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Abstract
Chaotic behavior in the real dynamics and singular values of a two-parameter family of generalized generating function of

Apostol-Genocchi numbers, fλ,a(z) = λ 2z
eaz+1 , λ,a ∈ R\{0}, are investigated. The real fixed points of fλ,a(z) and their nature

are studied. It is seen that bifurcation and chaos occur in the real dynamics of fλ,a(z). It is also found that the function fλ,a(z)
has infinitely many singular values for a > 0 and a < 0. The critical values of fλ,a(z) lie inside the open disk, the annulus and
exterior of the open disk at center origin for a > 0 and a < 0.
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1. Introduction

For describing properties of Julia sets and Fatou sets with other studies in the real and complex dy-
namics, investigations on fixed points and singular values of functions are of great importance. The
dynamical properties of entire or meromorphic functions with infinitely many singular values are less
studied in comparison to that of functions with finitely many singular [6, 11, 13, 14, 22]. The singular val-
ues of the one-parameter family of generalized generating function of Bernoulli’s numbers are computed
in [20] and its reverse family are discovered in [19]. The singular values of transcendental meromorphic
functions are discussed by Zheng [25]. The theory of dynamics of transcendental functions is given in [2].
The exploration of dynamics of a real function has become an important topic, partially due to the fact
that it deduce the iterations of the function in the complex plane which is mainly influenced by its real
dynamics [6, 12, 16, 23]. The real dynamics of the cubic polynomials, generalized logistic maps and one-
parameter family of transcendental functions are given in [1, 10, 15, 21] respectively. The real fixed points
are described for one-parameter family of function x

bx−1 in [17] and for a two-parameter family λ( x
bx−1)

n

in [8]. The study of some recent chaotic systems can be seen in [3, 4, 24].
A point z∗ is said to be a critical point of f(z) if f ′(z∗) = 0. The value f(z∗) corresponding to a critical

point z∗ is called a critical value of f(z). A point w ∈ Ĉ (extended complex plane) is said to be an
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asymptotic value for f(z), if there exists a continuous curve γ : [0,∞) → Ĉ satisfying limt→∞ γ(t) = ∞
and limt→∞ f(γ(t)) = w. A singular value of f is defined to be either a critical value or an asymptotic
value of f. A function f is called critically bounded or function of bounded type if the set of all singular
values of f is bounded, otherwise it is said to be function of unbounded type. A point x is called a fixed
point of function f(x) if f(x) = x. A fixed point xf is said to be an attracting, neutral (indifferent) or
repelling if |f′(xf)| < 1, |f′(xf)| = 1 or |f′(xf)| > 1, respectively. The Lyapunov exponent of the function
f(x), for a given trajectory {xk : k = 0, 1, 2, . . . } starting with an initial point x0, is defined as

L = lim
k→∞ 1

k

k−1∑
i=0

ln |f′(xi)|. (1.1)

It is well known that the behavior of a dynamical system is chaotic if the Lyapunov exponent of the
function f(x) is a positive number [7].

Let

F =
{
fλ,a(z) = λ

2z
eaz + 1

: λ,a ∈ R\{0}, z ∈ C
}

be two-parameter family of meromorphic transcendental functions. The function fλ,a ∈ F is neither odd
nor even as well as not periodic. This family F is associated to the generalized Apostol-Genocchi numbers
and Apostol-Genocchi polynomial with parameters a > 0 and b > 0 which is found in [5] as

2t
λbt + at

=

∞∑
n=0

Gn(a,b; λ)
tn

n!
.

For λ = 1,a = 1,b = ea, t = z, the left hand side function in this relation becomes function of our family
F.

This paper is a generalization of work [9] of the family of functions λ 2z
ez+1 which is a generating

function of the Genocchi numbers. The paper [9] contains almost similar results and proofs from [18, 21].
Besides we provide simpler proof of the result on the number of fixed points. The following is the
organization of our paper: the real fixed points of fλ,a ∈ F as well as their nature are given in Section 2.
In Section 3, the bifurcation and chaos in the real dynamics are shown graphically. It is explored that the
function fλ,a ∈ F has infinitely many singular values in Section 4. Moreover, it is found that the critical
values of fλ,a(z) lie inside open disks and the annulus at center origin for a > 0 as well as a < 0.

