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Abstract 
In this work, an efficient modification of the homotopy analysis method by using optimal Newton 

interpolation polynomials is given for the approximate solutions of the Riccati differential equations. This 

presented method can be applied to linear and nonlinear models. Examples show that the method is 

effective. 

 
Keywords: quadratic Riccati differential equation, modification of the HPM, Newton interpolation. 

 
1. Introduction 

Riccati differential equations are a class of nonlinear differential equations of much importance, and play 

a significant role in many fields of applied science [1]. The Riccati differential equation is named after the 

Italian nobleman Count Jacopo Francesco Riccati (1676-1754). The applications of this equation may be 

found not only in random processes, optimal control, and diffusion problems [2] but also in stochastic 

realization theory, optimal control, robust stabilization, network synthesis and financial mathematics. 

Solitary wave solutions of a nonlinear partial differential equation can be expressed as a polynomial in 

two elementary functions satisfying a projective Riccati equation [3]. Therefore, one has to go for 

numerical techniques or approximate approaches for getting its solution. Recently various iterative 

methods are employed for the numerical and analytical solution of functional equations such as 

Adomian's decomposition method (ADM) [4, 5], homotopy analysis method (HAM) [6], homotopy 

perturbation method (HPM) [7], variational iteration method (VIM) [8], and differential transform method 

(DTM) [9]. In [10], Liao has shown that HPM equations are equivalent to HAM equations when ћ= -1, 

and too, matrix differential transform method for solving of Riccati types matrix differential equations 

[11]. In this work, we introduce a new modification the HPM using optimal Newton interpolation 

polynomials. The schemes are tested for some examples. 

This study is organized as follows: In section 2, we present the standard HAM. In section 3, we present 

the modification technique of HAM. In section 4, the method is applied to a variety of examples to show 

efficiency and simplicity of the method. 
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2. Basic ideas of HAM 

For the convenience of the reader, we will first present a brief account of HAM [12]. Let us consider the 

following differential equation 

𝑁[𝑢(𝑥, 𝑡)] = 0, (1) 

 
where N is a nonlinear operator, u(x, t) is an unknown function, and x and t denote spatial and temporal 

independent variables. By means of homotopy analysis method, we first construct the so-called zeroth-

order deformation equation 

(1 − 𝑝)𝐿[𝜙(𝑥, 𝑡; 𝑝) − 𝑢0(𝑥, 𝑡)] =  ћ𝑝𝑁[𝑢(𝑥, 𝑡)], (2) 
 
where p ϵ [0; 1] is the embedding parameter, ћ is a non-zero auxiliary parameter, L is an auxiliary linear 

operator, u0(x; t) is an initial guess of u(x, t) and φ(x, t; p) is a unknown function. Obviously, when p = 0 

and p = 1, it holds 

𝜙(𝑥, 𝑡; 0) =  𝑢0(𝑥, 𝑡), 𝜙(𝑥, 𝑡; 1) =  𝑢(𝑥, 𝑡), (3) 
 

Thus, as p increases from 0 to 1, the solution φ(x, t; p) varies from the initial guess u0(x; t) to the exact 

solution u(x, t). Expanding φ(x, t; p) in Taylor series with respect to p, we have 

 

𝜙(𝑥, 𝑡; 𝑝) =  𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡)𝑝𝑚,

∞

𝑚=1

 (4) 

 
Where 

𝑢𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜙(𝑥, 𝑡; 𝑝)

𝜕𝑝𝑚
 |𝑝=0 . (5) 

 

If the auxiliary linear operator, the initial guess, the auxiliary parameter ћ, and the auxiliary function are 

properly chosen, series 4 converges at p = 1, then we have 

       

𝑢(𝑥, 𝑡) =  𝑢0 + ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=1

, (6) 

 
which must be one of solutions of original nonlinear equations. According to definition (6), the governing 

equation can be deduced from the zero-order deformation (4). Define the vector 

 

𝑢⃗ 𝑛(𝑥, 𝑡) = {𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡),⋯ , 𝑢𝑛(𝑥, 𝑡)}. (7) 
 

Differentiating (4) m-times with respect to the embedding parameter p and then setting p = 0 and finally 

dividing them by m!, we have the so-called mth-order deformation equation 

 
𝐿[𝑈𝑚(𝑥, 𝑡) − 𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] = ћ𝑅𝑚(𝑢⃗ 𝑚−1), (8) 

 
where 

𝑅𝑚(𝑢𝑚−1) =
1

(𝑚 − 1)!

