Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

On asymptotically lacunary statistical equivalent functions via ideals

Ekrem Savaş

Department of Mathematics, Uşak University, Uşak, Turkey.

Abstract

The goal of this paper is to introduce \mathcal{I}_{θ} -asymptotically statistical equivalent by taking nonnegative two real-valued Lebesgue measurable functions $\gamma(\nu)$ and $\mu(\nu)$ in the interval $(1,\infty)$ instead of sequences and we establish some inclusion relations.

Keywords: Asymptotical equivalent functions, ideal convergence, lacunary sequence, J-statistical convergence. **2010 MSC:** 40A99, 40A05.

©2019 All rights reserved.

1. Introduction and preliminaries

Quite recently, Das et al. [1] studied well known summability methods by using ideal and introduced new notions, namely ideal statistical convergence and ideal lacunary statistical convergence.

In 1993 Marouf [5] introduced definitions of asymptotically equivalent sequences and asymptotic regular matrices. Later on Patterson [6] extended these concepts by presenting an asymptotically statistical equivalent. In [8] Savaş introduced J_{θ} -asymptotically statistical equivalent sequences. Also Gümüs and Savaş [14] generalized J_{θ} -asymptotically statistical equivalent sequences. In [10], Savaş studied generalized summability methods of functions and also introduced statistically convergent functions via ideals, (see, [11]).

The notion of J-convergence was studied by Kostyrko et al. [4]. Some works on ideals can be found in [3, 9, 12, 13].

The main objective is to present \mathcal{I}_{θ} -asymptotically statistical equivalent and \mathcal{I} -asymptotically statistical equivalent by taking nonnegative two real-valued Lebesgue measurable functions in the interval $(1, \infty)$. Furthermore we prove some interesting theorems.

Definition 1.1 ([5, Marouf]). Let $\gamma = (\gamma_i)$ and $\mu = (\mu_i)$ be two nonnegative sequences. If

$$\lim_{i} \frac{\gamma_i}{\mu_i} = 1,$$

then we say that $\gamma = (\gamma_i)$ and $\mu = (\mu_i)$ are *asymptotically equivalent* and it is denoted by x~y.

Email address: ekremsavas@yahoo.com (Ekrem Savaş)

doi: 10.22436/jmcs.019.01.05

Received: 2015-05-12 Revised: 2016-04-17 Accepted: 2018-09-13

Definition 1.2 ([2, Fridy]). Let $\gamma = (\gamma_i)$ be a sequence, if for every $\phi > 0$,

$$\lim_{n} \frac{1}{n} \{ \text{the number of } i \leq n : |\gamma_i - \beta| \ge \phi \} = 0,$$

then we say that $\gamma = (\gamma_i)$ is statistically convergent to β .

The next definition is natural combination of Definitions 1.1 and 1.2.

Definition 1.3 ([6, Patterson]). Let $\gamma = (\gamma_i)$ and $\mu = (\mu_i)$ be two nonnegative sequences. If for every $\varphi > 0$,

$$\lim_{n} \frac{1}{n} \left\{ \text{the number of } i \leq n : \left| \frac{\gamma_{i}}{\mu_{i}} - \beta \right| \geq \varphi \right\} = 0,$$

then we say that $\gamma = (\gamma_i)$ and $\mu = (\mu_i)$ are asymptotically statistical equivalent of multiple β and it is denoted by $\gamma \stackrel{S_{\beta}}{\sim} \mu$ and simply asymptotically statistical equivalent if $\beta = 1$.

The following definitions and notions will be needed.

Definition 1.4 ([4]). A non-empty family $\mathcal{J} \subset 2^{Y}$ of subsets of a nonempty set Y is said to be an ideal in Y if the following conditions hold

- (i). R, S $\in \mathcal{J}$ implies R \cup S $\in \mathcal{J}$;
- (ii). $R \in \mathcal{J}, S \subset R$ implies $S \in \mathcal{J}$.

Definition 1.5 ([3]). A non-empty family $\mathcal{F} \subset 2^{\mathbb{N}}$ is said to be a filter of \mathbb{N} if the following conditions hold:

- (i). $\emptyset \notin \mathcal{F}$;
- (ii). R, S $\in \mathcal{F}$ implies R \cap S $\in \mathcal{F}$;
- (iii). $R \in \mathcal{F}, S \subset R$ imply $S \in \mathcal{F}$.

