Journal of mathematics and computer science 13 (2014), 41-46

Arens Regularity of Banach Module Actions and the Strongly Irregular Property

Abotaleb Sheikhali¹, Abdolmotaleb Sheikhali², Neda Akhlaghi³

 ¹Department of Mathematics, Kharazmi University, Tehran, Iran E-mail address:<u>Abotaleb.sheikhali.20@gmail.com</u>
 ²Department of Mathematics, Damghan University, Damghan, Iran E-mail address:<u>Abdolmotaleb.math88@gmail.com</u>
 ³Department of Mathematics, Kharazmi University, Tehran, Iran E-mail address:<u>Neda.akhlaghi1365@gmail.com</u>

Article history: Received July 2014 Accepted August 2014 Available online September 2014

Abstract

Let *X*, *Y*, *Z* be normed spaces. We show that, if *X* is reflexive, then some extensions and adjoints of the bounded bilinear map $f: X \times Y \to Z$ are Arens regular. Also the left strongly irregular property equivalent to the right strongly irregular property. We show that the right module action $\pi_{2_n}^*: A^{(n+1)} \times A^{(n)} \to A^*$ factors, where A is a Banach algebra.

Keywords: Arens regular, module action, derivation, topological center, factor.

2010 Mathematics Subject Classification. 46H20, 46H25.

1. Introductionand Preliminaries

Arens showed in [1] that a bounded bilinear map $f: X \times Y \to Z$ on normed spaces, has two natural

different extensions f^{***} , f^{r***r} from $X^{**} \times Y^{**}$ into Z^{**} . When these extensions are equal, f is saidto be Arens regular. Throughout the article, we identify a normed space with its canonical image in thesecond dual.

Let X, Y, Z be normed spaces and $f: X \times Y \to Z$ be a bounded bilinear mapping. The natural extensions of f are as follows:

i) $f^*: Z^* \times X \to Y^*$, given by $\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle$ where $x \in X$, $y \in Y, z^* \in Z^*$ (f^* is saidthe adjoint of f).

ii) $f^{**}: Y^{**} \times Z^* \to X^*$, given by $\langle f^{**}(y^{**}, z^*), x \rangle = \langle y^{**}, f^*(z^*, x) \rangle$ where $x \in X, y^{**} \in Y^{**}, z^* \in Z^*$. iii) $f^{***}: X^{**} \times Y^{**} \to Z^{**}$, given by $\langle f^{***}(x^{**}, y^{**}), z^* \rangle = \langle x^{**}, f^{**}(y^{**}, z^*) \rangle$ where $x^{**} \in X^{**}, y^{**} \in Y^{**}, z^* \in Z^*$.

Let $f^r: Y \times X \to Z$ be the flip of f defined by $f^r(y, x) = f(x, y)$, for every $x \in X$ and $y \in Y$. Then f^r is a bounded bilinear map and it may extends as above to $f^{r***}: Y^{**} \times X^{**} \to Z^{**}$. In general, the mapping $f^{r***r}: X^{**} \times Y^{**} \to Z^{**}$ is not equal to f^{***} . When these extensions are equal, then f is Arens regular. If the multiplication of a Banach algebra A enjoys this property, then A itself is calledArens regular. The first and the second Arens products are denoted by \Box , \Diamond respectively.

One may define similarly the mappings $f^{****}: Z^{***} \times X^{**} \to Y^{***}$ and $f^{*****}: Y^{****} \times Z^{***} \to X^{***}$ and the higher rank adjoints. Consider the nets $(x_{\alpha}) \subseteq X$ and $(y_{\beta}) \subseteq Y$ converge to $x^{**} \in X^{**}$ and

 $y^{**} \in Y^{**}$ in the w^* -topologies, respectively, then

$$f^{***}(x^{**}, y^{**}) = w^* - \lim_{\alpha} w^* - \lim_{\beta} f(x_{\alpha}, y_{\beta})$$

and

$$f^{r^{***r}}(x^{**}, y^{**}) = w^* - \lim_{\beta} w^* - \lim_{\alpha} f(x_{\alpha}, y_{\beta})$$

so Arens regularity of f is equivalent to the following

$$\lim_{\alpha} \lim_{\beta} \frac{1}{\alpha} \langle z^*, f(x_{\alpha}, y_{\beta}) \rangle = \lim_{\beta} \lim_{\alpha} \langle z^*, f(x_{\alpha}, y_{\beta}) \rangle$$

if the limits exit for each $z^* \in Z^*$. The map f^{***} is the unique extension of f such that

