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Abstract

In this paper, we consider a new subclass of analytic and bi-univalent functions associated with q-Ruscheweyh differential
operator in the open unit disk U. For functions belonging to the class Z4(A, ¢), we obtain estimates on the first two Taylor-

Maclaurin coefficients. Further, we derive another subclass of analytic and bi-univalent functions as a special consequences of
the results.
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1. Introduction

Denote by A the class of all analytic functions of the form

f(z) =z+ Z arz¥, (1.1)
k=2

in the open unit disk U ={z € C : |z| < 1}.

For two analytic functions f and g in U, the subordination between them is written as f < g. The
function f(z) is subordinate to g(z) if there is a Schwarz function w with w(0) = 0,|w(z)| < 1, for all
z € U, such that f(z) = g(w(z)) for all z € U.

In particular, if the function g is univalent in U, then we have the following equivalence:
f<g ifand onlyif f(0) =g(0) and f(U) C g(U).

The well-known Koebe one-quarter theorem [12] ensures that the image of U under every univalent
function f € A contains a disk of radius 1. Hence, every univalent function f has an inverse f~! satisfying
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f~1(f(z)) =z, (z€ U) and

1 fw) =w,  (w] < 1o(f), To(f) = =),

e

where
gw) =1 1w) =w—an?+ (2(1% —az)w® — (5a§ —5aaz + ag)wt + - -
A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U. Let £ denote
the class of bi univalent functions in U given by (1.1). Some functions in the class X are as below (see

Srivastava et al. [24]):
z 1 14z
- —log(1—2z), 210g<1_z>.

In 1986, Brannan and Taha [7] introduced certain subclasses of the bi-univalent function class X similar
to the familiar subclasses of starlike and convex functions of order «. In 2012, Ali et al. [5] widen the result
of Brannan and Taha by using subordination. Since then, various subclasses of the bi-univalent function
class ~ were introduced. The estimates on the first two coefficients |az| and |a3| in the TaylorMaclaurin
series expansion (1.1) were found in several recent studies (see [8, 9, 16]) and still an interest to many
researchers.

In [17, 18], Jackson defined the g-derivative operator D4 of a function as follows:

f(qz) —f(z)
(q—1Dz ’

and D 4f(z) = f'(0). In case f(z) = zX for k is a positive integer, the g-derivative of f(z) is given by

Dqf(z) = (z#0,9#0),

—(zq)*
Dyt == = [Klqz" L.
) z(1—q) ‘
As g — 17 and k € IN, we have
1— k
[klq = 1qq =1+q+-+q“ >k

Quite a number of great mathematicians studied the concepts of q-derivative, for example by Gasper
and Rahman [15], Aral et al. [6] and many others (see [1-3, 7-14]).
Making use of the g-derivative, we define the subclass 83 («) of the class A for 0 < a < 1 by

S’a(oc):{feA:Re<ZD2((;(Z))> >oc,z61U}.

This class is introduced and studied by Seoudy and Aouf [23] and also by Aldweby and Darus [4].
Noting that

zD ¢ (f(z))
f(z)
where 8*(«) is the class of starlike of order « ([19, 21]).
Next, we state the gq-analogue of Ruscheweyh operator given by Aldweby and Darus [3], that will be
used throughout.

th’g( ) = {fEA: limRe(
q—1 q—1

) >0,z € TU} =8"(«),

Definition 1.1. Let f € A. Denote by JQ)‘ the g-analogue of Ruscheweyh operator defined by
[k —|— ?\ — 1
z+ Z ' axz k/
where (k]! given by

(1.2)
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From the definition we observe that if ¢ — 1, we have

Ae(y | k+FA—1]g! B > k+?\ 1)! N
1111'1)1 RO ( ) z+ ].1£n>1 Z mﬂkl = Z k_ 1 I kZ =R f(Z),
a 77 [k= M q o

where Rﬁ is Ruscheweyh differential operator defined in [22].
Let ¢ be an analytic function with positive real part in U such that ¢(0) =1, ¢’(0) > 0 and ¢(U) is
symmetric with respect to real axis. Such a function has a series expansion of the form

©(z) =1+B1z+Bpz> +B3z> +---, (By >0). (1.3)

With this brief introduction, we define the following class of bi-univalent functions and finding the
coefficient estimates with the help of q-derivative.

Definition 1.2. Let A > —1. A function f € X is said to be in the class Z4(A, @), if each of the following
subordination condition holds true:

and

where g(w) = f~1(w).
In order to derive our main results, we have to recall here the following lemma.

Lemma 1.3 ([20]). Let the function p € P be given by the following series:
p(2) =1+piz+p2+ps+---, (zelU).

The sharp estimate given by
pnl <2, (neN),

holds true.

2. A set of main results
For functions f in the class (A, @), the following result is obtained.

Theorem 2.1. Let f € Z4(A, @) be of the form (1.2). Then

3

B
VIR + 11 [aVB3 + qIr + 114 (By — By)] )

2.1)

and

las| < B1 < B1 i 1 )
PN NG+ T\ A2 )

where the coefficients By and By are given as in (1.3).

Proof. Let f € Z4(A, @) and g = f~1. Then there are analytic functions 1, v : U — U with u(0) = v(0) =0,
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satisfying the following conditions:

2 Dq(R}(f(2)))

Ra‘(f(z)) =o@(u(z)), zel, (2.2)
and N
Dq(R
X g‘gi (gq((g)()w))) — o(v(w)), wel. (23)
q
Define the functions p and q by
p(z) = 1tﬁ£3 =1+piz+paz®+---,
and 1
q(z) = 13%2 =1+ qiz+ Q2"+

Then p and q are analytic in U with p(0) = q(0) =1.
Since u,v: U — U, each of the functions p and q has a positive real part in U. Therefore, in view of
the above lemma, we have
lpnl <2 and [qn/ <2, (neIN).