If \mathcal{J} is proper ideal of \mathbb{N} (i.e., $\mathbb{N} \notin \mathcal{J}$), then the family of sets $\mathcal{F}(\mathcal{J}) = \{K \subset \mathbb{N} : \exists R \in \mathcal{J} : K = \mathbb{N} \setminus R\}$ is a filter of \mathbb{N} . It is called the filter associated with the ideal.

Definition 1.6 ([3, 4]). A proper ideal \mathcal{J} is said to be admissible if $\{n\} \in \mathcal{J}$ for each $n \in \mathbb{N}$.

Given $\mathcal{J} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} . The sequence (γ_i) is said to be \mathcal{J} -convergent to β , if for each $\varphi > 0$ the set $A(\varphi) = \{n \in \mathbb{N} : |\gamma_i - \beta| \ge \varphi\}$ belongs to \mathcal{J} (see, [3, 4]). Following these results we introduce two new notions \mathcal{J}_{θ} -asymptotically statistical equivalent of multiple β and strong \mathcal{I}_{θ} -asymptotically equivalent of multiple β .

By a lacunary $\theta = (l_s)$; s = 0, 1, 2, ..., where $l_0 = 0$, we shall mean an increasing sequence of nonnegative integers with $\tau_s = l_s - l_{s-1} \to \infty$ as $s \to \infty$. The intervals determined by θ will be denoted by $J_s = (l_{s-1}, l_s]$ and the ratio $\frac{l_s}{l_{s-1}}$ will be denoted by q_s .

Patterson and Savaş [7] introduced the following definition.

Definition 1.7. Let $\theta = (l_s)$ be a lacunary sequence, two nonnegative sequences $\gamma = (\gamma_i)$ and $\mu = (\mu_i)$ are said to be asymptotically lacunary statistical equivalent of multiple β provided that for every $\phi > 0$

$$\lim_{s} \frac{1}{\tau_{s}} \left| \left\{ i \in J_{s} : \left| \frac{\gamma_{i}}{\mu_{i}} - \beta \right| \ge \varphi \right\} \right| = 0,$$

where the vertical bars indicate the number elements in the enclose set.

The following definitions are given in [1].

Definition 1.8. A sequence $\gamma = (\gamma_i)$ is said to be \mathcal{J} -statistically convergent to β or $S(\mathcal{J})$ -convergent to β if, for any $\phi > 0$ and $\psi > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{n} | \{ s \leqslant n : |\gamma_i - \beta| \geqslant \phi \} | \geqslant \psi \right\} \in \mathcal{J}.$$

In this case, we write $\gamma_i \rightarrow \beta(S(\mathcal{J}))$. The class of all \mathcal{J} -statistically convergent sequences will be denoted by $S(\mathcal{J})$.

Definition 1.9. Let θ be a lacunary sequence. A sequence $\gamma = (\gamma_i)$ is said to be β -lacunary statistically convergent to β or $S_{\theta}(\beta)$ -convergent to β if, for any $\varphi > 0$ and $\psi > 0$,

$$\left\{s\in\mathbb{N}:\frac{1}{\tau_s}|\{i\in J_s:|\gamma_i-\beta|\geqslant \phi\}|\geqslant \psi\right\}\in\mathcal{J}.$$

In this case, we write $\gamma_i \to \beta(S_{\theta}(\mathcal{J}))$. The class of all \mathcal{J} -lacunary statistically convergent sequences will be denoted by $S_{\theta}(\mathcal{J})$.

Definition 1.10. Let θ be a lacunary sequence. A sequence $\gamma = (\gamma_i)$ is said to be strong \mathcal{J} -lacunary convergent to β or $N_{\theta}(\mathcal{J})$ -convergent to β if, for any $\varphi > 0$

$$\left\{s \in \mathsf{N}: \frac{1}{\tau_s} \sum_{i \in J_s} |\gamma_i - \beta| \ge \phi\right\} \in \mathcal{J}.$$

In this case, we write $\gamma_i \rightarrow \beta(N_{\theta}(\mathcal{J}))$. The class of all strong \mathcal{J} -lacunary statistically convergent sequences will be denoted by $N_{\theta}(\mathcal{J})$.