 $x^{**} \to f^{***}(x^{**}, y^{**}): X^{**} \to Z^{**}$ is $w^* - w^*$ continuous for each $y^{**} \in Y^{**}$ and

 $y^{**} \rightarrow f^{***}(x, y^{**}): Y^{**} \rightarrow Z^{**}$ is $w^* - w^*$ continuous for each $x \in X$.

The left topological center of f is defined by

$$Z_l(f) = \{x^{**} \in X^{**}: y^{**} \to f^{***}(x^{**}, y^{**}): Y^{**} \to Z^{**} \text{ is} w^* - w^* \text{ continuous}\}.$$

Since $f^{r***r}: X^{**} \times Y^{**} \to Z^{**}$ is the unique extension of f such that the map $y^{**} \to f^{r***r}(x^{**}, y^{**}): Y^{**} \to Z^{**}$ is $w^* - w^*$ continuous for each $x^{**} \in X^{**}$, we can set

$$Z_l(f) = \{x^{**} \in X^{**}: f^{***}(x^{**}, y^{**}) = f^{r^{***r}}(x^{**}, y^{**}), (y^{**} \in Y^{**})\}.$$

The right topological center of f may therefore be defined as

$$Z_r(f) = \{y^{**} \in Y^{**}: x^{**} \to f^{r***r}(x^{**}, y^{**}): Y^{**} \to Z^{**} \text{ is} w^* - w^* \text{ continuous}\}.$$

Again since the map

$$x^{**} \rightarrow f^{***}(x^{**}, y^{**}): Y^{**} \rightarrow Z^{**}$$
 is $w^* - w^*$ continuous for each $y^{**} \in Y^{**}$, we can set

$$Z_r(f) = \{y^{**} \in Y^{**}: f^{***}(x^{**}, y^{**}) = f^{r^{***r}}(x^{**}, y^{**}), (x^{**} \in X^{**})\}$$

A bounded bilinear mapping f is Arens regular if and only if $Z_l(f) = X^{**}$, or equivalently $Z_r(f) = Y^{**}$. It is clear that $X \subseteq Z_l(f)$. If $Z_l(f) = X$ then the map f is said to be left strongly irregular. Also $Y \subseteq Z_r(f)$ and if $Z_r(f) = Y$ then the map f is said to be right strongly irregular. A bounded bilinear mapping $f : X \times Y \to Z$ is said to factor if it is onto. Let A be a Banach algebra, X be a Banach space and $\pi_1 : A \times X \to X$ be a bounded bilinear map $(\pi_1$ is said the left module action of A on X). If $\pi_1(ab, x) = \pi_1(a, \pi_1(b, x))$, for each $a, b \in A$, $x \in X$, then the pair (π_1, X) is said to be a left Banach

A-module. A right Banach *A*-module (X, π_2) can be defined similarly. A triple (π_1, X, π_2) is said tobe a Banach *A*-module if (π_1, X) and (X, π_2) are left and right Banach *A*-modules, respectively, and $\pi_1(a, \pi_2(x, b)) = \pi_2(\pi_1(a, x), b)$ for each $a, b \in A$, $x \in X$. Let (π_1, X, π_2) be a Banach *A*-module. Abounded linear mapping $D : A \to X^*$ is said to be a derivation if D(ab) = D(a).b + a.D(b), for each $a, b \in A$.

2. Arens regularity of bounded bilinear maps

Remark 2.1. Let f be a bounded bilinear map from $X \times Y$ into Z. f^{***n} means that the number of starsis 3n for every $n \in N$.

