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Abstract 
In this research, both kinematic interaction (KI) and inertial interaction (II) effects of soil-structure 

interaction (SSI) on inelastic seismic demands of structures are investigated. Site effect is also considered 

only by applying ground motions recorded at site classes D and E (as defined in NEHRP[1] and 

FEMA-440 [2]) that on them SSI effect is considerable. Carrying out a parametric study, the structure and 

underlying soil are modeled as a Single Degree Of Freedom (SDOF) structure with elasto-plastic behavior 

and a mathematical simplified 3DOF system, based on the concept of Cone Models, respectively.  Also 

the foundation is considered as a rigid cylinder embedded in the soil with different embedment ratios. 

Then the whole soil-structure systems are analyzed under 30 ground motion recorded at site classes D and 

E and a comprehensive parametric study is performed for a wide range of non-dimensional parameters 

defining SSI problem. Results indicated that ignoring SSI causes considerable and in some cases un-con-

servative differences in seismic demands of structures. In the case of embedded foundation, it is observed 

that rocking input motion due to KI plays the main role and increase the structural demands especially in 

deep foundation embedment and slender buildings located on soft soils. 

Consequently, comparing the results with and without inclusion of SSI effects reveals that both II and 

KI effects of SSI play an important role in analyses or design procedures and ignoring them may cause 

un-conservative results in cases of deep embedded foundation and slender structures.  

Keywords: soil-structure interaction; cone model; foundation embedment; kinematic interaction (KI); Inertial 

interaction (II); Strength reduction factor; ductility demand; Elastic and inelastic seismic demands 
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1. Introduction 

The flexibility of structure’s underlying soil affects the response of the structure due to SSI. This 
phenomenon has two main effects as follows: 

1- The difference between stiffness of the foundation and the surrounding soil induces the 
difference between the motion experienced by the essentially rigid foundation (the foundation input 
motion (FIM)) and the free-field motion (FFM). This effect is called the KI effect and happens even if 
the foundation has no mass. In other words, the FIM is the result of geometric averaging of the 
seismic input motion in the free field [26].  

2- The flexibility of soil affects the response of the structure subjected to FIM. In fact, the soil-
structure system behaves as a new system with different dynamic properties (longer natural period 
and usually higher damping). This effect is called II effect. 

Numerous researches have been done on the effects of SSI over the past few decades more 
specifically in 1970s. Veletsos and Meek [3] and Veletsos and Nair [4] recognized that the effects of 
inertial interaction on elastic structures could be approximated by modifying the fundamental period 
and the damping ratio of the fixed base replacement oscillator. In addition, the variations of the 
equivalent natural period and damping ratio have been studied by Wolf [5]; Aviles and Perez-Rocha 
[6]. But, the inelastic behavior of structures has recently been given more attention by some 
researchers. Bielak [7] first studied this matter by investigating the harmonic response of a bilinear 
structure supported on a visco-elastic half-space and found that the resonant structural deformation 
could be significantly larger than the deformation obtained from the fixed-base structure. Aviles and 
Perez-Rocha [8] considered a SDOF elasto-plastic structure supported on a rigid foundation 
embedded in a visco-elastic stratum of constant thickness over a uniform visco-elastic half space. 
They concluded that the effects of the foundation flexibility and the yielding of structures are 
beneficial for slender structures with a natural period somewhat larger than the site period, but 
detrimental if the structural period is shorter than the site period. Aviles and Perez-Rocha [9] 
employed this replacement oscillator formulation in NEHRP provisions. But most of aforementioned 
documents were prepared for surface foundations and the KI effect was ignored. In some researches 
effect of foundation embedment was introduced as simplified factors to modify the soil dynamic 
stiffness. The dynamic stiffness of embedded foundations was studied by Beredugo and Novak [10] 
and Elsabee etal. [11]. Morray [12] studied the KI problem of embedded circular foundations 
parametrically for a varied range of parameters typically found in nuclear reactor design. Luco etal. 
[13] pointed to the influence of rocking input motion due to KI effect on the response of structures 
with embedded foundation. The general effect of the foundation embedment on the structural 
response through simplified methods was also studied by Bielak [14], Kausel etal. [15] and more 
recently by Aviles and Perez-Rocha [16] and Takewaki et al. [17]. 