We now introduce the following definitions.

Definition 1.11. Let θ be a lacunary sequence and $\gamma(\nu)$ be a nonnegative real-valued Lebesgue measurable function in the interval $(1, \infty)$ if

$$\mathcal{J} - \lim_{s \to \infty} \frac{1}{\tau_s} \int_{\nu \in J_s} |\gamma(\nu) - \beta| \, d\nu = 0.$$

Then we say that the function $\gamma(\nu)$ is $N_{\theta}(\mathcal{J})$ -summable to β . If $\mathcal{J} = \mathcal{I}_{fin} = \{L \subseteq \mathbf{N} : L \text{ is a finite subset}\}, N_{\theta}(\mathcal{J})$ -summability becomes N_{θ} -summability, which is defined as

$$\lim_{s\to\infty}\frac{1}{\tau_s}\int_{\nu\in J_s}|\gamma(\nu)-\beta|\,d\nu=0$$

Definition 1.12. A nonnegative real-valued Lebesgue measurable function γ (v) is said to be \mathcal{J}_{θ} -statistically convergent or $S_{\theta}(\mathcal{J})$ convergent to β , if for every $\phi > 0$ and $\psi > 0$,

$$\left\{s\in \mathsf{N}: \frac{1}{\tau_s}|\{\nu\in J_s \mid \gamma(\nu)-\beta| \geqslant \phi\}| \geqslant \psi\right\}\in \mathcal{J}.$$

In this case, we write $S_{\theta}(\mathcal{J}) - \lim \gamma(\nu) = \beta$ or $\gamma(\nu) \rightarrow \beta$ ($S_{\theta}(\mathcal{J})$). If we take $\mathcal{J} = \mathcal{J}_{\text{fin}}$, then $S_{\theta}(\mathcal{J})$ -convergence reduces to lacunary statistical convergence.

2. New definitions

Definition 2.1. Let θ be a lacunary sequence; and \mathcal{J} be an admissible ideal in \mathbb{N} and $\gamma(\nu)$, $\mu(\nu)$ be two nonnegative real-valued Lebesgue measurable functions in the interval $(1,\infty)$. If for every $\phi > 0$ and $\psi > 0$,

$$\{s \in \mathbb{N} : rac{1}{ au_s} | \{
u \in J_s : \left| rac{\gamma(
u)}{\mu(
u)} - eta
ight| \geqslant \phi \} | \geqslant \psi \} \in \mathcal{J},$$

then we say that the functions $\gamma(\nu)$ and $\mu(\nu)$ are \mathcal{J}_{θ} -asymptotically equivalent of multiple β (denoted by $\gamma(\nu) \stackrel{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$) and simply \mathcal{J} -asymptotically lacunary statistical equivalent if $\beta = 1$. Furthermore, let $S^{\beta}_{\theta}(\mathcal{J})$ denote the set of $\gamma(\nu)$ and $\mu(\nu)$ such that $\gamma(\nu) \stackrel{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$.

If we take $\mathcal{J} = \mathcal{J}_{\text{fin}}, \mathcal{J}_{\theta}$ -asymptotically statistical equivalent coincides with lacunary asymptotically statistical equivalent which is given below.

Definition 2.2. Let θ be a lacunary sequence; and \mathcal{J} be an admissible ideal in \mathbb{N} and $\gamma(\nu)$, $\mu(\nu)$ be two nonnegative real-valued functions which are measurable in the interval $(1, \infty)$. If for every $\phi > 0$

$$\lim_{s} \frac{1}{\tau_{s}} \left| \left\{ \nu \in J_{s} : \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| \ge \phi \right\} \right| = 0$$

then we say that the functions $\gamma(\nu)$ and $\mu(\nu)$ are lacunary asymptotically statistical equivalent of multiple β (denoted by $\gamma(\nu) \stackrel{S^{\beta}_{\theta}}{\sim} \mu(\nu)$), and simply asymptotically statistical equivalent if $\beta = 1$.