Let f be a bounded bilinear map and, $x^{**} \in X^{**}$, $y^{**} \in Y^{**}$. If f is Arens regular then for every $z^* \in Z^*$,

$$\langle f^{***r}(y^{**}, x^{**}), z^* \rangle = \langle f^{***}(x^{**}, y^{**}), z^* \rangle = \langle f^{r***r}(x^{**}, y^{**}), z^* \rangle = \langle f^{r***}(y^{**}, x^{**}), z^* \rangle$$

Therefore, f^r is Arens regular. Now let f^r is Arens regular, for every $x^{**} \in X^{**}$, $y^{**} \in Y^{**}$, $z^* \in Z^*$,

$$\langle f^{r***r}(x^{**}, y^{**}), z^* \rangle = \langle f^{r***}(y^{**}, x^{**}), z^* \rangle = \langle f^{***r}(y^{**}, x^{**}), z^* \rangle = \langle f^{***}(x^{**}, y^{**}), z^* \rangle$$

Hence f is Arense regular if and only if f^r is Arens regular.

Lemma 2.2. If $f: X \times Y \to Z$ is Arens regular and X is a reflexive space, then f^{***n} and f^{****n} are Arens regular for every $n \in N$.

Proof. First, we show that f^{***} is Arens regular for an arbitrary f. Then we show that $f^{******} = f^{r*****r}$.By [7, *Theorem* 2.1], for every $x^{****} \in X^{****}$, $y^{****} \in Y^{****}$, $z^{***} \in Z^{***}$, we have

$$\langle f^{*****}(x^{****}, y^{****}), z^{***} \rangle = \langle x^{****}, f^{*****}(y^{****}, z^{***}) \rangle$$

$$= \langle y^{****}, f^{****}(z^{***}, x^{****},) \rangle$$

$$= \langle y^{****}, f^{r}(z^{***}, x^{****}) \rangle$$

$$= \langle f^{r*****}(y^{****}, x^{****}), z^{***} \rangle$$

$$= \langle f^{r*****r}(x^{****}, y^{****}), z^{***} \rangle.$$

It follows that f^{***} is Arens regular. This completes the proof of Arens regularity of f^{***n} . Now if f is Arens regular then we show that f^{****} is Arens regula. we should show

(1)
$$f^{*******} = f^{****r****}$$

Since f is Arens regular,

$$(2) \quad (f^{***})^{****} = (f^{r***r****})$$

so it is enough to show that

(3)
$$f^{r***r****} = f^{****r***r}$$

 f^{***} is Arens regular, therefore $f^{*****} = f^{***r}$, so from the Arens regularity of f^r , we have $f^{*****} = f^{r*****r}$. Therefore $f^{*****r} = f^{r*****}$. From the Arens regularity of f, $f^{r***r} = f^{r*****}$. Now by [6, *Theorem* 2.1], for every $x^{****} \in X^{****}$, $y^{****} \in Y^{****}$, $z^{*****} \in Z^{*****}$, we have

$$\langle f^{****r}(z^{*****}, x^{****}), y^{****} \rangle = \langle x^{****}, f^{****r}(z^{*****}, y^{****}) \rangle$$

$$= \langle x^{****}, f^{r}(z^{*****}, y^{****}) \rangle$$

$$= \langle z^{*****}, f^{r}(y^{****}, x^{****}) \rangle$$

$$= \langle f^{r}(x^{*****}, x^{*****}), y^{*****} \rangle.$$

Therefore equation (3) holds and f^{****} is Arens regular. Hence f^{****n} is Arens regular, for every $n \in N$. **Lemma 2.3.** Let $f: X \times Y \to Z$ be is a bounded bilinear map. If X is reflexive, then f and every adjoint and every flip map of f such that its domain contains $X, X^*, X^{**}, ...$ is Arens regular. **Proof**. First we show that if Y is reflexive, then the result holds. $f^{****}(Z^{***}, X^{**}) \subseteq Y^{***}$ and Y^* is reflexive, therefore

$$f^{****}(Z^*, X^{**}) \subseteq f^{****}(Z^{***}, X^{**}) \subseteq Y^*.$$

Now by [7, Theorem 2.1], f is Arens regular. Therefore f^r is Arens regular, so the result holds. **Lemma 2.4.** If X is reflexive and the bounded bilinear map f^{****} factors, then f and every adjoint map and every flip map of it is Arens regular.

