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Abstract 
   Gähler ([4], [5]) introduced and investigated the notion of 2-metric spaces and 2-normed spaces in 

sixties. These concepts are inspired by the notion of area in two dimensional Euclidean space. In this 

paper, we choose a fundamentally different approach and introduce a possible generalization of usual 

norm retaining the distance analogue properties. This generalized norm will be called as  -norm. We 

show that every G-normed space is a G-metric space and therefore, a topological space and develop the 

theory for G-normed spaces. We also introduce G-Banach spaces and obtain some fixed point theorems. 
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1. Introduction 

   Gähler ([4], [5]) introduced and studied the concept of 2-metric spaces and 2-normed spaces and 

extended the theory to n-normed spaces in ([6], [7], [8]). Since then many authors ([2], [3], [9], [10], [12], 

[6] etc.) have published a number of articles devoted to these concepts. It was mentioned by Gähler [4] 

that the notion of a 2-metric is an extension of an idea of ordinary metric. The usual metric is a kind of 

generalization of the notion of distance whereas the concept of a 2-metric and hence that of a 2-norm are 

inspired by the notion of area in two dimensional Euclidean space and geometrically   (     )     

represents the area of a triangle formed by the points x, y and z in X as its vertices. But this is not always 

true. Sharma [15] showed that  (     )    for any three distinct points         . Also K. S. Ha et al 

[10] have shown that in many cases there is no connection between the results obtained in the usual 

metric spaces and 2-metric spaces. 
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    B. C. Dhage [1] attempted to generalize the concept of usual metric and introduced the concept of D-

metric in order to translate results from usual metric space to D-metric space. But the topological 

structure of D-metric spaces was found to be incorrect ([13]). Finally, Mustafa and Sims ([14]) introduced 

the concept of G-metric in which the tetrahedral inequality is replaced by an inequality involving 

repetition of indices. This new approach is fundamentally different from that of Gähler and retains the 

notion of distance. Recently the author ([11]) generalized the concept to  (  ) variables and introduced 

Generalized n-metric spaces. In this paper our aim is to generalize the concept of normed space in such a 

manner that the generalized norm retains the distance analogue properties of the usual norm. We call this 

generalized norm a G-norm. We show that every G-normed space is a G-metric space and therefore, a 

topological space. Hence the topological concepts such as open subset, closed subset, limit, closure etc 

make sense. We develop the theory for G-normed spaces and also introduce G-Banach spaces. Finally we 

obtain some fixed point theorems. Let us begin with some definitions- 

Definition 1.1 ([5]) Let   be a real linear space of dimension greater than one and let          be a real 

valued function on     satisfying the following conditions: 

(1) ‖   ‖     for every       ;  ‖   ‖     if and only if   and   are linearly dependent, 

(2) ‖   ‖  ‖   ‖ for every      , 

(3) ‖    ‖      ‖   ‖ for every       and    , 

(4) ‖     ‖  ‖   ‖  ‖   ‖ for every         . 

Then the function ‖   ‖  is called a 2-norm on   and the pair (  ‖   ‖)  a linear 2-normed space.  

Example 1.1.1 Let      and        such that   (        ) and   (        ). Define 

‖   ‖      {                                               } 

Then (   ‖   ‖) is a 2-normed space. 

Definition 1.2 ([14]) Let   be a non-empty set, and    denote the set of non-negative real numbers. Let 

            be a function satisfying: 

[G 1]  (     )    if       , 

[G 2]  (     )          with    , 

[G 3]  (     )   (     ) for all        , 

[G 4]  (     )   (     )   (     )    for all        , 

[G 5]  (     )   (     )   (     ) for all           

Then the function G is called a generalized metric, or more specifically a G-metric on  , and the pair 

(   ) a G-metric space. 

Example 1.2.1 Let    denote the set of all real numbers. Define a function               by 

                                        (     )     {                 } for all           

 Then (   ) is a G-metric space. 
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2. Main Results 

 Definition 2.1 Let   be a real vector space. A real valued function ‖     ‖      is called a G-norm 

on   if the following conditions hold: 

[N 1] ‖     ‖    and ‖     ‖    if and only if          

[N 2] ‖     ‖ is invariant under permutations of     and  , 

[N 3] ‖        ‖      ‖     ‖ for all     and        , 

[N 4] ‖              ‖  ‖     ‖  ‖        ‖ for all                 , 

[N 5] ‖     ‖  ‖       ‖ for all         

The pair (  ‖     ‖) is then called a G-normed space. 

Example 2.1.1 In the linear space           of real valued continuous functions on [0, 1] define a 

function ‖     ‖      by 

‖     ‖          {  ( )    ( )    ( ) }       (             ) 

Then (  ‖     ‖)is a G-normed space.  

Remark.   From [N 4], we see that  ‖        ‖  ‖     ‖  ‖      ‖ . This is similar to triangle 

inequality in usual normed spaces. 

Proposition 2.1 Let (  ‖     ‖) be a  -normed space. Then for all              , we have 

                                                     ‖     ‖  ‖     ‖   ‖           ‖            (2.1) 

Proof.   The result follows directly from the definition of  -normed space. 

Proposition 2.2 Let (  ‖     ‖) be a  -normed space. Then the function         defined by  

                                                             (     )  ‖           ‖                           (2.2) 

is a G-metric defined on  . 

Proof.  We see that [G 1] follows from [N 1]. Also (      )  ‖         ‖    for    .  From 

[N 2] and [N 5] we have 

‖           ‖  ‖           ‖  ‖         ‖  ‖         ‖ 

Which gives  (     )   (     ) . Now [G 4] follows from [N 2] and [N 3]. Finally [G 5] holds as we 

see that for all          , we have  

 (     )  ‖                     ‖ 

                                                                ‖         ‖  ‖           ‖ 
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                                                                 (     )   (     ). 