Definition 2.3. Let θ be a lacunary sequence; and \mathcal{J} is an admissible ideal in \mathbb{N} and $\gamma(\nu)$, $\mu(\nu)$ be two nonnegative real-valued Lebesgue measurable functions in the interval $(1, \infty)$. If

$$\left\{s\in\mathbb{N}:\frac{1}{\tau_s}\int_{\nu\in J_s}\left|\frac{\gamma(\nu)}{\mu(\nu)}-\beta\right|d\nu\geqslant \phi\right\}\in\mathcal{J},$$

we say that the functions $\gamma(\nu)$ and $\mu(\nu)$ are strongly \mathcal{J}_{θ} -asymptotically equivalent of multiple β (denoted by $\gamma(\nu) \stackrel{N_{\theta}^{\beta}(\mathcal{J})}{\sim} \mu(\nu)$) and strong simply \mathcal{J} -asymptotically lacunary equivalent if $\beta = 1$. Let $N_{\theta}^{\beta}(\mathcal{J})$ denote the set of $\gamma(\nu)$ and $\mu(\nu)$ such that $\gamma(\nu) \stackrel{N_{\theta}^{\beta}(\mathcal{J})}{\sim} \mu(\nu)$.

If $\mathcal{J} = \mathcal{J}_{fin} = \{L \subseteq \mathbf{N} : L \text{ is a finite subset }\}$, strongly \mathcal{I}_{θ} -asymptotically equivalent becomes strongly lacunary asymptotically equivalent which is defined as

$$\lim_{s\to\infty}\frac{1}{\tau_s}\int_{\nu\in J_s}\left|\frac{\gamma(\nu)}{\mu(\nu)}-\beta\right|\,d\nu=0.$$

3. Main result

Theorem 3.1. Let $\theta = {l_s}$ be a lacunary sequence, then

1. *if*
$$\gamma(\nu) \overset{N^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$$
, *then* $\gamma(\nu) \overset{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$;
2. *if* $\gamma(\nu)$ and $\mu(\nu) \in B(X, Y)$ and $\gamma(\nu) \overset{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$, *then* $\gamma(\nu) \overset{N^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$;
3. $\gamma(\nu) \overset{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu) \cap B(X, Y) = \gamma(\nu) \overset{N^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu) \cap B(X, Y)$,

where B(X, Y), is set of bounded functions.

Proof.

Part (1): If $\phi > 0$ and $\overset{N^{L}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$, then

$$\int_{\nu \in J_s} \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| d\nu \ge \int_{\nu \in J_s \& |\frac{\gamma(\nu)}{\mu(\nu)} - \beta| > \varphi} \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| d\nu \ge \varphi \left| \left\{ \nu \in J_s : \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| \ge \varphi \right\} \right|$$

and so

$$\frac{1}{\tau_{s}}\int_{\nu\in J_{s}}\left|\frac{\gamma(\nu)}{\mu(\nu)}-\beta\right|\,d\nu \geqslant \frac{1}{\tau_{s}}\left|\left\{\nu\in J_{s}:\left|\frac{\gamma(\nu)}{\mu(\nu)}-\beta\right|\geqslant \phi\right\}\right|.$$

Then, for any $\psi > 0$

$$\left\{s \in \mathbb{N} : \frac{1}{\tau_s} \left| \{\nu \in J_s : \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| \ge \phi \} \right| \ge \psi \right\} \subseteq \left\{s \in \mathbb{N} : \frac{1}{\tau_s} \int_{\nu \in J_s} \left| \frac{\gamma(\nu)}{\mu(\nu)} - L \right| d\nu \ge \phi.\psi \right\} \in \mathcal{J}.$$

Hence we have $\gamma(\nu) \overset{S^L_{\theta}(\mathcal{J})}{\sim} \mu(\nu).$

Part (2): Suppose $\gamma(\nu)$ and $\mu(\nu)$ are in B(X, Y) and $\gamma \stackrel{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu$. Then we can assume that

$$\left|\frac{\gamma(\nu)}{\mu(\nu)} - \beta\right| \leqslant M \text{ for all } \nu.$$

Given $\phi > 0$, we have

$$\begin{split} \frac{1}{\tau_s} \int_{\nu \in J_s} \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| d\nu &= \frac{1}{\tau_s} \int_{\nu \in J_s \& |\frac{\gamma(\nu)}{\mu(\nu)} - \beta| > \phi} \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| d\nu + \frac{1}{\tau_s} \int_{\nu \in J_s \& \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| < \phi} \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| d\nu \\ &\leqslant \frac{M}{\tau_s} \left| \left\{ \nu \in J_s : \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| \geqslant \frac{\phi}{2} \right\} \right| + \frac{\phi}{2}. \end{split}$$