𝜕𝑚−1𝑁(𝑥, 𝑡; 𝑝)

𝜕𝑝𝑚−1
 |𝑝=0 , 

 
 

(9) 
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𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 > 1

. 10 

 
 

3. Modified homotopy analysis method 

For MHAM consider the following general nonlinear differential equation; 

𝑁[𝑢(𝑥, 𝑡)] = 𝐴(𝑢) − 𝑓(𝑥), (11) 

where A is a general differential operator, f(x) is a known analytic function. In this study, alternatively, 

f(x) is approximated by optimal Newton interpolation, Pf(x) over the interval [a, b], 

𝑓(𝑥) ≈ 𝑃𝑓(𝑥) = 𝑓(𝑥0) + ∑ 𝑓[𝑥0,⋯ , 𝑥𝑘] ∏ (𝑥 − 𝑥𝑗)

𝑗=𝑘−1

𝑗=0

𝜗

𝑘=1

,  

where xks are the roots of the (ϑ + 1)st Chebyshev polynomial of the first kind Tϑ+1(x) in [-1, 1] translated 

onto the interval [a, b] given by 

𝑥𝑘 =
𝑎 + 𝑏

2
+

𝑏 − 𝑎

2
 cos(

2𝑘 + 1

2𝜗 + 2
𝜋) ,   𝑘 = 0, 1,⋯ , 𝜗. 

 

And 

𝑓[𝑥0, ⋯ , 𝑥𝑘] =
𝑓[𝑥1,⋯ , 𝑥𝑘] − 𝑓[𝑥0,⋯ , 𝑥𝑘−1]

𝑥𝑘 − 𝑥0
 

 

𝑓[𝑥𝑗] = 𝑓(𝑥𝑗),   ∀𝑗 = 0,⋯ , 𝑘. 
 

4. Numerical Examples 

In this section, we demonstrate the effectiveness of the proposed modification of the HAM by applying it 

to two nonlinear and one linear problems. For each example, the M-term approximation of u(x) and the 

exact solution is presented. Moreover, all numerical results obtained by the modification of the HAM 

using optimal Newton interpolation polynomial, uM, are compared with the exact solutions. The algorithm 

are performed by Matlab version 7.6.0.324 (R2008a) with 10 digits precision. 

 

Example 1. Consider the following quadratic Riccati differential equation taken from [1] 
𝑢′(𝑥) − 2𝑒2𝑥𝑢(𝑥) + 𝑒𝑥𝑢(𝑥)2 = 𝑒𝑥 − 𝑒3𝑥,   0 ≤ 𝑥 ≤ 1 (12) 

subject to the initial condition u(0) = 1 and the exact solution u(x) = et. To solve (12) by HAM, we 

construct the following homotopy: 

(1 − 𝑝) (
𝜕𝑢

𝜕𝑥
−

𝜕𝑢0

𝜕𝑥
) = 𝑝ћ(

𝜕𝑢

𝜕𝑥
− 2𝑒2𝑥𝑢(𝑥) + 𝑒𝑥𝑢(𝑥)2 − 𝑓(𝑥)), (13) 

Where 

𝑓(𝑥) = 𝑒𝑥 − 𝑒3𝑥. (14) 

Assume the solution of (12) to be in form: 
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𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + 𝑝3𝑢3 + ⋯, (15) 