2. Real fixed points of fλ,a ∈ F and their nature

The existence and nature of the real fixed points of the function fλ,a ∈ F are described in the present
section. The following theorem gives that the function fλ,a(x) has two real fixed points.

Theorem 2.1. Let fλ,a ∈ F. Then, the function fλ,a(x) has one fixed point 0 for all λ, one nonzero real fixed point
xλ for λ > 1

2 , and fλ,a(x) has no nonzero real fixed points for λ 6 1
2 . For λ > 1, if a > 0, then the fixed point xλ of

fλ,a(x) is positive and if a < 0, then xλ is negative. For 1
2 < λ < 1, if a > 0, then the fixed point xλ of fλ,a(x) is

negative and if a < 0, then xλ is positive.

Proof. To find fixed points, we solve the equation fλ,a(x) = x. Then, this equation has two real solutions 0
for all λ and xλ = 1

a ln(2λ− 1) for λ > 1
2 . There is no real nonzero solutions for λ 6 1

2 . Hence, the function
fλ,a(x) has a fixed point 0 for all λ and other real nonzero fixed point xλ for λ > 1

2 . It is easily observed
that, for λ > 1, the fixed point xλ of fλ,a(x) is positive if a > 0 and negative if a < 0. For 1

2 < λ < 1, the
fixed point xλ of fλ,a(x) is negative if a > 0 and xλ is positive if a < 0.

Remark 2.2. The proof of Theorem 2.1 is simpler and shorter than the proof of a similar result found in [9]
for a = 1.

Lemma 2.3. Let φ(x) = xf′a(x) + fa(x), where fa(x) = 2x
eax+1 . Then
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(i) for a > 0,

φ(x) =
2x

(eax + 1)2 [(2 − ax)eax + 2]


< 0, for x < 0,
= 0, for x = 0,
> 0, for 0 < x < x∗1 ,
= 0, for x = x∗1 ,
< 0, for x > x∗1 ,

where x∗1 is the unique positive real root of the equation (2 − ax)eax + 2 = 0;
(ii) for a < 0,

φ(x) =
2x

(eax + 1)2 [(2 − ax)eax + 2]


> 0, for x < x∗2 ,
= 0, for x = x∗2 ,
< 0, for x∗2 < x < 0,
= 0, for x = 0,
> 0, for x > 0,

where x∗2 is the unique negative real root of the equation (2 − ax)eax + 2 = 0.

Proof. The function φ(x) is written as

φ(x) = xf′a(x) + fa(x) = x
2(eax + 1 − axeax)

(eax + 1)2 +
2x

(eax + 1)
=

2x
(eax + 1)2 [(2 − ax)eax + 2].

Note that x
(eax+1)2 < 0 for x < 0 and x

(eax+1)2 > 0 for x > 0.

(i) For a > 0, let q(x) = (2 − ax)eax + 2, then q′(x) = a(1 − ax)eax and q′′(x) = −a3xeax. It gives
q′′(x) < 0 for x ∈ R+ and q′′(x) > 0 for x ∈ R−. Therefore, the function q′(x) is decreasing on R+

and increasing on R−. Since q′(0) = a, q′(x) → 0 as x → −∞ and q′(x) → −∞ as x → +∞, by
continuity of q′(x), it follows that there is a unique x̃1 > 0 such that q′(x) > 0 for −∞ < x < x̃1,
q′(x̃1) = 0 and q′(x) < 0 for x > x̃1. Hence, q(x) increases in (−∞, x̃1), attains its maximum at x̃1
and decreases thereafter. Since q(0) = 4 and q(x)→ −∞ as x→ +∞, then there is a unique positive
x∗1 > x̃ such that q(x) > 0 for −∞ < x < x∗1 , q(x∗1) = 0 and q(x) < 0 for x > x∗1 . It follows that

φ(x) =
2x

(eax + 1)2q(x)


< 0, for x < 0,
= 0, for x = 0,
> 0, for 0 < x < x∗1 ,
= 0, for x = x∗1 ,
< 0, for x > x∗1 .