Almost all mentioned researches were conducted on linear soil-structure systems. Examples of early 
works on the response of nonlinear structures are made by Veletsos and Verbic [18], Bielak [19] and 
Muller and Keintzel [20]. However, most of the researches are focused on surface foundations, which 
ignore KI effect and believed that ignoring KI effect is conservative for the structure [21]. NEHRP [1] 
also ignore the KI effect and FEMA-440 [2] supports this idea by considering the reducing effect of KI 
due to base slab averaging and foundation embedment. However, it seems that despite the reducing 
effect of KI on the translational component of the FIM, the resulting rocking component may 
increase the structural demands especially for soil-structure systems with deep embedded 
foundations. In this research, soil-structure systems are analyzed parametrically for a set of non-
dimensional parameters, which define the soil-structure problem, using 30 ground motions recorded 
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at soil sites D and E. Then kinematic and inertial effects of SSI and site effect are investigated on 
elastic and inelastic seismic demands of structures. 

2. Soil-Structure model 

The soil-structure system considered in this study is shown in Figure 1. (a) that is based on the 
following assumptions: 

1- The super-structure is modeled as an equivalent elasto-plastic SDOF system with height h, mass 
m and mass moment of inertia I, model with soil material damping, which may be considered to be 
the effective values for the first mode of vibration of a real multi degree of freedom system. 

2- The foundation is considered to be rigid with embedment depth e and mass and mass moment 
of inertia fm  and fI , respectively. 

The soil beneath the structure is considered as a homogeneous half-space and replaced by a 
mathematical discrete model based on the concept of cone models for embedded foundations [22]. 
Two degrees of freedom (DOFs) are introduced in this model for the foundation which are sway ( fu ) 
and rocking ( f ). An additional internal DOF ( 1 ) is introduced for the soil model to consider 
frequency dependency of soil stiffness. Representative springs of soil behave elastically but effect of 
soil nonlinearity is approximately introduced using a degraded shear wave velocity for the soil 
medium, consistent with the estimated strain level in soil [23]. In NEHRP [1] and FEMA-440 [2], the 
strain level in soil is related to the peak ground acceleration. 

Consequently, a 4-DOF model is formed for the whole soil-structure system as shown in Figure 1. (b).  

 

Figure 1. (a) The soil-structure system; (b) Mathematical model of soil-structure 

The structure, foundation and soil related parameters, introduced in Figure 1. (b), are defined as 
follows: 
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Where,  , , sV and r are the specific mass, Poisson’s ratio, shear wave velocity of the soil and the 
radius of the cylindrical foundation, respectively. Besides, h0 , r0 , r1 and r1 are non-dimensional 
coefficients of the discrete model in terms of e/r and are calculated using the following formulae: 
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Sway springs and dashpots are connected to the super-structure model with the following 
eccentricities in order to account for the coupling terms between the sway and rocking degree of 
DOFs in the stiffness matrix of the embedded foundation: 

       efk 25.0                                                                                                                                                      (11) 
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e
eefc                                                                                                                                (12) 

The whole soil-structure model is subjected to sway and rocking components of FIM ( gu and g ) as 
shown in figure 1. (b). More details about components of FIM are described in section 4. 

3. Problem parameters 

The response of soil-structure system depends basically on the size of the structure, its dynamic 
properties, and the soil profile as well as the applied excitation. The effect of these factors can be 
best described by the following non-dimensional parameters [24]. 

- A non-dimensional frequency as an index for the structure-to-soil stiffness ratio: 
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Where fix  is the circular frequency of the fixed-base structure. This index can have values of up to 3 
for conventional building-type structures resting on very loose soils; while infinitesimal values close 
to zero are representative of fixed-base structures [25]. 

- Aspect ratio of the building h/r, an index for its slenderness ratio. 

- Embedment ratio of the foundation defined as e/r. 

- Ductility demand of the structure defined as: 

       
y

m

u

u
                                                                                                                                                          (14) 

Where, mu  and yu  are the maximum displacement caused by a specific base excitation and the yield 
displacement of the structural stiffness, respectively. 

- Strength reduction factor (SRF) of the structure defined as: 
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F
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Where, 0F  and yF  are the strength required to maintain the structure in elastic range and inelastic 
strength demand of the structure, respectively. 

