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Abstract 
Text Clustering is a text mining technique which divides the given set of text documents into 

significant clusters.  It is used for organizing a huge number of text documents into a well-organized 

form.  In the majority of the clustering algorithms, the number of clusters must be specified apriori, which 

is a drawback of these algorithms.  The aim of this paper is to show experimentally how to determine the 

number of clusters based on cluster quality. Since partitional clustering algorithms are well-suited for 

clustering large document datasets, we have confined our analysis to a partitional clustering algorithm. 
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1. Introduction 

Text clustering is used to understand the structure and content of unknown text sets as well as to give 

new perspectives on familiar ones. The main aim of text clustering is to minimize intra-cluster 

distance between documents, and maximize the inter-cluster distance using an appropriate distance or 

similarity measure.  In this paper, we have experimentally found the maximum number of clusters 

into which the document set is to be partitioned based on cluster quality. We have used the CLUTO 

clustering tool to evaluate the entropy and purity of clusters, by varying the number of clusters.  

 

Our paper is organized as follows.  Section 2 introduces the major types of clustering i.e., partitional 

and hierarchical clustering. Section 3 to 5 explains the preliminaries like similarity measures, criterion 

functions and cluster qualities like entropy and purity. Section 6 describes the data sets used in our 

experiment and description about the clustering tool CLUTO.  Section 7 explains the experiments 

performed , their results and their interpretation. Section 8 concludes the results to show that the 

Repeated bisection method performs the best with respect to clustering time. Also the quality of 

clusters is analyzed to find the optimal number of clusters. Also, we have shown that among all the 

criterion functions, the I2 criterion performs the best with respect to clustering time. 
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2. Types of clustering 

Clustering methods are classified based on the cluster structure they produce. Most clustering methods 

require an object representation and also a distance or similarity measure between objects. The major 

clustering methods can be classified as Partitioning methods and Hierarchical methods. 

 

2.1. Partitioning clustering 

Given D, a data set of n objects, and k, the number of clusters to form, a partitioning algorithm 

organizes the objects into k partitions (k ≤n), where each partition represents a cluster. The clusters 

are formed to optimize an objective partitioning criterion, such as a dissimilarity function based on 

distance, so that the objects within a cluster are „similar‟ whereas the objects belonging to different 

clusters are „dissimilar‟. The commonly used partitioning methods are k-means, k-medoids, and their 

variations [1]. 

 

2.2. Hierarchical clustering 

A hierarchical clustering method groups data objects into a tree of clusters. The Hierarchical 

clustering algorithms, are classified as agglomerative or divisive, depending on whether the 

hierarchical decomposition is formed in a bottom-up (merging) or top-down (splitting) manner. The 

main drawback of a pure hierarchical clustering method is that once a merge or split decision is taken 

and if it turns out to be a poor choice, this method cannot backtrack and correct it [1]. 

 

Agglomerative methods [2], when used for document clustering, starts with an initial clustering where 

each document is considered to be a separate cluster.  The closest clusters, using a given inter cluster 

similarity measure, are then merged repeatedly until only one cluster or a predefined number of 

clusters remain. 

 

Divisive clustering algorithms start with a single cluster containing all the documents. It is then 

repeatedly divided into clusters until all documents are contained in their own cluster or a predefined 

number of clusters [3]. 

 

In recent years, various researchers have recognized that partitional clustering algorithms are well-

suited for clustering large document datasets because of their relatively low computational 

requirements. 

 

3. Similarity measure 

A similarity measure is a function which computes the degree of similarity between pairs of texts. A 

similarity measure can represent the similarity between two documents, two queries, or one document 

and one query.  

 

Similarity measure assigns a real number between 0 and 1 to a pair of documents, depending upon the 

degree of similarity between them. A value of zero signifies that the documents are completely 

dissimilar while a value of one indicates that the documents are identical. 
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Traditionally, vector-based models have been used for computing the document similarity. The most 

commonly used proximity measure in vector-based models is the Euclidean distance given by the 

general formula 
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objects xi and xj. Dij is the proximity between points xi and xj. 

 

Some of the distance measures used in text clustering are Euclidean Distance, squared Euclidean 

Distance, Normalized squared Euclidean Distance, Manhattan Distance, Edit Distance, Hamming 

Distance; while the similarity measures include cosine similarity, Pearson correlation coefficient, 

Jaccard similarity, Dice coefficient, overlap coefficient, asymmetric similarity and Averaged 

Kullback-Leibler Divergence. 

 

4. Criterion function 

A key characteristic of many partitional clustering algorithms is that they use a global criterion 

function whose optimization drives the entire clustering process [5]. Some of the criterion functions 

that are used for finding the clusters are I1, I2, E1, G1, G1p, H1 and H2.     