It can be easily seen by Figure 1 (a).

(a) For a = 2. (b) For a = −2.

Figure 1: Graphs of φ(x) for a > 0 and a < 0.
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(ii) For a < 0, let r(x) = (2 − ax)eax + 2, then r′(x) = a(1 − ax)eax and r′′(x) = −a3xeax. It gives
r′′(x) > 0 for x ∈ R+ and r′′(x) < 0 for x ∈ R−. Therefore, the function r′(x) is increasing on R+

and decreasing on R−. Since r′(0) = a, r′(x) → +∞ as x → −∞ and r′(x) → 0 as x → +∞, by
continuity of r′(x), it follows that there is a unique x̃2 > 0 such that r′(x) > 0 for −∞ < x < x̃2,
r′(x̃2) = 0 and r′(x) < 0 for x > x̃2. Thus, r(x) increases in (−∞, x̃2), attains its maximum at x̃2 and
decreases thereafter. Since r(0) = 4 and r(x) → −∞ as x → −∞, then there is a unique negative
x∗2 < x̃2 such that r(x) < 0 for x < x∗2 , r(x∗2) = 0 and r(x) > 0 for x > x∗2 . It concludes that

φ(x) =
2x

(eax + 1)2 r(x)


> 0, for x < x∗2 ,
= 0, for x = x∗2 ,
< 0, for x∗2 < x < 0,
= 0, for x = 0,
> 0, for x > 0.

It can be easily observed by Figure 1 (b).

Thus, it proves the lemma.

Let us define
λ∗ =

x∗1
fa(x∗1)

=
1
2
(eax

∗
1 + 1) and λ∗∗ =

x∗2
fa(x∗2)

=
1
2
(eax

∗
2 + 1).

Remark 2.4. It is easily seen that x∗2 = −x∗1 and λ∗∗ = λ∗.

In the following theorem, the nature of fixed points of fλ,a(x) are shown.

Theorem 2.5. Let fλ,a ∈ F.

(a) The fixed point 0 of the function fλ,a(x) is attracting for |λ| < 1, rationally indifferent for |λ| = 1 and repelling
for |λ| > 1.

(b) (i) For a > 0, the fixed point xλ of the function fλ,a(x) is repelling for 1
2 < λ < 1, attracting for 1 < λ < λ∗,

rationally indifferent for λ = λ∗, and repelling for λ > λ∗.
(ii) For a < 0, the fixed point xλ of the function fλ,a(x) is repelling for 1

2 < λ < 1, attracting for 1 < λ < λ∗∗,
rationally indifferent for λ = λ∗∗, and repelling for λ > λ∗∗.

Proof.

(a) Since f′λ,a(0) = λ, it is easy to see all cases.

(b) For λ > 0 and x ∈ R, it is easily seen that fλ,a(x) > 0 for x > 0 and fλ,a(x) < 0 for x < 0. Since
f′λ,a(x) = λ

2[(1−ax)eax+1]
(eax+1)2 and xλ is a fixed point of fλ,a(x), then

f′λ,a(x) =
1
2
(eaxλ + 1)

2[(1 − axλ)e
axλ + 1]

(eaxλ + 1)2 = 1 −
axλ

1 + e−axλ
. (2.1)

(i) For a > 0, the function x
fa(x)

is increasing on R since ( x
fa(x)

)′ = 1
2ae

ax > 0, x ∈ R.
For 1

2 < λ < λ
∗, this case is divided into two parts since the fixed point xλ of fλ,a(x) is negative for

1
2 < λ < 1 and positive for λ > 1.

For 1
2 < λ < 1, by Equation (2.1), f′λ,a(x) > 1 since xλ < 0. Therefore, the fixed point xλ of fλ,a(x) is

repelling fixed point for 1
2 < λ < 1.