- Structure-to-soil mass ratio index defined as: 
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This parameter varies between 0.4 and 0.6 for ordinary building-type structures [25] and is set equal 
to 0.5 in this study. 

- Foundation-to-structure mass ratio mm f /  that is assigned 0.1. 

- Poisson’s ratio of soil  that is considered to be 0.25 for alluvium and soil in this study. 

- Material damping ratios of the structure str that is set to 5% of the critical damping at the 
effective period of the soil-structure system. 

The first three factors not only participate within higher exponents in the equations of motion but 
also have a vaster range of variations. Thus, they are commonly selected as the key parameters of 
the system [24]. But the other parameters are those with less importance and were set to typical 
values for ordinary buildings. 

4. Kinematic interaction effect 

As introduced in soil-structure model of Figure 1, two different FIM components are produced as a 
result of KI: Horizontal FIM ( gu ) and rocking FIM ( g ).  

Horizontal FIM component generally decreases in comparison with FFM especially for more 
embedment depths. But rocking FIM amplitude has an increase as the depth of embedment 
increases. To evaluate FIM components, the mathematical (Meek and Wolf [26]) method is used 
based on the concept of double-cone models. Double cones are used to represent a disk embedded 
in a full space. An embedded foundation is then replaced by a stack of N disks commencing from the 
lowermost point of the foundation, e, and continuing to the ground surface. In order to provide 
stress-free conditions on the ground surface, another stack of N disks, which are the mirror images of 
the former disks, are considered on the other side of the ground surface as demonstrated in Figure 2. 
These mirror image disks are excited by the same excitations as the original disks; therefore, stress-
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free conditions on the ground surface will be guaranteed. By using the green functions at the level of 
each disk and its mirror image, the N ×N flexibility matrix of the free field is evaluated. The inverse of 
this flexibility matrix is the dynamic stiffness matrix of the free field ( fS ). Then by extracting the 
excavated part of the soil from the model and inserting the rigid foundation, the dynamic stiffness of 
the embedded foundation can be evaluated. Because the rigid foundation is inserted, the dimension 
of the stiffness matrix is reduced from N to 2 for introduced sway-rocking foundation model. 

This can be done by using an N ×2 kinematic conditions matrix (A), which is calculated based on the 
foundation geometry. Thus, the dynamic stiffness matrix of the rigid foundation ( gS ) is calculated 
using the mass matrix of the excavated part of the soil (M) as follows: 

        MASAS
2 f

T

g                                                                                                                                (17) 

Subsequently, the FIM vector is evaluated using the following equation: 
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Where, uf is the N ×1 vector of the FFM evaluated at the level of the disks and ug is the 2×1 vector of 
the FIM comprising the two components of the sway and rocking motions: 
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In deriving Equation (18), the following relationship between the dynamic stiffness and motion of the 
free-field state as well as those of the foundation is used: 

       ggff

T
uSuSA                                                                                                                                         (20) 

5. Method of analysis 

The soil-structure model, introduced in previous section, has the capability to be used directly in a 
time domain analysis to assess inelastic response of soil-structure systems. This  mathematical model 
has been analyzed by direct step-by-step integration, using β-Newmark method, subjected to a total 
of 30 strong motions recorded at soil types D and E (as defined in NEHRP[1] and classified in FEMA-
440, Appendix C[2]) on which soil-structure interaction effect is considerable. Details of selected 
ground motions are listed in Tables 1 and 2. 

It is known that for any specific base excitation, inelastic response of fixed-base structures is mainly a 
function of the natural period of the structure, fixT and the level of inelastic deformation (the target 
ductility ratio, µ in design procedure or strength reduction factor, R in analysis procedure. The 
material damping and the type of hysteretic behavior of structure have been found to be less 
important. In soil-structure systems the three non-dimensional key parameters a0, h/r and e/r also 
play an important role. Thus, a parametric study has been conducted using the five above-mentioned 
parameters ( fixT , µ or R, a0 , h/r and e/r). For each earthquake record, a set of 2,160 soil-structure 
systems consisting of 60 SDOF structures with fixed-base periods ranging from 0.05 to 3 s with three 
different values of aspect ratio (h/r =1, 3, 5), four values of embedment ratio (e/r=0,0.5,1,2) and three 
values of non-dimensional frequency (a0=0, 1, 3) are investigated. Cases with a0 = 0 are indeed 
related to fixed-base state. The response of each system is investigated both with and without 
inclusion of KI effect. For any given case, the inelastic strength demand of structure ( yF or yF