Proof. If X is reflexive space then by *lemma* 2.3, f and f^{r*} are Arens regular and by[7, *Corollary* 2.2] it is equivalent that $f^{****}(Z^{***}, X^{**}) \subseteq Y^*$ and f^{****} factors, therefore $Y^{***} \subseteq Y^*$ and it is equivalent that Y is reflexive. Now for every adjoint map or every flip map, X or X^* or Y^* , is contained in a part of its domain. Since these spaces are all reflexive, therefore by *lemma* 2.3 the result holds.

Theorem 2.5. Let *X* be is reflexive and let f^{****} factors. Then *f* is left strongly irregular if and only if it is right strongly irregular.

Proof.By *lemma* 2.3 *f* is Arens regular. From the definition, *f* is Arens regular if and only if $Z_l(f) = X^{**}$. *X* is reflexive therefore $Z_l(f) = X$, i.e. *f* is left strongly irregular, therefore *f* is Arens regular if and only *f* is left strongly irregular. On the other hand by *lemma* 2.4, *Y* is also reflexive, therefore by definition of topological centers, f is Arens regular if and only if $Z_r(f) = Y^{**}$, since Y is reflexive so $Z_r(f) = Y$, thus f is right strongly irregular. therefore f is Arens regular if and only f is right strongly irregular. It follows that f is left strongly irregular if and only if right strongly irregular.

3. Module action

In [5] Eshaghi Gordji and Filali show that left module action of a Banach algebra A on $A^{(n)}$ factors. Now let π_{2_n} be the right module action of A on $A^{(n)}$. Thus π_{2_n} maps $A^{(n)} \times A$ into $A^{(n)}$ and $\pi_{2_n}^*$ maps $A^{(n+1)} \times A^{(n)}$ into A^* , for every $n \ge 1$. Also $\pi_{1_n} = \pi_{2_{n-1}}^{r*r}$ and $\pi_{2_n} = \pi_{1_{n-1}}^*$ such that $A^{(0)} = A$, $\pi = \pi_{1_0} = \pi_{2_0}$. In the next theorem we show that the right module action factors.

Theorem 3.1. Let *A* be a Banach algebra.

I) If A has a left bounded approximate identity, then $\pi_{2_n}^*$ factors for every positive even integer n. II) If A has a right bounded approximate identity, then $\pi_{2_n}^*$ factors for odd positive even integer n. **Proof.**I) We use the induction on n. Let n = 2 and (e_β) be a left bounded approximate identity in A with a cluster point $e^{**} \in A^{**}$. Therefore for every $a^{***} \in A^{***}$ we have $\pi_{2_2}^*(a^{***}, e^{**}) = a^{***}$.

Let (a_{α}^*) be a net in A^* with a cluster point $e^{***} \in A^{***}$, so for every $a \in A$,

$$\langle \pi_{2_2}^*(a^{***}, e^{**}), a \rangle = \langle a^{***}, \pi_{2_2}(e^{**}, a) \rangle = \langle a^{***}, \pi_{1_1}^*(e^{**}, a) \rangle$$

$$= \lim_{\alpha} \langle e^{**}, \pi_{1_1}(a, a_{\alpha}^*) \rangle = \lim_{\alpha} \langle e^{**}, \pi_{2_0}^{r*r}(a, a_{\alpha}^*) \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \langle \pi_{2_0}^{r*}(a_{\alpha}^*, a), e_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \langle a_{\alpha}^*, \pi_{2_0}(e_{\beta}, a) \rangle$$

$$= \lim_{\alpha} \langle a_{\alpha}^*, a \rangle = \langle a^{***}, a \rangle.$$