      The descriptions for the criterion functions are as follows: 

1. I1 criterion function – This function tries to maximize the intra cluster similarity between the 

elements of a cluster. 

2. I2 criterion function – This function also tries to maximize the intra cluster similarity between the 

elements of a cluster.  The only difference between I1 and I2 is that while calculating I2 we must 

take the square root of the function. 

3. E1 criterion function – This function divides the intra-cluster similarity with inter cluster 

similarity 

4. G1 criterion function – This function similar to E1 except that there is no square root in the 

denominator. 

5. G1p criterion function – This function is also similar to E1 except that we have n1
2
 and that there 

is no root in the denominator. 

6. H1 criterion function - This is a hybrid function to maximize I1/E1. 

7. H2 criterion function – This is a hybrid function trying to maximize I2/E1. 

 

      The mathematical formulae for these functions are given in the following table. 

Table 1 
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Table 1 gives the formulae for calculating the clustering criterion functions. The notation in these 

formulae are as follows: k is the total number of clusters, S is the total number of documents to be 

clustered, Si is the set of documents assigned to the i
th
 cluster, ni is the number of documents in the i

th
 

cluster, u and v represent two documents and sim(u,v) is the similarity measure between these two 

documents. 

 

These functions optimize the intra-cluster similarity, inter-cluster dissimilarity, and their 

combinations and represent some of the most widely-used criterion functions for document clustering. 

 

Theoretical analysis of the criterion functions shows that their relative performance depends on the (i) 

degree to which they can correctly operate when the clusters are of different tightness, and (ii) degree 

to which they can lead to reasonably balanced clusters. 

 

5. Cluster Quality 

A cluster quality measure is a function that maps pairs of the form (dataset, clustering) to some 

ordered set (say, the set of non-negative real numbers), so that these values reflect how „good‟ or 

„cogent‟ that clustering is. Cluster quality measures may also be used to identify an ideal  clustering 

method  by comparing the different clustering solutions obtained when different clustering 

methods/parameters are employed over the same data set (e.g., comparing the results of a given 

clustering paradigm over different choices of clustering parameters, such as the number of clusters). 

For the evaluation of cluster quality, we use two different measures: Entropy and Purity [6] [7]. These 

are standard measures that help us to ascertain the cluster quality.  Entropy measures how the various 

semantic classes are distributed within each cluster.  Given a particular cluster Sr of size nr, the 

entropy of this cluster is defined as 
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where q is the number of classes in the dataset and 
i

rn  is the number of documents of the i
th
 class that 

are assigned to the r
th
 cluster.  The entropy of the entire clustering solution is then the sum of the 

individual cluster entropies weighted according to the cluster size: 
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where n is the total number of documents. 

Smaller entropy values indicate better clustering solutions. 

Using the same Mathematical notation, the purity of a cluster is defined as [7] 
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         The purity of the clustering solution is the weighted sum of the individual cluster purities 
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Larger purity values indicate better clustering solutions. 

Entropy is a more comprehensive measure  than purity because rather than just considering the 

number of documents, it considers the overall distribution of all the classes in a given cluster [8]. For 

an ideal cluster with documents from only a single class, the entropy of the cluster will be 0.  In 

general, the smaller the entropy value, the better the quality of the cluster. 

 

 

6. Experimental setup 

6.1 Data sets used 

For our experimental study, we have used a well known benchmark dataset used in text mining, the 

Classic collection [9].  This dataset consists of 4 different document collections: CACM, CISI, 

CRAN, and MED. The composition of the collection of classic data set is as follows: 

 CACM: 3204 documents 

 CISI: 1460 documents 

 CRAN: 1398 documents 

 MED: 1033 documents 

      This is also referred to as classic4 dataset.  

6.2. CLUTO 

The clustering tool we have used for our experimental study is CLUTO [9]. CLUTO can be used for 

clustering low and high dimensional datasets and for analyzing the characteristics of the various 

clusters. CLUTO can operate on very large set of documents as well as number of dimensions.  

CLUTO performs Repeated Bisections, Repeated Bisections by k-way refinement, Direct k-way 

clustering, Agglomerative clustering, Graph partitioning based clustering and partitional based 

Agglomerative clustering. 
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CLUTO can be used to cluster documents based on the following similarity measures: cosine 

similarity, correlation coefficient, Euclidean distance and extended Jaccard coefficient. CLUTO 

provides cluster quality details such as Entropy and Purity. 

 

7. Results and Interpretation 

In order to identify the most appropriate Partitional method for our experimental study, we first 

observed the clustering time for the Repeated bisection, Direct and Agglomerative methods by varying 

the number of clusters for the classic dataset.  

 

Figure 1 shows the clustering time for Repeated bisection, Direct and Agglomerative methods. We 

have used the I2 Criterion function for all the three methods. 