~
) was 

calculated by iteration in order to reach the target ductility (µ=2, 4) in the structure, in addition to 
the elastic case (µ=1), within 1% of accuracy. Consequently, at least a total of 12,960 independent 
non-linear analyses have been carried out for different soil-structure systems subjected to 30 strong 
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motions. Using MATLAB mathematical software, a comprehensive code is conducted to support 
mentioned purposes as following steps: 

     5.1. Analysis procedure 

For each soil-structure model, the following procedure is used to investigate the SSI effect on 
inelastic demands of the structure: 

1-  The yield strength demand of the structure in the fixed-base state (ignoring the soil effect) is 
calculated by iteration to reach a specific ductility level within 1% of accuracy when subjected to 
a specified free-field ground motion. 

2-  The ductility demand of the structure, as a part of the soil-structure system, is calculated for soil-
structure systems with different values of a0, h/r and e/r, providing the same yield strength for 
the structure as calculated in the fixed-base state.  

3-  As the input motion to the soil-structure system (in Sec. 2,), both the FFM and the resulted FIM 
are used in order to investigate the SSI effect with and without KI. 

In each case, the difference between the ductility demand of the fixed-base model and that of the 
structure as a part of the soil-structure system reflects the problem that does exists in conventional 
design methodology, i.e. the difference between our expectation of structural behavior as a fixed-
base model and the way that structures behave in reality when located on flexible soil. 

 

 

Figure 2. Model of the embedded foundation comprising stack of N disks and their mirror image 

6. Effect of SSI on seismic demands of structures 

The effects of SSI on elastic and inelastic demands of structure are investigated as following sections. 
Comprehensive analyses are performed through statistical study. The results are calculated using a 
set of non-dimensional parameters introduced in Sec. 3.Results include both KI and II effects and are 
provided for models with three embedment ratio e/r = 0, 1 and 2, three different aspect ratios, h/r = 
1, 3 and 5 as the representatives of squat, medium and slender buildings and for three different 
values of non-dimensional frequency a0=1, 2 and 3 in comparison to the fixed-base structure (a0 = 0). 
The value of a0 = 3 is representative of systems with severe SSI effect for conventional building type 
structures [25]. The effect of SSI on inelastic seismic demand are also investigated on structures 
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undergoing three different ductility levels (µ = 2, 4). The results for site classes D and E are indeed 
the average values for soil-structure systems subjected to 15 different strong motions listed in Table 
1 and 2 respectively. 

Table 1: Selected ground motions recorded at site class D 

Distance

(km) 

PGD 

(cm) (cm/s2) 
Dir.

PGA Station 

No. 
Station Name 

Earthquake 

Name 
Date No. 

10.45 8.981 269.6 225 5053 Calexico, Fire Station Imperial Valley 10/15/79 D1 

21.98 5.771 136.2 230 5059 El Centro #13, Strobel Residence Imperial Valley 10/15/79 D2 

11.07 7.152 394.2 0 47380 Gilroy 2, Hwy 101 Bolsa Road Motel Loma Prieta 10/17/89  D3 

12.82 8.257 531.7 0 47381 Gilroy 3, Sewage Treatment Plant Loma Prieta 10/17/89  D4 

24.57 12.63 163.1 0 57066 Agnews, Agnews State Hospital Loma Prieta 10/17/89  D5 

52.68 3.893 166.5 0 58393 Hayward, John Muir School Loma Prieta 10/17/89  D6 

13.69 2.094 207.9 90 47380 Gilroy #2, Keystone Rd. Morgan Hill 04/24/84 D7 

13.02 3.457 189.8 90 47381 Gilroy #3 Sewage Treatment Plant Morgan Hill 04/24/84 D8 

11.54 3.114 341.4 360 57382 Gilroy #4, 2905 Anderson Rd Morgan Hill 04/24/84 D9 

12.07 2.051 183.0 0 57425 Gilroy #7, Mantnilli Ranch, Jamison Rd Morgan Hill 04/24/84 D10 

