed. To see this let (x_n) be sequence of Ω which converges weakly to some $x \in \overline{\Omega^w}$ (in particular $x \in \overline{U^w}$) and let (λ_n) be a sequence of [0,1] satisfying $x_n \in \lambda_n F x_n$. Then for each n there is a $z_n \in F x_n$ with $x_n = \lambda_n z_n$. By passing to a subsequence if necessary, we may assume that (λ_n) converges to some $\lambda \in [0,1]$ and without loss of generality assume $\lambda_n \neq 0$ for all n. This implies that the sequence (z_n) converges weakly to some $z \in \overline{U^w}$ with $x = \lambda z$. Since F has weakly sequentially closed graph then $z \in F(x)$. Hence $x \in \lambda F x$ and therefore $x \in \Omega$. Thus Ω is weakly sequentially closed. Now let $\{x_n\}_{n=1}^{\infty}$ be a sequence in Ω . Then there exists a sequence $\{t_n\}_{n=1}^{\infty}$ in [0,1] with $x_n \in t_n F x_n$ and we may assume without loss of generality that $t_n \to t \in [0,1]$. Let $C = \{x_n\}_{n=1}^{\infty}$. Note C is countable and $C \subseteq \operatorname{co}(\{0\} \cup F(C)\}$. Since F $\in M^M(\overline{U^w}, X)$ (take D = C) we have that $\overline{C^w}$ is weakly compact. Now since X is a Eberlein–Šmulian space then there is a subsequence N of $\{1, 2, \dots\}$ and a $x \in \overline{C^w}$ with $x_n \to x$ as $n \to \infty$ in N. Now since Ω is weakly compact since X is a Eberlein–Šmulian space. In fact $\overline{\Omega^w} = \Omega$. To see this let $z \in \overline{\Omega^w}$. Then there exists a sequence (z_n) in Ω with $z_n \to z$ (since X is a Šmulian space). Since Ω is weakly sequentially closed we have $z \in \Omega$, so $\overline{\Omega^w} = \Omega$. Thus (2.4) holds.

To show (2.3) we first note that $R = \mu F$ has weakly sequentially closed graph since F has weakly sequentially closed graph and μ is weakly continuous. Next suppose $A \subseteq \overline{U^w}$ is weakly compact and $y_n \in R(A)$. Then $y_n = \mu(x_n) z_n$ where $z_n \in F(x_n)$ and $x_n \in A$. Without loss of generality we may assume there exists $x \in A$ and $z \in F(A)$ with $x_n \rightharpoonup x$ and $z_n \rightharpoonup z$ (recall A and $\overline{F(A)^w}$ are weakly compact and in fact a standard result (see [1, P. 87] where one replaces E a Banach space with E a Šmulian space) guarantees that $F : A \rightarrow K(X)$ has weakly closed graph and from another standard result (see [1, P. 37]) we have that F(A) is weakly compact). Then $z \in F(x)$ since F has weakly sequentially closed graph. Let $y = \mu(x) z$. Then $y_n \rightarrow y$ and $y \in R(A)$. Thus R(A) is weakly sequentially compact so $\overline{R(A)^w}$ is weakly compact since X is a Eberlein–Šmulian space and again since X is a Šmulian space we have $\overline{R(A)^w} = R(A)$. Thus $R = \mu F$ takes relatively weakly compact sets into relatively weakly compact sets so $\mu F \in \mathbf{A}(\overline{U^w}, X)$.

We now present a result which guarantees (2.1).

Theorem 2.9. Let X be a Hausdorff locally convex topological vector space, U a weakly open subset of X, $0 \in U$ and assume the following conditions hold:

$$0 \in \mathcal{M}(\overline{\mathcal{U}^{w}}, X), \tag{2.5}$$

$$\begin{cases} \text{ for any map } J \in M^{M}_{\partial U}(\overline{U^{w}}, X) \text{ with } J|_{\partial U} = 0|_{\partial U} \text{ and} \\ R(x) = \begin{cases} J(x), \ x \in \overline{U^{w}}, \\ \{0\}, \ x \in X \setminus \overline{U^{w}}, \\ we \text{ have that } R \in M(X, X), \end{cases}$$
(2.6)

 $\begin{cases} \text{ for any map } J \in M^{\mathcal{M}}_{\partial U}(\overline{U^{w}}, X) \text{ with } J|_{\partial U} = 0|_{\partial U} \text{ and for any} \\ \text{ countable set } P \subseteq X \text{ with } P \cap \overline{U^{w}} \text{ relatively weakly compact} \\ \text{ we have that the set } \overline{co}\left(\{0\} \cup J(P \cap \overline{U^{w}})\right) \text{ is weakly compact,} \end{cases}$ (2.7)

and

for any map
$$H \in M^{MM}(X, X)$$
 there exists
 $x \in X$ with $x \in H(x)$.
(2.8)

Then the zero map is essential in $M^{M}_{\partial U}(\overline{U^{w}}, X)$.