 

From Figure 1, it is clear that the performance of the Repeated Bisection method is the best with 

respect to clustering time. As we increase the number of clusters, the time taken to form the clusters in 

the case of the Direct method increases rapidly.  Though the time for clustering in the case of the 

Agglomerative method does not change as we vary the number of clusters, when compared to the 

Repeated bisection method the time taken is more.  Hence, for our subsequent analysis, we have 

adopted the Repeated bisection method. 

 
      Figure  1 
 

For identifying the maximum number of clusters, we have analysed and plotted the entropy and purity 

by applying  the criterion functions I1, I2, E1 G1, G1p, H1, H2 to the Repeated bisection method as 

we increased the number of clusters.                                                  
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Figure 2 

 

Figure 2  gives the entropy and purity for I1 criterion function.  We notice that the entropy does not 

change much as we increase the number of clusters beyond 15. We can also see that entropy hovers 

around 0.195 beyond 15 clusters. 

                                                              
Figure 3 
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Figure 3  shows the variation in entropy and purity for I2 criterion function.  We notice that the 

entropy does not vary much even if we increase the number of clusters beyond 40. We can also see 

that purity hovers around 0.904 beyond 25 clusters. 

 
 Figure 4 

 

From Figure 4, we observe that the entropy varies very gradually as we increase the number of 

clusters beyond 50 .  Also purity stabilises around 0.945 when the number of clusters reaches 50. 

Thereafter, the change in purity is not significant. 

                                                                                                                                                                                                   
Figure 5 
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Figure 5 depicts the entropy and purity as we vary the number of clusters for  H2  criterion function. 

We notice that the entropy  and purity do not change much beyond 40 clusters.  

                                                                             

Figure  6 

 

From Figure 6, it is clear that the entropy and purity values, when we apply the  E1 criterion 
condition, stabilise when we reach  25 clusters. 

                                                                      
Figure 7 
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Figure 7 gives the entropy and purity for G1 criterion condition.  We notise that the entropy and 

purity do not change much beyond 50 clusters. 

Figure 8 

Figure 8 shows the entropy and purity for the G1p criterion. We can see that the entropy becomes 

stable when the number of clusters is 50. Purity stabilizes at around 30 clusters. The following table 

gives the entropy and purity values marked  in the  Figure (2-8) 

Table 2 
 

Figure Number of clusters Entropy Purity 

b 15 0.2 0.923 

c 20 0.201 0.908 

d 10 0.155 0.933 

50 0.14 0.945 

e 20 0.176 0.925 

f 25 0.137 0.949 

g 50 0.180 0.919 

h 25 0.143 0.940 

50 0.132 0.940 

For identifying the most appropriate criterion function, we found the time to cluster when different 
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criterion functions were used in the Repeated bisection method. Figure 9 gives the clustering time when 

we used the different criterion functions in the Repeated bisection method. 

 
Figure 9 

The following table gives the clustering time in seconds for the criterion functions depicted in  Figure 9 

Table 3 
 

Number of 

 Clusters 

                        Clustering time in sec for criterion functions 

I1 I2 H1 H2 E G1 G1p 

2 0.327 0.306 0.484 0.437 0.5 0.468 0.437 

4 0.64 0.707 1.279 0.904 0.936 0.936 1.17 

5 1.186 0.815 1.497 1.326 1.326 1.233 1.31 

10 1.653 1.134 1.856 1.451 1.7 1.856 1.81 

15 1.826 1.122 2.574 1.685 1.747 2.044 1.638 

20 1.826 1.318 2.434 2.074 2.091 2.168 1.747 

25 2.168 1.673 2.355 2.184 2.574 2.122 1.809 

50 2.309 1.879 3.4 2.325 3.183 2.808 2.839 

75 2.605 2.279 3.229 2.871 3.744 3.167 3.151 

100 2.964 2.611 3.932 4.024 4.774 4.306 4.134 

150 2.822 3.503 4.711 6.708 5.429 4.945 5.663 

200 4.899 4.486 5.865 10.359 8.144 6.942 8.487 
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We notice that the criterion function I2 has the least running time when compared to the other 

functions except when the number of clusters is 150. 
 

8. Conclusion 

We have shown that the Repeated bisection method performs the best with respect to clustering time 

when compared to the Direct and Agglomerative methods. We have analysed the quality of the 

clusters as we increased the number of clusters, for different criterion functions applied to the 

Repeated bisection method. We notice that there is no significant change in both Entropy and Purity 

beyond 50 clusters. Hence, we can conclude that even for large datasets, we need not increase the 

number of clusters beyond 50 while we can still maintain cluster quality.  

 

We have also shown that among the Criterion functions, the I2 function performs the best with 

respect to clustering time.  

 

Using clustering quality as a measure, we have shown that we can determine the maximum number of 

clusters for clustering documents. 
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