26.73 2.288 393.3 0 90021 Los Angeles, N. Westmoreland Northridge 01/17/94 D11 

21.2 12.43 207.0 90 135 Los Angeles, Hollywood Storage Bldg. San Fernando 02/09/71 D12 

45.3 6.57 104.6 277 288 Vernon, Cmd Terminal Building 4814 L.Vista San Fernando 02/09/71 D13 

23.29 1.973 288.4 270 14403 Los Angeles, 116th St School WhittierNarrows 10/01/87 D14 

20.82 3.952 193.2 180 14368 Downey, County Maintennance Bldg WhittierNarrows 10/01/87 D15 

Table 2: Selected ground motions recorded at site class E 

Distance

(km) 

PGD 

(cm) (cm/s2) 
Dir.

PGA Station 

No. 
Station Name 

Earthquake 

Name 
Date No. 

58.65 4.192 231.5 0 58223 San Francisco,  International Airport Loma Prieta 10/17/89 E1 

58.65 6.023 322.7 90 58223 San Francisco, International Airport Loma Prieta 10/17/89 E2 

72.20 3.526 191.3 180 58224 Oakland, Title & Trust Bldg. (2-story) Loma Prieta 10/17/89 E3 

72.20 7.238 239.4 270 58224 Oakland, Title & Trust Bldg. (2-story) Loma Prieta 10/17/89 E4 

94.6 4.876 134.7 270 1590 Larkspur Ferry Terminal Loma Prieta 10/17/89 E5 

94.6 3.267 94.6 360 1590 Larkspur Ferry Terminal Loma Prieta 10/17/89 E6 

76.9 8.398 254.7 260 1662 Emeryville, 6363 Christie Ave. Loma Prieta 10/17/89 E7 

76.9 3.790 210.3 350 1662 Emeryville, 6363 Christie Ave. Loma Prieta 10/17/89 E8 

43.8 6.285 277.6 90 58375 Foster City (APEEL 1;Redwood Shores) Loma Prieta 10/17/89 E9 

43.8 15.038 63.0 360 58375 Foster City (APEEL 1; Redwood Shores) Loma Prieta 10/17/89 E10 

43.23 12.610 270.0 43 1002 Redwood City (APEEL Array Stn. 2) Loma Prieta 10/17/89 E11 

43.23 6.839 222.0 133 1002 Redwood City (APEEL Array Stn. 2) Loma Prieta 10/17/89 E12 

77.42 4.411 112.0 0 58117 Treasure Island (Naval Base Fire Station) Loma Prieta 10/17/89 E13 

77.42 11.488 97.9 90 58117 Treasure Island (Naval Base Fire Station) Loma Prieta 10/17/89 E14 

12.85 20.98 216.8 230 5057 El Centro Array 3, Pine Union School ImperialValley 10/15/79 E15 

     6.1. Effect of SSI on inelastic strength demand spectra 

This effect is depicted in Figures 3 and 4 for structures (with µ =2 and 4)  located on site class E. 
Figure 3 shows the SSI effect on inelastic strength demand of structure with (µ = 2). The effect of SSI 
on inelastic strength demand of structures to reach a ductility level of (µ = 4) is also shown in Figure 
4. All the results have been normalized by the product of mass of structure and peak ground 
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acceleration (PGA). The results indicate a general trend of lower strength demands for soil-structure 
systems in comparison to the fixed-base structures. The exceptions are short period buildings with 
aspect ratio h/r = 1. This trend is clearer for the case of a0 = 3 where SSI effect is predominant. Also, it 
is seen that the SSI effect becomes less important as the structure undergoes more inelastic 
deformations (µ = 4). It means that SSI affects the elastic and inelastic strength demands of structure 
in different ways. This trend is identical in different embedment ratio. 

     6.2. Effect of SSI on Strength reduction factor (SRF) spectra  

In this section, SRF of soil-structure systems are computed using mentioned non-dimensional para-
meters. The graphs of SRF for structures located on site class E, with µ=2 and 4 are presented in Fig-
ures 5 and 6 as a function of structural period (Tfix). The results are presented as the average of the 
results due to different strong motions in each soil category.  