Consequently, we have

$$\left\{s \in \mathbb{N} : \frac{1}{\tau_s} \int_{\nu \in J_s} \left|\frac{\gamma(\nu)}{\mu(\nu)} - \beta\right| d\nu \ge \phi\right\} \subseteq \left\{s \in \mathbb{N} : \frac{1}{\tau_s} \left|\left\{\nu \in J_s : \left|\frac{\gamma(\nu)}{\mu(\nu)} - \beta\right| \ge \frac{\phi}{2}\right\}\right| \ge \frac{\phi}{2M}\right\} \in \mathcal{J}$$

Therefore $\gamma(\nu) \stackrel{N^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu).$

Part (3): It follows from (1) and (2).

Theorem 3.2. Let \mathcal{J} be an ideal and $\theta = {l_s}$ be a lacunary sequence with $\liminf q_s > 1$, then

$$\gamma(\nu) \stackrel{S^{\beta}(\mathcal{J})}{\sim} \mu(\nu) \text{ implies } \gamma(\nu) \stackrel{S^{\beta}_{\theta}(\mathcal{J})}{\sim} \mu(\nu)$$

Proof. Suppose first that $\liminf q_s > 1$, then there exists a $\delta > 0$ such that $q_s \ge 1 + \delta$ for sufficiently large s, which implies

$$\frac{\tau_s}{l_s} \geqslant \frac{\delta}{1+\delta}.$$

If $x \stackrel{S^{\beta}_{\theta}(\mathcal{J})}{\sim} y$, then for every $\phi > 0$ and for sufficiently large s, we have

$$\frac{1}{\tau_{s}}\left|\left\{\nu \leqslant l_{s}: \left|\frac{\gamma(\nu)}{\mu(\nu)} - \beta\right| \geqslant \phi\right\}\right| \geqslant \frac{1}{l_{s}}\left|\left\{\nu \in J_{s}: \left|\frac{\gamma(\nu)}{\mu(\nu)} - \beta\right| \geqslant \phi\right\}\right| \geqslant \frac{\delta}{1+\delta} \frac{1}{\tau_{s}}\left|\left\{\nu \in J_{s}: \left|\frac{\gamma(\nu)}{\mu(\nu)} - \beta\right| \geqslant \varepsilon\right\}\right|.$$

Then, for any $\psi > 0$, we get

$$\left\{s \in \mathbb{N} : \frac{1}{\tau_s} \left| \{\nu \in J_s : \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| \ge \varepsilon \} \right| \ge \delta \right\} \subseteq \left\{s \in \mathbb{N} : \frac{1}{\mathfrak{l}_s} \left| \{\mathfrak{l} \leqslant \mathfrak{l}_s : \left| \frac{\gamma(\nu)}{\mu(\nu)} - \beta \right| \ge \phi \} \right| \ge \frac{\psi \delta}{(1+\delta)} \right\} \in \mathcal{J}. \quad \Box$$

For the next result we suppose that the lacunary sequence θ satisfies the condition that for any set $C \in F(\mathcal{J}), \bigcup \{\nu : l_{s-1} < \nu < l_s, s \in C\} \in F(\mathcal{J}).$

Theorem 3.3. Let \mathcal{J} be an ideal and $\theta = (l_s)$ be a lacunary sequence with $\sup q_s < \infty$, then

$$\gamma(\nu) \stackrel{S^{L}_{\theta}(\mathcal{J})}{\sim} \mu(\nu) \text{ implies } \gamma(\nu) \stackrel{S^{L}(\mathcal{J})}{\sim} \mu(\nu).$$

Proof. If $\limsup_{s} q_s < \infty$, then without any loss of generality we can assume that there exists a $B \in (0, \infty)$ such that $q_s < B$ for all $s \ge 1$. Assume that $\gamma \stackrel{S^{\beta}_{\theta}(\partial)}{\sim} \mu$ and for $\phi, \psi, \psi_1 > 0$ write the sets

$$C = \{s \in \mathbb{N} : \frac{1}{\tau_s} | \{v \in J_s : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta| \ge \phi\} | < \psi\}$$

and

$$\mathsf{T} = \{ \mathfrak{n} \in \mathbb{N} : \frac{1}{\mathfrak{n}} | \{ \mathfrak{s} \leqslant \mathfrak{n} : |\frac{\gamma_{\nu}}{\mu_{\nu}} - \beta| \geqslant \phi \} | < \psi_1 \}.$$