Remark 2.10. Note the theorems in Section 1 give conditions to guarantee (2.8) (we might have to change slightly the definition of M^M and M^{MM} depending on the theorem we use).

Remark 2.11. In the proof below we will in fact show R in (2.6) is in $M^{MM}(X, X)$ so one could replace (2.8) with "there exists $x \in X$ with $x \in R(x)$ ".

Proof. Let $J \in M^{M}_{\partial U}(\overline{U^{w}}, X)$ with $J|_{\partial U} = 0|_{\partial U}$. We must show there exists a $x \in U$ with $x \in J(x)$. Let R be as in (2.6) and note $R \in M(X, X)$. We claim $R \in M^{MM}(X, X)$. To see this let $D \subseteq X$ and $D = \overline{co} (\{0\} \cup R(D))$ with $C \subseteq D$ countable and $C \subseteq \overline{co} (\{0\} \cup R(C))$ (or $\overline{C^{w}} = \overline{co} (\{0\} \cup R(C))$). First note $\overline{co} (\{0\} \cup R(D)) \subseteq \overline{co} (\{0\} \cup J(D \cap \overline{U^{w}}))$ so $D = \overline{co} (\{0\} \cup R(D)) \subseteq \overline{co} (\{0\} \cup J(D \cap \overline{U^{w}}))$ and $C \subseteq \overline{co} (\{0\} \cup J(C \cap \overline{U^{w}}))$. As a result

$$D \cap \overline{U^{w}} \subseteq \overline{co} \left(\{0\} \cup J(D \cap \overline{U^{w}})\right) \text{ and } C \cap \overline{U^{w}} \subseteq \overline{co} \left(\{0\} \cup J(C \cap \overline{U^{w}})\right), \tag{2.9}$$

note $C \cap \overline{U^w}$ is countable. Now since $J \in M^M(\overline{U^w}, X)$ we have (see (2.9)) that $\overline{C \cap \overline{U^w}}^w$ is weakly compact. Now (2.7) guarantees that $\overline{C^w}$ is weakly compact (recall $C \subseteq \overline{co}$ ({0} $\cup J(C \cap \overline{U^w})$). Thus $R \in M^{MM}(X, X)$.

Now (2.8) guarantees that there exists a $x \in X$ with $x \in R(x)$. There are two cases to consider, namely $x \in U$ and $x \in X \setminus U$. If $x \in U$ then $x \in J(x)$, and we are finished. If $x \in X \setminus U$ then since $R(x) = \{0\}$ (note also $J|_{\partial U} = 0|_{\partial U}$) we have $0 \in X \setminus U$, and this contradicts $0 \in U$.

Remark 2.12. If **A** is as in Remark 2.8, then trivially (2.5) and (2.6) hold. Also note (2.7) holds in this situation if we assume the following: if *W* is a weakly compact subset of X then $\overline{co}(W)$ is weakly compact. (This is a Krein–Šmulian type property which we know for example is true if X is a quasicomplete locally convex linear topological space). To see this we just need to note that if P and J are in (2.7) then $\overline{J(P \cap \overline{U^w})}^w$ is weakly compact and $\overline{co}(\{0\} \cup J(P \cap \overline{U^w})) \subseteq \overline{co}(\{0\} \cup \overline{J(P \cap \overline{U^w})}^w)$.

Our final two results are generalizations of Theorem 2.6.

Theorem 2.13. Let X be a Hausdorff locally convex topological vector space, U a weakly open subset of X, $F \in M^{M}(\overline{U^{w}}, X)$ and $G \in M^{M}_{\partial U}(\overline{U^{w}}, X)$ is essential in $M^{M}_{\partial U}(\overline{U^{w}}, X)$. Also assume there exists a map $H : \overline{U^{w}} \times [0,1] \to 2^{X}$ with $H(.,\eta(.)) \in M^{M}(\overline{U^{w}}, X)$ for any weakly continuous function $\eta : \overline{U^{w}} \to [0,1]$ with $\eta(\partial U) = 0, x \notin H_{t}(x)$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_{t}(x) = H(x,t)$), $H_{1} = F$, $H_{0} = G$ and $\Omega = \left\{ x \in \overline{U^{w}} : x \in H(x,t) \text{ for some } t \in [0,1] \right\}$ is weakly compact. Then there exists a $x \in \overline{U^{w}}$ with $x \in F(x)$.