For 1 < λ < λ∗, since the function x
fa(x)

is increasing on R+ and λ = xλ
fa(xλ)

, so xλ
fa(xλ)

<
x∗1

fa(x∗1)
. It

gives eaxλ < eax
∗
1 . Hence, xλ < x∗1 . By Lemma 2.3 (i), φ(xλ) > 0. Since f′λ,a(xλ) =

φ(xλ)
fa(xλ)

− 1, then

f′λ,a(xλ) + 1 =
φ(xλ)
fa(xλ)

> 0. It follows that |f′λ,a(xλ)| < 1. Thus, the fixed point xλ of fλ,a(x) is attracting for
1 < λ < λ∗.



M. Sajid, J. Math. Computer Sci., 19 (2019), 41–50 45

For λ = λ∗, it is easy to see xλ = x∗1 . Now, by Lemma 2.3 (i), it follows that f′λ,a(xλ) + 1 =
φ(xλ)
fa(xλ)

= 0,
which implies that f′λ∗,a(xλ) = −1. Therefore, the fixed point x∗1 of fλ,a(x) is rationally indifferent for
λ = λ∗.

For λ > λ∗, by similar arguments used above, it follows that xλ > x∗1 . Again, by Lemma 2.3 (i) and
by the fact xλ > x∗1 , we have φ(xλ) < 0. It gives that f′λ,a(xλ) + 1 =

φ(xλ)
fa(xλ)

< 0 and hence |f′λ,a(xλ)| > 1.
Therefore, xλ is a repelling fixed point of fλ,a(x) for λ > λ∗.

(ii) For a < 0, the function x
fa(x)

is decreasing on R since ( x
fa(x)

)′ = 1
2ae

ax < 0, x ∈ R.

For 1
2 < λ < λ

∗∗, this case is divided into two parts since the fixed point xλ of fλ,a(x) is positive for
1
2 < λ < 1 and negative for λ > 1.

For 1
2 < λ < 1, Equation (2.1) gives f′λ,a(x) > 1 since xλ > 0. It follows that the fixed point xλ of fλ,a(x)

is repelling fixed point for 1
2 < λ < 1.

For 1 < λ < λ∗∗, since the function x
fa(x)

is decreasing on R− and λ = xλ
fa(xλ)

, then xλ
fa(xλ)

<
x∗2

fa(x∗2)
.

It gives eaxλ < eax
∗
2 . Hence, xλ < x∗2 . By Lemma 2.3 (ii), φ(xλ) > 0. Since f′λ,a(xλ) =

φ(xλ)
fa(xλ)

− 1, then

f′λ,a(xλ) + 1 =
φ(xλ)
fa(xλ)

> 0. It gives that |f′λ,a(xλ)| < 1. Therefore, the fixed point xλ of fλ,a(x) is attracting
for 1 < λ < λ∗∗.

For λ = λ∗∗, it is easy to get xλ = x∗2 . Consequently, it gives that, by Lemma 2.3 (ii), f′λ,a(xλ) + 1 =
φ(xλ)
fa(xλ)

= 0 and hence f′λ∗∗,a(xλ) = −1. Therefore, the fixed point x∗2 of fλ,a(x) is rationally indifferent for
λ = λ∗∗.

For λ > λ∗∗, by similar arguments as above, it shows that xλ < x∗2 . Again, by Lemma 2.3 (ii) and by
the fact xλ < x∗2 , we have φ(xλ) > 0. It gives that f′λ,a(xλ) + 1 =

φ(xλ)
fa(xλ)

< 0 and hence f′λ,a(xλ) < −1.
Therefore, xλ is a repelling fixed point of fλ,a(x) for λ > λ∗∗.

For λ > λ∗ and λ > λ∗∗, there exist periodic points of period greater than or equal to 2. These cases
are graphically discussed in the next section.