Solving for u(z) and v(z), we get

_ 2 T
u(z):EZ;Jri :% [plz+<pz—pzl) 2+, (zel), (2.4)

and 5 )
v(z):ggglizé[qlz+<qz—qzl>22 +---, (zeU). (2.5)

Clearly, upon substituting from (2.4) and (2.5) into (2.2) and (2.3), respectively, if we make use of (1.3),
we obtain

A
2Da(Ry(f) _ (p(z)—l) Bz B <p2_v21> +132p§]]zz+...,

RY(F(2)) pl2)+1
wnd (R2 (g(W))) 2
wDq(Rg(gw))) qw)—1 1 q? 1. L],
Rlgw) (Gwiz1) =1 a5 (6 5) o o+
Also N
z Dq(R5(f(2)))
;a\(]?( )) :1+q[7\+1]q022+{q[7\+1]q[7\+2]qa3—q[7\+1 }Z + .
and

=1—qA+1]qaw
+{—qA+1qA+2lgas + g+ 1Lq 2N +2lg — A+ 1q) a3} W +- -

Now equating the coefficients in (2.2) and (2.3), we find that

1
=B1ip1, (2.6)

q[}\'i‘].}qaz = 5
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and
A+ 1gA+2] A+12a2 = 18 Py, L, 2.7
qA +1qlA+2lgas —qiA+1qa; = 5B1 { p2— 7 | + 7Bapi (2.7)
Also we have .
—qA+1]qar = §B1P1, (2.8)
and
1 q7 1, 5
—qA+1gqA+2lgas+qA+1]q 2A+2]g —A+1lg) a3 = EBl <q2— 2) + Equl' (2.9)
From (2.6) and (2.8), we get
P1=—dq1, (2.10)
and .
2¢° N+ 1503 = ;Bi(pi +qi)- (2.11)

Now by adding equation (2.7) and equation (2.9), we get

1 i+4q1 1
2qM2 A+ 140 = 531 [Pz +q2— (1’12‘11>] + ;Bzhﬁ +qil.
By using (2.11), we get
o = B3 (p2 + q2) ‘
4qA +11q [q*B? + g\ + 114 (B1 — B,)]

Applying Lemma 1.3 for the coefficients p, and q, we immediately have

3

Bf
VI +10g [aVB2 + qIA +11q (By — Bo)] |

las| <

This gives the bound on |ay| as asserted in (2.1).

Next, in order to find the bound on |a3|, by subtracting (2.9) from (2.7) and also from (2.10), we get

p% = q%, hence

2qA + 1qA+2lgaz — 2qA + g A+ 214l af = %Bl(pz—qz).

Using (2.11) and applying Lemma 1.3 once again for the coefficients p, and q, we have

las| < B1 < B1 i 1 )
TGN+ TN+, A +204 )

This completes the proof of Theorem 2.1.

3. Applications of the main result

If we set

1+(1-2p)z

T =142(1—B)z+2(1—B)2>+---, (zeU,0<B<1),

e(z) =

in Definition 1.2 of the bi-univalent functions class Z4(A, ¢), we obtain a new class Z}l(?\, ) given by

Definition 3.1.
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Definition 3.1. A function f € X is said to be in the class 211 (A, B), if the following conditions hold true:

(DR ()
R} (7(2))

>>B, (z e U),

and

Ry (gw))

Re (w Dy (R} (g(w)))
q

)>[5, (we U),

where g(w) = f~1(w).
Using the parameter setting of Definition 3.1 in the Theorem 2.1, we get the following corollary.
Corollary 3.2. Let the function f € Zg (A, B) be of the form (1.1). Then

21-p)
a2l < \/qA+1[7\]q + A1

2(1-p) ([m—mmq+qA[qu)+mq+q%]>

and

las| <

q[)\]q‘f’q}\le D\—I-l]q[?\—i—Z]q
Remark 3.3. For special case, when A = 0, Corollary 3.2 simplifies to the following form.

Corollary 3.4. Let the function f given by f € L7 (B) := 2 (0, B) be of the form (1.1). Then

2(1—
ool < ¢/ 22=B)
q
and 21— ) )
<S5 2(1— — .
ol < 2 (( B)+1+q>
If we set
1+z 2
(p(z):(l_z) =14+20z+2xz+---, (0<a<lzel),

in Definition 1.2 of the bi-univalent function class (A, @), we obtain a new class Zz (A, «) defined as
follows.

Definition 3.5. A function f € X is said to be in the class Z%l (A, ), if the following conditions hold true

A
g <qu(ﬂzq(f(z)))>‘ < D<a<lizel),

Rg(f(z)) 27
and N
w Dg(Rg(g(w)))
arg( ﬂgé(gq(w)) ) < ‘Xz—n, 0<a<Lwel),

where g(w) = f~1(w).
Using the parameter setting of Definition 3.5 in the Theorem 2.1, we get the following corollary.
Corollary 3.6. Let the function f € Z“ZI (A, ) be of the form (1.1). Then

2
VIgh+1]gRagh + qA + 14 (1 — )]

las| <

| 7

and

as < 2u (20{+ 1)
SN+ T\ 1 A 2g)
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