Therefor for $n = 2, \pi_{2_n}$ factors. Now suppose that the result holds for n = 2k - 2. So,

$$\langle \pi_{2_{(2k)}}^{*}(a^{*}, e^{**}), a \rangle = \langle a^{*}, \pi_{2_{(2k)}}(e^{**}, a) \rangle = \langle a^{*}, \pi_{1_{(2k-1)}}^{*}(e^{**}, a) \rangle$$

$$= \langle e^{**}, \pi_{1_{(2k-1)}}(a, a^{*}) \rangle = \langle e^{**}, \pi_{2_{(2k-2)}}^{r*r}(a, a^{*}) \rangle$$

$$= \langle e^{**}, \pi_{2_{(2k-2)}}^{r*}(a^{*}, a) \rangle = \langle a^{*}, \pi_{2_{(2k-2)}}^{r}(a, e^{**}) \rangle$$

$$= \langle a^{*}, \pi_{2_{(2k-2)}}(e^{**}, a) \rangle = \langle \pi_{2_{(2k-2)}}^{*}(a^{*}, e^{**}), a \rangle$$

thus $\pi^*_{2(2k)}$ factors.

II) Again by induction. Let (e_{α}) be a right bounded approximate identity in A with a cluster point $e^{**} \in A^{**}$. for n = 1 it is enough to show that $\pi_{2_1}^*(e^{**}, a^*) = a^*$ for every $a^* \in A^*$.

$$\langle \pi_{2_1}^* (e^{**}, a^*), a \rangle = \langle e^{**}, \pi_{2_1} (a^*, a) \rangle = \langle e^{**}, \pi_{1_0}^* (a^*, a) \rangle = \lim_{\alpha} \langle a^*, \pi_{1_0} (a, e_{\alpha}) \rangle = \langle a^*, a \rangle.$$

Now suppose that is true for n = 2k - 1, then

$$\langle \pi_{2_{(2k+1)}}^{*}(e^{**}, a^{*}), a \rangle = \langle e^{**}, \pi_{2_{(2k+1)}}(a^{*}, a) \rangle = \langle e^{**}, \pi_{1_{(2k)}}^{*}(a^{*}, a) \rangle$$

$$= \langle a^{*}, \pi_{1_{(2k)}}(a, e^{**}) \rangle = \langle a^{*}, \pi_{2_{(2k-1)}}^{r*r}(a, e^{**}) \rangle$$

$$= \langle a^{*}, \pi_{2_{(2k-1)}}^{r*}(e^{**}, a) \rangle = \langle e^{**}, \pi_{2_{(2k-1)}}^{r}(a, a^{*}) \rangle$$

$$= \langle e^{**}, \pi_{2_{(2k-1)}}(a^{*}, a) \rangle = \langle \pi_{2_{(2k-1)}}^{*}(e^{**}, a^{*}), a \rangle.$$

so the result holds.

Here is a new proof for the theorem [4.7.1]

Theorem 3.2. If X is a reflexive space and $D : A \rightarrow X^*$ is a derivation, then D^{**} is also a derivation.

Proof. As X is reflexive, by *lemma* 2.3 the following module actions are Arens regular,

$$\begin{aligned} \pi_1 &: A \times X \to X &, & \pi_2 &: X \times A \to X \\ \pi_1^* &: X^* \times A \to X^* &, & \pi_2^{r*} &: X^* \times A \to X \end{aligned}$$

Now the maps bellow are Arens regular by [7, 4.4],

$$D^{**}: (A^{**}, \Box) \rightarrow X^{***}$$
, $D^{**}: (A^{**}, \Diamond) \rightarrow X^{***}$

References

[1] A. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), 839-848.

[2] S. Barootkoob, S. Mohamadzadeh and H.R.E Vishki, Topological Centers of Certain Banach Module Action, Bulletinof the iranian Mathematical Society, Vol. 35 No. 2 (2009), 25-36.

[3] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs 24 (Clarendon Press, Oxford, 2000)

[4] H.G. Dales, A. Rodrigues-Palacios and M.V. Velasco, The second transpose of a derivation, J. London Math. Soc. 64 (2) (2001) 707-721.

[5] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math. 181 (3) (2007) 237-254.

[6] M. Momeni, T. Yazdanpanah, M. R. Mardanbeigi, Sigma Ideal Amenability of Banach Algebras, Journal of mathematics and computer science, 8 (2014), 319-325

[7] S. Mohamadzadeh and H.R.E Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Austral. Mat. Soc. 77 (2008) 465-476.