Substituting (15) into (13) and collecting terms of the same power of p gives 

𝑝0: 
𝜕𝑢0

𝜕𝑥
−

𝜕𝑢0

𝜕𝑥
= 0,  

𝑝1: 
𝜕𝑢1

𝜕𝑥
= ћ(−2𝑒2𝑥𝑢0 + 𝑒𝑥𝑢0

2 − 𝑓(𝑥)),  

𝑝2: 
𝜕𝑢2

𝜕𝑥
= ћ (

𝜕𝑢1

𝜕𝑥
− 2𝑒2𝑥𝑢1 + 2𝑒𝑥𝑢0𝑢1) +

𝜕𝑢1

𝜕𝑥
,  

𝑝3: 
𝜕𝑢3

𝜕𝑥
= ћ (

𝜕𝑢2

𝜕𝑥
− 2𝑒2𝑥𝑢2 + 𝑒𝑥𝑢1

2 + 2𝑒𝑥𝑢0𝑢2) +
𝜕𝑢2

𝜕𝑥
,  

𝑝4: 
𝜕𝑢4

𝜕𝑥
= ћ (

𝜕𝑢3

𝜕𝑥
− 2𝑒2𝑥𝑢3 + 2𝑒𝑥𝑢0𝑢3 + 2𝑒𝑥𝑢1𝑢2) +

𝜕𝑢3

𝜕𝑥
,  

⋮   (16) 

The given initial value admits the use of 

𝑢0(𝑥) = 1. 

To solve the above equations, we use the optimal Newton interpolation polynomial of f. For this reason, 

by setting ϑ = 10, the optimal Newton interpolation polynomial of f becomes, 

𝑓(𝑥) ≈ 𝑃𝑓(𝑥) = 𝑓(𝑥0) + ∑ 𝑓[𝑥0,⋯ , 𝑥𝑘] ∏ (𝑥 − 𝑥𝑗)

𝑗=𝑘−1

𝑗=0

𝜗

𝑘=1

,  

where 

𝑥𝑘 =
1

2
+

1

2
cos(

2𝑘 + 1

22
𝜋) ,   𝑘 = 0, 1,⋯ , 10.  

So, we have 

𝑓(𝑥) ≈ −.0000000087 − 1.9999978801𝑥 − 4.0000843980𝑥2 − 4.3320282556𝑥3

− 3.3436322922𝑥4 − 1.9695528102𝑥5 − 1.1442974648𝑥6

− .1951490620𝑥7 − .4310833367𝑥8 + .1249908871𝑥9

− .0764204618𝑥10. 

(17) 

By substituting (17) into (16), we obtain ui(x), for i≥1, as 

𝑢1(𝑥) = .4999999956𝑥 + .2500005299𝑥2 − .0833473996𝑥3 − .2290035319𝑥4

− .2551965625𝑥5 − .1203794009𝑥6 − .0691363266𝑥7 − .0090346142𝑥8

− .0232449845𝑥9 + .0063904999𝑥10, 
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𝑢2(𝑥) = 2499999978x + .1250002649x2 − .1249929653x3 − .1354983648x4

− .0723990634x5 − .0184992586x6 − .0860715200x7 − .0844052679x8

− .0804320238x9 + .0406467414x10 − .0258653744x11−.0114237435x12

− .0047451763x13 − .0018075012x14 − .0006454048x15 − .0002143958x16

− .0000650433x17 − .0000177719x18 − .0000043025x19

− .0000009680x20−.0000001454x21 − .0000000441x22, 

… 

Here, for a given arbitrary natural number M, 

𝑢𝑀 = ∑𝑢𝑖(𝑥)

𝑀

𝑖=0

, 

 

 

It denotes the M-term approximation of the exact solution u(x) which is obtained using optimal Newton 

interpolation of f. In Table 1, we give the numerical results of the exact solutions and the approximate 

solutions obtained by the present method with ћ=-0.5, M = 10 and ϑ=10 in the interval 0 ≤ x ≤ 1. The 

absolute errors for this solution are shown in Table 2. The graphs of approximated trajectory and exact 

trajectory are plotted in Figure 1. 

 

Table 1: Numerical results of the modified HAM with ћ=-0.5 for 

Example 1 

xi exact solution u(xi) Modified HAM M = 10 

0.2 1.2214027581 1.2213091060 
0.4 1.4918246976 1.4926294519 
0.6 1.8221188003 1.8263387073 
0.8 2.2255409284 2.2300568140 

 

Table 2: Absolute errors of the modified HAM with ћ=-0.5 for Example 1 

 xi  M = 10  

 0.2 9.36521e-005  
 0.4 8.047543e-004  
 0.6 4.2199070e-003  
 0.8 4.5158856e-003  

 