3. Graphical simulation of bifurcation and chaos

In the present section, we compute and visualize dynamical behaviors of fλ,a(x) by numerical and
graphical simulation. It is seen from Theorem 2.5 that the nature of the fixed point of fλ,a(x) changes
when parameter λ passes certain parameter value. If the parameter λ increases, then, for a > 0, the
behavior of dynamical system is shown by bifurcation diagrams in Figure 2 (a) for a = 2 and Figure 2
(b) for a = 3. It is interesting to observe that bifurcation diagrams of fλ,a(x) display periodic doubling,
periodic windows, chaotic region, etc.

(a) For a = 2. (b) For a = 3.

Figure 2: Bifrucation diagrams for a > 0.
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For a < 0, the bifurcation diagrams are given in Figure 3 (a) for a = −2 and Figure 3 (b) for a = −3.

(a) For a = −2. (b) For a = −3.

Figure 3: Bifrucation diagrams for a < 0.

It is observed that, from Figures 2 and 3, the bifurcation diagrams fλ,a(x) are symmetric about hori-
zontal axis for a > 0 and a < 0. In the real dynamics of fλ,a(x), the period doubling in the bifurcation
diagram leads route to chaos. To quantify the chaos, the Lyapunov exponent is calculated. A trajectory
with the positive Lyapunov exponent is chaotic provided that it is not asymptotic to an unstable periodic
solution.

Using Formula (1.1), the Lyapunov exponent of the function fλ,a(x) is

L = lim
k→∞ 1

k

k−1∑
i=0

ln
[
λ

2|(1 − axi)e
axi + 1|

(eaxi + 1)2

]
.

For a > 0, the computed values of Lyapunov exponents are explored in Figures 4 (a) for a = 2 and 4 (b)
for a = 3.

(a) For a = 2. (b) For a = 3.

Figure 4: Lyapunov exponents for a > 0.

For a < 0, the computed values of Lyapunov exponents are shown in Figures 5 (a) for a = −2 and 5
(b) for a = −3.
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(a) For a = −2. (b) For a = −3.

Figure 5: Lyapunov exponents for a < 0.

From Figures 4 and 5, it is easily found that the Lyapunov exponents are positive for certain ranges of
parameter λ which exhibits the chaotic behavior in the real dynamics of fλ,a(x).

For parameter value λ from 9.5 to 13, the bifurcation diagrams in Figures 2 and 3 and the correspond-
ing Lyapunov exponents L in Figures 4 and 5 are represented that when Lyapunov exponents are positive,
then bifurcation diagrams show dark regions which gives chaotic behavior in the real dynamics fλ,a(x).
Further, between this range, the Lyapunov exponents are negative, hence it explores that chaotic region
break up into non-chaotic temporary and then goes back to being chaotic.

4. Singular values of fλ,a ∈ F

The following theorem gives that the function fλ,a ∈ F has infinitely many singular values:

Theorem 4.1. Let fλ,a ∈ F. Then, the function fλ,a(z) possesses infinitely many singular values.

Proof. Since f′λ,a(z) = λ
2[(1−az)eaz+1]

(eaz+1)2 , the critical points of fλ,a(z) are solutions of the equation (az −

1)eaz − 1 = 0. Let w = az. Set w = u+ iv. Separating the real and imaginary parts of (w− 1)ew − 1 = 0,
we have

v

sin v
+ ev cotv−1 = 0, (4.1)

u = 1 − v cot v. (4.2)

It is observed from Figure 6 that the Equation (4.1) has infinitely many solutions since the number of
intersections increases when the size of interval expands on x-axis. The rigorous theoretical details can be
deduced from proof of [6, Proposition 1.3] for infinitely many solutions of Equation (4.1).

Figure 6: Graph of v
sinv + ev cotv−1.
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Let {vk}
k=∞
k=−∞,k6=0 be solutions of Equation (4.1). From Equation (4.2), uk = 1 − vk cot vk for k =

±1,±2,±3, . . . . Then, zk = uk+ivk
a are critical points of fλ,a(z). The critical values fλ,a(zk) = λ

2zk
eazk+1 are

distinct for k nonzero integers. It follows that the function fλ,a ∈ F has infinitely many critical values.
Since fλ,a(z)→ 0 as z→∞ along positive real axis for a > 0 and along negative real axis for a < 0, it

shows that the finite asymptotic value of fλ,a(z) is 0. The order of growth of fλ,a(z) is finite and less than
1, so fλ,a(z) has at most one finite asymptotic value which is 0.