All graphs show a common trend of apparent lower SRF for larger values of a0. It means that SSI 
reduces SRF values considerably and the more SSI effect, the more reduction in SRF. The effect of SSI 
on SRF is higher for slender buildings (h/r = 3 and 5) and for larger target ductility (µ=4). In ATC3-06 
provisions [27], it is believed that the SRFs proposed for fixed-base models can be used to approxi-
mate the inelastic strength demands of soil-structure systems as well. However, given the results of 
Figure 5 and 6, it can be concluded that using this idea leads to underestimation of inelastic strength 
demands of soil-structure systems. Consequently, the structure would experience higher ductility ra-
tios than expected. 

     6.3. Effect of SSI on ductility demand of structure 

In this part, ductility demand of the structure, as a part of the soil-structure system, is calculated for 
soil-structure systems with different values of a0, h/r and e/r, providing the same yield strength for the struc-
ture as calculated in the fixed-base state. As seen in Figures 7, 8, 9 and 10, for structures with surface 
foundation (e/r=0), there is a threshold period before which the flexible-base ductility is greater than 
that of the fixed-base one; afterwards, this trend is reversed. The more the aspect ratio, the greater 
is the difference between ductility demands of the flexible-base and the fixed-base models. As shown 
in the same figure, though the embedment of structure generally reduces ductility demands of squat 
buildings with h/r=1, it results in higher demands for slender buildings with h/r=3 and 5. The effect is 
intensified by increasing the embedment ratio. Thus, it is observed that the SSI increases the ductility 
demand of slender structures with deep embedment almost in the whole range of demonstrated pe-
riod. 

All trends discussed above are intensified by increasing the non-dimensional frequency a0. Hence, it 
can be concluded that foundation embedment is, in general, beneficial for squat structures while it 
may increase ductility demands for the case of slender structures. Even for slender structures, the in-
crease in ductility demands is not significant for embedment ratios up to e/r=1. However, for deeply 
embedded structures, the ductility demand can be much higher than expected. As seen, the ductility 
demand for the case of h/r=3, as the representative of slender structures, increases with the em-
bedment ratio and reaches a value of 9 in embedment ratio of 2; 50% more than the target ductility. 
However, for squat structures with h/r=1, ductility demand is always less than the presumed fixed-
base target ductility.  

     6.4. Effect of KI on doctility demand of structure 

As mentioned before, SSI has two main effects. First, it transforms the FFM into FIM through KI effect 
and second, it affects the response of structures subjected to the resulted FIM due to flexibility of the 
soil under the structure through II effect. The role of KI effect is investigated in this section. Figures 
11 and 12 demonstrate the ductility demand curves evaluated both with and without inclusion of KI 
effect for soil-structure systems located on site classes D and E, with fixed-base target ductility of 4. 
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As seen, for squat structures (h/r=1), inclusion of KI effect generally reduces the flexible-base 
ductility. In fact, the ductility demand of soil-structure systems without KI effect is very close to fixed-
base target ductility, for almost the whole range of period. This means that KI plays the main role in 
reducing ductility demands. This trend is observed more clearly in case of a0= 3. For slender 
structures with h/r=3 and 5, however, the importance of KI effect depends on the embedment ratio. 
For shallow foundations (e/r=0.5), the effect of KI is negligible. But, by increasing the embedment 
ratio, KI affects the ductility demand more considerably leading to a significant effect for e/r=2. In 
other words, the FIM is considered as a more severe input motion than the original FFM in such 
cases. 

7. Conclusion 

Using mathematical equations to model underlying soil, the response of soil-structure systems was 
studied parametrically to assess the effect of SSI on the elastic and inelastic demands of structures 
with embedded foundation to consider site effects and both II and KI effects of SSI. Three non-
dimensional parameters, the non-dimensional frequency (a0), the aspect ratio of the structure (h/r) 
and embedment ratio of the foundation (e/r), are selected as the key parameters of the problem.  
The considered soil-structure model consists of an elasto-plastic SDOF super-structure embedded in 
a homogeneous elastic half-space. Based on this model and the ground motions recorded at different 
soil types (site classes D and E), a comprehensive statistical study is carried out and the following 
conclusions are made: 

1- SSI reduces the elastic and inelastic strength demand of structures. But when the structure 
undergoes more inelastic deformations (µ = 4), this effect becomes less important. 