Example 2. Consider the following quadratic Riccati differential equation taken from [13] 

𝑢′(𝑥) − 𝑢(𝑥) + 𝑢(𝑥)2 −
1

1 + 𝑥
= 0,   0 ≤ 𝑥 ≤ 1 (18) 

 
subject to the initial condition u(0) = 1 and the exact solution u(x) =1/(1+x). To solve (18) by HAM, we 

construct a homotopy: 

 

(1 − 𝑝) (
𝜕𝑢

𝜕𝑥
−

𝜕𝑢0

𝜕𝑥
) = 𝑝ћ(

𝜕𝑢

𝜕𝑥
− 𝑢(𝑥) + 𝑢(𝑥)2 + 𝑓(𝑥)), (19) 

Where 



F. Ghomanjani, F. Divandar/ J. Math. Computer Sci.    14 (2015), 162-170 
 

167 
 

𝑓(𝑥) = −
1

1 + 𝑥
. (20) 

Assume the solution of (18) to be in form: 

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + 𝑝3𝑢3 + ⋯, (21) 

using the optimal Newton interpolation polynomial of f, we have 

𝑓(𝑥) ≈ −.9999999924 + .9999981568x − .9999247324x2 + .9987793121x3

− .9896159497x4 + .9468535921x5 − .8224540061x6

+ .5900591751x7 − .3111853779x8 + .1033970585x9

− .0159072397x10. 

(22) 

 

By substituting (22) into (19), we obtain ui(x), for i≥1, as 

𝑢1(𝑥) = −.9999999924x + .4999990784x2 − .3333082441x3 + .2496948280x4

− .1979231899x5 + .1578089320x6 − .1174934294x7 + .0737573968x8

− .0345761531x9 + .0103397058x10 − .0014461127x11, 

 

    𝑢2(𝑥) = 0.4999999962x2 − .1666663594x3 + .0833270610x4 − .0499389656x5

+ .0329871983x6 − .0225441331x7 + .0146866786x8 − .0081952663x9

+ .0034576153x10 − .0009399732x11 + .0001205093x12, 

… 

Here, for a given arbitrary natural number M, 

𝑢𝑀 = ∑𝑢𝑖(𝑥)

𝑀

𝑖=0

,  

It denotes the M-term approximation of the exact solution u(x) which is obtained using optimal Newton 

interpolation of f. 

In Table 3, we give the numerical results of the exact solutions and the approximate solutions obtained by 

the present method with ћ = -1, M = 10 and ϑ = 10 in the interval 0 ≤ x ≤ 1. The absolute errors for this 

solution are shown in Table 4. The graphs of approximated trajectory and exact trajectory are plotted in 

Figure 2. 

 

Table 3: Numerical results of the modified HAM with ћ=-1 for Example 

2 

xi exact solution u(xi) Modified HAM M = 10 

0.2 0. 8333333333 0. 8333333345 
0.4 0. 7142857142 0. 7142877171 
0.6 0. 6250000000 0. 6251263624 
0.8 0. 5555555555 0. 5578072670 
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Table 4: Absolute errors of the modified HAM with ћ=-1 for Example 2 

 xi  M = 10  

 0.2 1. 2e-009  
 0.4 2. 0029e-006  
 0.6 1. 263624e-004  
 0.8 2. 2517115e-003  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: comparison exact trajectory 

approximated trajectory with presented method 

for Example 1, with ћ=-0.5 and M = 10. 

Figure 2: comparison exact trajectory 

approximated trajectory with presented method 

for Example 2, with ћ=-1 and M = 10. 

 



F. Ghomanjani, F. Divandar/ J. Math. Computer Sci.    14 (2015), 162-170 
 

169 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The error graph of the modified HAM 

with ћ=-0.5 and M = 10 for Example 1. 

 

Figure 4: The error graph of the modified HAM 

with ћ=-1 and M = 10 for Example 2. 

 



F. Ghomanjani, F. Divandar/ J. Math. Computer Sci.    14 (2015), 162-170 
 

170 
 

5. Conclusion 

A simple and effective algorithm based on optimal Newton interpolation polynomial is presented which is 

stated for solving quadratic Riccati differential equation. The method is computationally attractive, and 

some examples are solved. 
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