It is concluded that the function fλ,a ∈ F has infinitely many singular values.

Let H+ = {z ∈ Ĉ : Re(z) > 0} and H− = {z ∈ Ĉ : Re(z) < 0} be the right half plane and left half plane
respectively. The following theorem shows that the function f′λ,a(z) has no zeros in the right half plane
for a > 0 and the left half plane for a < 0.

Theorem 4.2. Let fλ,a ∈ F. Then, the function f′λ,a(z) has no zeros in the right half plane H+ for a > 0 except
one positive point on the real axis and the left half plane H− for a < 0 except one negative point on the real axis.

Proof. Since f′λ,a(z) = λ
2[(1−az)eaz+1]

(eaz+1)2 = 0, then e−az = az− 1. For a > 0, let w = az. Then, e−w = w− 1.
Using the real and imaginary parts, we have

cos v− i sin v
eu

= u− 1 + iv. (4.3)

When v = 0, then w = u > 0 and, by real part of Equation (4.3), e−u = u− 1. This equation has a
positive solution.

When v 6= 0, then, by imaginary part of Equation (4.3), sinv
v = −eu < −1. This is not true for v > 0

since | sinv
v | < 1. Moreover, since sinv

v is an even function, it is also false for v < 0.
Consequently, the function f′λ,a(z) has no zeros in H+ for a > 0 except one positive point on the real

axis.
Similarly, using analogous arguments as above and z = w

a for a < 0, the function f′λ,a(z) has no zeros
in H− except one negative point on the real axis.

Remark 4.3. f′λ,a(z) has no zeros on imaginary axis since, from Equation (4.3), cos v− i sin v = 1− iv, which
gives v = 0.

The following theorems prove that the function fλ,a ∈ F maps three different regions inside the open
disk, annulus and exterior of the open disk centered at origin.

Theorem 4.4. Let fλ,a ∈ F with a > 0.

(i) If D1 = {z ∈ C : Re(z) < 0 and |z| < 1
a }, then fλ,a(D1) ⊂ {w ∈ C : |w| <

|λ|
a }.

(ii) If D2 = {z ∈ C : Re(z) < 0 and 1
a 6 |z| < 2

a }, then fλ,a(D2) ⊂ {w ∈ C :
|λ|
a 6 |w| <

2|λ|
a }.

(iii) If D3 = {z ∈ C : Re(z) < 0 and |z| > 2
a }, then fλ,a(D3) ⊂ {w ∈ C : |w| >

|λ|
a }.

Proof. Let h(z) = eaz for an arbitrary fixed z ∈ H−. Suppose that the line segment γ is defined by
γ(t) = tz, t ∈ [0, 1]. Then, for a > 0,∫

γ

h(z)dz =

∫ 1

0
h(γ(t))γ′(t)dt = z

∫ 1

0
eatzdt =

1
a
(eaz − 1). (4.4)

Since m ≡ mint∈[0,1] |h(γ(t))| = mint∈[0,1] |(e
a)tz| > 0 for z ∈ H−, by Equation (4.4),

|eaz + 1| =
∣∣a ∫

γ

h(z)dz+ 2
∣∣ > am|z|+ 2 > 2 > a|z|.

Hence, | 2z
eaz+1 | <

2
a for all |z| < 2

a . Then

|fλ,a(z)| = |λ
2z

eaz + 1
| <

2|λ|
a

for all |z| <
2
a

. (4.5)
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(i) If 0 < |z| < 1
a , then it is easily seen that |fλ,a(z)| = |λ 2z

eaz+1 | <
|λ|
a . It shows that fλ,a(z) maps H−

inside the open disk centered at origin and having radius |λ|
a for |z| < 1

a .