 2- The SSI effect on SRF of structures located on soft soils (site-classes D and E) is particularly 
important. In this case, SSI reduces SRF, which in turn may result in larger design forces. This 
conclusion has an important implication in practical design of structures when SSI effect is 
predominant.   

3- For structures with surface foundation (e/r=0), SSI increases the ductility demand of structure, as a 
part of soil-structure system, before a threshold period which is closely related to the predominant 
period of the ground motion. It means that structures having periods less than this threshold period 
may experience larger deformation than predicted by using conventional fixed-base models. In 
particular, the effect deserves special attention for the case of larger values of non-dimensional 
frequency a0 and where the predominant period of the record is long enough to cover the practical 
range of conventional buildings. It is also observed that increasing the aspect ratio of the structure 
increases the SSI effect before the threshold period. But for embedded structures, the SSI effect is 
different. Though the embedment of structure generally reduces ductility demands of squat buildings 
with h/r=1, it results in higher demands for slender structures with h/r=3 and 5. The effect is 
intensified by increasing the embedment ratio, e/r and non-dimensional frequency, a0. So, it may be 
concluded that foundation embedment is beneficial for squat structures while it may increase 
ductility demands in slender buildings. 

4- Comparing the results with and without inclusion of KI effect reveals that the rocking input motion 
due to KI plays the main role in this phenomenon, because the rocking component produces larger 
acceleration input on the mass of super-structure and leads to more severe structural response. 
Consequently, the rocking component of FIM, which is not allowed by common commercial 
softwares and usually ignored in conventional SSI analysis of buildings, may play an important role, 
especially for tall and slender structures. 

 



   L. Khanmohammadi, J. Vaseghi Amiri, M. Davoodi, M. Ghannad / J. Math. Computer Sci. 12 (2014) 320 - 336 
 

330 
 

 

8. Reference 

[1] BSSC, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other 
Structures, FEMA-450, Washington, 2003. 
[2] FEMA-440, Improvement of nonlinear static seismic procedures. ATC-55 Draft, Washington, 2005. 
[3] A.S. Veletsos, J. W. Meek, Dynamic Behavior Building-Foundation Systems, Earthquake Engineering 
and Structural Dynamic. 34 (1974) 121–138. 
[4] A.S. Veletsos, V.V.D Nair, Seismic Interaction of Soil on Hysteretic foundation, Journal of Structural 
Division (ASCE). 101 (1975) 109–129. 
[5] J.P. Wolf, Dynamic Soil-structure Interaction, Prentice Hall :New Jersey, 1985. 
[6] J. Aviles, L.E. Perez-Rocha, Diagrams of Effective Periods and Damping of Soil-structure Systems, 
Journal of Geotechnical and Geo-environmental Engineering. 125 (1999) 711–715. 
[7] J. Bielak, Dynamic Response of Non-linear Building-foundation Systems, Earthquake Engineering and 
Structural Dynamic. 6 (1978) 17–30. 
[8] J. Aviles, L.E. Perez-Rocha, Soil-structure Interaction in Yielding Systems, Earthquake Engineering and 
Structural Dynamic. 32 (2003) 1749–1771. 
[9] J. Aviles, L.E. Perez-Rocha, Design Concepts for Yielding Structures on Flexible Foundation, 
Engineering Structure. 27 (2005) 443–454. 
[10] Y.O. Beredugo, M. Novak, Coupled horizontal and rocking vibration of embedded footings, Canadian 
Geotechnical Journal. 9(4) (1972) 477–497. 
[11] F. Elsabee, E. Kausel, J.M. Roesset, Dynamic stiffness of embedded foundations, Proceedings of the 
ASCE Second Annual Engineering Mechanics Division Specialty Conference, North Carolina. (23–25 May 
1977) 40–43. 
[12] J.P. Morray, Kinematic interaction problem of embedded circular foundations. M.Sc. Thesis, 
Department of Civil Engineering, Massachusetts Institute of Technology, 1975. 
[13] J.E. Luco, H.L. Wong, M.D. Trifunac, A note on the dynamic response of rigid embedded 
foundations, Earthquake Engineering and Structural Dynamics. 4(2) (1975) 119–127. 
[14] J. Bielak, Dynamic behavior of structures with embedded foundations. Earthquake Engineering and 
Structural Dynamics. 3(3) (1975) 259–274. 
[15] E. Kausel, R.V. Whitman, J.P. Morray, F. Elsabee, The spring method for embedded foundations, 
Nuclear Engineering and Design. 48 (1978) 377–392. 
[16] J. Aviles, L. Perez-Rocha, Effects of foundation embedment during building–soil interaction, 
Earthquake Engineering and Structural Dynamics. 27(12) (1998) 1523–1540. 
[17] I. Takewaki, N. Takeda, K. Uetani, Fast practical evaluation of soil–structure interaction of 
embedded structures, Soil Dynamics and Earthquake Engineering. 23(3) (2003) 195–202. 
[18] A.S. Veletsos, B. Verbic, Dynamics of elastic and yielding structure–foundation systems, Proceedings 
of Fifth World Conference on Earthquake Engineering, Rome, Italy. (1973) 2610–2613. 
[19] J. Bielak, Dynamic response of non-linear building–foundation systems, Earthquake Engineering and 
Structural Dynamics 6(1) (1978) 17–30. 
[20] F.P. Muller, E. Keintzel, Ductility requirements for flexibly supported anti-seismic structures, 
Proceedings of the Seventh European Conference on Earthquake Engineering, Athens, Greece. 3 (20–25 
September 1982) 27–34. 
[21] J.P. Stewart, C. Comartin, J.P. Moehle, Implementation of soil–structure interaction models in 
performance based design procedures, Proceedings of the Third UJNR Workshop on Soil–Structure 
Interaction. Menlo Park. CA.  U.S.A. (March 2004) 29–30. 