It is clear that $C \in F(\mathcal{J})$, the filter associated with the ideal \mathcal{J} . Further consider that

$$\mathsf{A}_{j} = \frac{1}{\tau_{j}} |\{s \in J_{j} : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta| \geqslant \phi\}| < \psi$$

for all $j \in C$. Let $n \in \mathbb{N}$ be such that $l_{s-1} < n < l_s$ for some $s \in C$. Now

$$\begin{split} \frac{1}{n} | \{ \nu \leqslant n : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | \leqslant \frac{1}{l_{s-1}} | \{ l \leqslant l_s : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | \\ &= \frac{1}{l_{s-1}} | \{ \nu \in J_1 : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | + \dots + \frac{1}{l_{s-1}} | \{ \nu \in J_s : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | \\ &= \frac{l_1}{l_{s-1}} \frac{1}{\tau_1} | \{ \nu \in J_1 : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | + \frac{l_2 - l_1}{l_{s-1}} \frac{1}{\tau_2} | \{ l \in J_2 : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | + \dots + \\ &+ \frac{l_s - l_{s-1}}{l_{s-1}} \frac{1}{\tau_s} | \{ \nu \in J_s : |\frac{\gamma(\nu)}{\mu(\nu)} - \beta | \geqslant \phi \} | \\ &= \frac{l_1}{l_{s-1}} A_1 + \frac{l_2 - l_1}{l_{s-1}} A_2 + \dots + \frac{l_s - l_{s-1}}{l_{s-1}} A_s \\ &\leqslant \sup_{j \in C} A_j \cdot \frac{l_s}{l_{s-1}} < B\delta. \end{split}$$

Taking $\delta_1 = \frac{\delta}{B}$ and in view of the fact that $\bigcup \{n : l_{s-1} < n < l_s, s \in C\} \subset T$, where $C \in F(\mathcal{J})$, it follows from our assumption on θ that the set T also belongs to $F(\mathcal{J})$.

References

- P. Das, E. Savas, S. K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24 (2011), 1509–1514. 1, 1
- [2] J. A. Fridy, On Statistical Convergence, Analysis, 5 (1985), 301–313. 1.2
- [3] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, J-Convergence and Extremal J-Limit Points, Math. Slovaca, 55 (2005), 443–464. 1, 1.5, 1.6, 1
- [4] P. Kostyrko, W. Wilczyński, T. Salat, J-Convergence, Real Anal. Exchange, 26 (2000), 669–686. 1, 1.4, 1.6, 1
- [5] M. Marouf, Asymptotic equivalence and summability, I. J. Math. Math. Sci., 16 (1993), 755–762. 1, 1.1
- [6] R. F. Patterson, On Asymptotically Statistically Equivalent Sequences, Demonstr. Math., 36 (2003), 149–153. 1, 1.3
- [7] R. F. Patterson, E. Savaş, On Asymptotically Lacunary Statistical Equivalent Sequences, Thai J. Math., 4 (2006), 267–272.
- [8] E. Savaş, On J-Asymptotically Lacunary Statistical Equivalent Sequences, Adv. Difference Equ., 2013 (2013), 7 pages.
 1
- [9] E. Savaş, On Asymptotically J-Lacunary Statistical Equivalent Sequences of order α, The 2014 International Conference on Pure Mathematics-Applied Mathematics Venice, Italy, (2014). 1
- [10] E. Savas, Generalized summability methods of functions using ideals, AIP Conference Proceedings V. 1676, (2015). 1
- [11] E. Savaş, On generalized statistically convergent functions via ideals, Appl. Math., 10 (2016), 943–947. 1
- [12] E. Savaş, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24 (2011), 826–830.
- [13] E. Savaş, P. Das, S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett., 25 (2012), 733–738. 1
- [14] E. Savaş, H. Gumuş, A generalization on I-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., 2013 (2013), 9 pages. 1