Proof. Suppose $x \notin F(x)$ for $x \in \partial U$ (otherwise we are finished). Let Ω be as in the statement of Theorem 2.13 and note $\Omega \neq \emptyset$ (note G is essential in $M^M_{\partial U}(\overline{U^w}, X)$ and $H_0 = G$). Note X = (X, w) is completely regular, $\Omega \cap \partial U = \emptyset$ so there exists a weakly continuous map $\mu : \overline{U^w} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define the map R by $R(x) = H(x, \mu(x))$. Now $R \in M^M_{\partial U}(\overline{U^w}, X)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then R(x) = H(x, 0) = G(x) and $x \notin G(x)$). Since G is essential in $M^M_{\partial U}(\overline{U^w}, X)$ there exists $x \in U$ with $x \in R(x) = H_{\mu(x)}(x)$. Thus $x \in \Omega$ so $\mu(x) = 1$. As a result $x \in H_1(x) = F(x)$.

It is also possible to generalize slightly the result in Theorem 2.13, if one modifies slightly the assumptions.

Theorem 2.14. Let X be a Hausdorff locally convex topological vector space, U a weakly open subset of X, $F \in M^M_{\partial U}(\overline{U^w}, X)$ and $G \in M^M_{\partial U}(\overline{U^w}, X)$ is essential in $M^M_{\partial U}(\overline{U^w}, X)$. Also assume for any map $J \in M^M_{\partial U}(\overline{U^w}, X)$ with $J|_{\partial U} = F|_{\partial U}$ there exists a map $H^J : \overline{U^w} \times [0,1] \to 2^X$ with $H^J(.,\eta(.)) \in M^M(\overline{U^w}, X)$ for any weakly continuous function $\eta : \overline{U^w} \to [0,1]$ with $\eta(\partial U) = 0$, $x \notin H^J_t(x)$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_1 = J$, $H^J_0 = G$ and $\Omega = \{x \in \overline{U^w} : x \in H^J(x,t) \text{ for some } t \in [0,1]\}$ is weakly compact. Then F is essential in $M^M_{\partial U}(\overline{U^w}, X)$.

Proof. Consider any map $J \in M^{M}_{\partial U}(\overline{U^{w}}, X)$ with $J|_{\partial U} = F|_{\partial U}$. We must show there exists a $x \in U$ with $x \in J(x)$. Choose the map H^{J} and the set Ω as in the statement of Theorem 2.14 and note $\Omega \neq \emptyset$ (note G is essential in $M^{M}_{\partial U}(\overline{U^{w}}, X)$ and $H^{J}_{0} = G$). Note X = (X, w) is completely regular, $\Omega \cap \partial U = \emptyset$ so there exists a weakly continuous map $\mu : \overline{U^{w}} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define the map R by $R(x) = H^{J}(x, \mu(x))$. Now $R \in M^{M}_{\partial U}(\overline{U^{w}}, X)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then $R(x) = H^{J}(x, 0) = G(x)$) and since G is essential in $M^{M}_{\partial U}(\overline{U^{w}}, X)$ there exists $x \in U$ with $x \in R(x) = H^{J}_{\mu(x)}(x)$. Thus $x \in \Omega$ so $\mu(x) = 1$. As a result $x \in H^{J}_{1}(x) = J(x)$.

References

- [1] A. Ben Amar, D. O'Regan, Topological fixed point theory for singlevalued and multivalued mappings with applications, Springer, Cham, (2016). 1, 2
- [2] T. Cardinali, P. Rubbioni, Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness, J. Math. Anal. Appl., 405 (2013), 409–415. 1
- [3] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, (2003). 1
- [4] H. Mönch, Boundary value problems for nonlinear ordinary differential equations in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. 1
- [5] D. O'Regan, Mönch type results for maps with weakly sequentially closed graphs, Dynam. Systems Appl., 24 (2015), 129–134. 1
- [6] D. O'Regan, Coincidence results for compositions of multivalued maps based on countable compactness principles, Applicable Analysis, 2018 (2018), 11 pages. 1
- [7] D. O'Regan, Maps with weakly sequentially closed graphs satisfying compactness conditions on countable sets, Pure Appl. Func. Anal., to appear. 1, 1.2