   L. Khanmohammadi, J. Vaseghi Amiri, M. Davoodi, M. Ghannad / J. Math. Computer Sci. 12 (2014) 320 - 336 
 

331 
 

[22] J.P. Wolf, Foundation Vibration Analysis using Simple Physical Models, Prentice-Hall: Englewood 
Cliffs, NJ, 1994. 
[23] S.L. Kramer, Geotechnical Earthquake Engineering, Prentice-Hall: Englewood Cliffs, NJ,  1996. 
[24] A.S. Veletsos,  Dynamic of structure-foundation systems, In: Hal WJ, editor, Structural and 
Geotechnical Mechanics, Prentice- Hall: Englewood Cliffs, NJ. A Volume Honoring N.M. Newmark (1977) 
333–361.  
[25] M.A. Ghannad, A study on the effect of soil-structure interaction on the dynamic properties of 
structures using simplified methods, Ph.D. thesis. Japan: Nagoya University, 1998. 
[26] J.W. Meek, J.P. Wolf, Cone models for embedded foundation, Journal of Geotechnical Engineering 
Division (ASCE).120(1)( 1994)60–80. 
[27] ATC-3-06, Applied Technology Council, Tentative provisions for the development of seismic 
regulations for buildings, California, 1978. 
  



   L. Khanmohammadi, J. Vaseghi Amiri, M. Davoodi, M. Ghannad / J. Math. Computer Sci. 12 (2014) 320 - 336 
 

332 
 

 h/r=1 h/r=3 h/r=5 

e/r=0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e/r=0.5 

e/r=1 

e/r=2 

Figure3. Normalized inelastic strength demand spectra for site-class D. (µ=2) 
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Figure4. Normalized inelastic strength demand spectra for site-class D. (µ=4) 
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Figure5. Strength reduction factor spectra for site-class E. (µ=2) 
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Figure6. Strength reduction factor spectra for site-class E. (µ=4) 
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Figure7. Averaged ductility demand of soil-structure systems located on site-class D. (µfixed-base=2) 
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Figure8. Averaged ductility demand of soil-structure systems located on site-class D. (µfixed-base=4) 
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Figure9. Effect of embedment ratio on ductility demand of soil-structure systems located on site-class E. 

(µfixed-base=2) 
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Figure10. Effect of embedment ratio on ductility demand of soil-structure systems located on site-class E. (µfixed-base=4) 
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Figure11. Averaged ductility demand of different soil-structure systems located on site-class D with and without KI 

effect. (µfixed-base=4) 
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Figure12. Averaged ductility demand of different soil-structure systems located on site-class E with and 

without KI effect .(µfixed-base=4) 