(ii) Using Equation (4.5), we can see that fλ,a(z) maps H− in the annulus with inner radius |λ|
a including

boundary and outer radius 2|λ|
a without boundary for 1

a 6 |z| < 2
a .

(iii) Since M ≡ maxt∈[0,1] |h(γ(t))| = maxt∈[0,1] |(e
a)tz| < 1 for z ∈ H−, by Equation (4.4),

|eaz + 1| =
∣∣a ∫

γ

h(z)dz+ 2
∣∣ 6 aM|z|+ 2 < a|z|+ 2 < 2a|z|

so | 2z
eaz+1 | >

1
a for all |z| > 2

a . Therefore, it follows that |fλ,a(z)| = |λ 2z
eaz+1 | >

|λ|
a for all |z| > 2

a . This
shows that the function fλ,a(z) maps the left half plane H− exterior of the open disk centered at
origin and having radius |λ|

a for |z| > 2
a .

Theorem 4.5. Let fλ,a ∈ F with a < 0.

(i) If D1 = {z ∈ C : Re(z) > 0 and |z| < 1
|a| }, then fλ,a(D1) ⊂ {w ∈ C : |w| < |λa |}.

(ii) If D2 = {z ∈ C : Re(z) > 0 and 1
|a| 6 |z| < 2

|a| }, then fλ,a(D2) ⊂ {w ∈ C : |λa | 6 |w| <
2|λ|
|a| }.

(iii) If D3 = {z ∈ C : Re(z) > 0 and |z| > 2
|a| }, then fλ,a(D3) ⊂ {w ∈ C : |w| >

|λ|
|a| }.

The proof of this theorem is omitted since it is analogous to Theorem 4.4.
The following theorems give that the critical values of fλ,a ∈ F lie in the open disk, the annulus and

exterior of the open disk according to mapping of three regions.

Theorem 4.6. Let fλ,a ∈ F. Then, for a > 0, the critical values of fλ,a(z) lie

(i) inside the open disk centered at origin and having radius |λ|
a for |z| < 1

a ;

(ii) in the annulus with inner radius |λ|
a including boundary and outer radius 2|λ|

a without boundary for 1
a 6

|z| < 2
a ;

(iii) exterior of the open disk centered at origin and having radius |λ|
a for |z| > 2

a .

Proof. By Theorem 4.2, the function f′λ,a(z) has no zeros in the right half plane H+. Hence, all the critical
points lie in the left half plane H−. By Theorem 4.4, fλ,a ∈ F maps the left half plane H− in the open disk,
the annulus and exterior of the open disk. This completes the proof of theorem.

Theorem 4.7. Let fλ,a ∈ F. Then, for a < 0, the critical values of fλ,a(z) lie

(i) inside the open disk centered at origin and having radius |λa | for |z| < 1
|a| ;

(ii) in the annulus with inner radius |λa | including boundary and outer radius 2|λ|
|a| without boundary for 1

|a| 6

|z| < 2
|a| ;

(iii) exterior of the open disk centered at origin and having radius |λ|
|a| for |z| > 2

|a| .

The proof of this theorem can be obtained as similar to Theorem 4.6.

Remark 4.8. The result, all the critical values of functions lie in the left half plane [9, Theorem 2.4], seems
incorrect since the left half plane maps inside the open disks and the annulus about the origin with some
radius. But these open disks and the annulus must contain the part of the right half plane.
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5. Conclusion

In the present paper, we have been generalized the work from one-parameter family of functions
λ 2z
ez+1 to a two-parameter family of functions λ 2z

eaz+1 , which arises from generalized generating function
of Apostol-Genocchi numbers. The real fixed points and singular values of this two-parameter family of
fλ,a(z) = λ 2z

eaz+1 , λ,a ∈ R\{0} have been investigated. The real fixed points of fλ,a(z) as well as their
nature have described. In the real dynamics, the bifurcation and chaos have been occurred. It is seen that
the function fλ,a(z) has infinitely many singular values for both a > 0 and a < 0. The critical values of
fλ,a(z) lie inside the open disk, the annulus and exterior of the open disk for both a > 0 and a < 0.
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