Hence the function   thus defined is a  -metric and (   ) is a  -metric space. 

Thus every  -normed space (  ‖     ‖) will be considered to be a  -metric space. We have a well 

defined topology for a  -metric space. For            the  -ball is defined as the set   (    )  
{     (      )   }. The family of all  -balls {  (   )        } is a base of topology   ( ) on 

 , called the G-metric topology. This G-metric topology coincides with the metric topology 

corresponding to the metric    given by   (   )   (     )   (     ) ([14]). Thus every G-metric 

space and hence every G-normed space is topologically equivalent to a metric space. Now we can 

transport concepts such as open balls, open subsets, closed subsets, closure etc from metric spaces into the 

G-normed spaces. 

Definition 2.2 Let    (  ‖     ‖)  be a G-normed space. For given          and    ,  we define 

open ball   (    ) to be a subset of   given by 

                                         (    )  {    ‖             ‖   }                      (2.3) 

and the closed ball            in   as 

                                                {    ‖             ‖   }                       (2.4)  

Substituting                 in (2.3), we have 

  (    )      {    ‖         ‖   } 

where    (    ) 
  .  Hence for     , we have 

  (   )   {    ‖         ‖   }      (   ) 

Example 2.2.1  Let   (  ‖     ‖)be a G-normed space such that 

‖     ‖  ‖ ‖  ‖ ‖  ‖ ‖ 

for all         . Where ‖ ‖  ‖(     )‖  √  
    

 . Then the open ball   (    ) in    will be an 

open elliptic disc given by 

  (    )  {     ‖    ‖  ‖   ‖   } 

Where     ‖    ‖. 

      Suppose hereafter that   is a G-normed space. Now we introduce some definitions and propositions 

for further theory. 

Definition 2.3 A subset     is open in   if for each     , there exist        and        such that    

  (    )    .  

Definition 2.4 A set D in a G-normed space   is said to be dense in   when it intersects every open set. 

Definition 2.5 A sequence       in   is said to be convergent if there exists an element        such 

that for given    , there exists a positive integer N such that 
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        ‖              ‖    

Or equivalently     ‖              ‖   . 

Definition 2.6 A sequence       in   is said to be a   Cauchy sequence   if given    , there exists a 

positive integer  N  such that 

        ‖                 ‖    

Definition 2.7 A G-normed space is said to be complete if each Cauchy sequence in   converges in  . 

Definition 2.8 A complete G-normed space is called a G-Banach space. 

Definition 2.9 The closure of a subset    , denoted by  ̅, is the set of all     such that there exists a 

sequence        in   converging to  . We say that   is closed if  ̅   . 

Definition 2.10 A subset   of   is called convex (resp. absolutely convex) if        for every   

      (          ) with       (              )  

Proposition 2.3 Every convergent sequence in a G-normed space   has a unique limit. 

Proof. The proof is straightforward.  

Proposition 2.4 Every convergent sequence in a G-normed space   is a Cauchy sequence. 

Proof. The result follows directly from the definitions. 

Proposition 2.5 The ball   (    )   is open in  .  

Proof. Let         (    ). Then ‖             ‖    

Now using [N 5], we get   ‖             ‖  ‖           ‖ 

Let      ‖           ‖ then     . Now we shall show that   (    )    (    ). Suppose   

  (    ). Then we have‖           ‖    .Now 

‖             ‖  ‖                     ‖ 

                                                                        ‖           ‖   ‖           ‖ 

                                                                        ‖           ‖       

                                               ‖             ‖    

Therefore     (    ). Hence the result. 

Proposition 2.6 For     and    , We have   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅         . 

Proof. We prove the result by showing that              (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  

 If    ‖           ‖, then     . 
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Let     (   ). Then ‖           ‖   . Now 

‖           ‖  ‖                   ‖ 

                                                                       ‖         ‖  ‖           ‖ 

                                     ‖         ‖  ‖           ‖  ‖           ‖ 

                                                                               

Let       . Then     (   ). Hence there exists a neighborhood of   which does not intersect 

  (   ), i.e.     (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Hence the result. 

Proposition 2.7 The balls   (   )and         are absolutely convex for every    . 

Proof. Let       (   ). Then ‖      ‖    ‖      ‖   .  Let       with          . 

Then  

‖              ‖  ‖        ‖  ‖        ‖ 

                                                                                   ‖      ‖     ‖      ‖ 

                                                                                (       )  

                                                                                   

This implies that         (   ). Hence   (   ) is absolutely convex. Similarly, we can show that 

the ball          is absolutely convex. 

Proposition 2.8 The closure of a convex (resp. absolutely convex) subset of a G-normed space is convex 

(resp. absolutely convex). 

Proof. Let   be a G-normed space. Let   be a convex (resp. absolutely convex) subset of  . Let       . 

Then there exist sequences       and       in    such that       and     . 

Let       (          ) such that        (              ) . Since   is convex (resp. 

absolutely convex),           for all    . Now 

         
   

(       )    

Hence   is convex (resp. absolutely convex). 

Theorem 2.1 Let   be a G-normed space. Then the following maps are continuous: 

(a) Addition :           (   )     , 

(b) Scalar multiplication :       (   )    , 

(c) The G-norm:           (     )  ‖     ‖ 
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Proof.  We may regard   and   as metric spaces. Let             and      be sequences in a G-

normed space   with                       and           . Let      be a sequence in 

   with            

(a) We have 

 ‖      (   )       (   )       (   ) ‖  ‖              ) ‖ 

                                                                                                            +‖               ‖ 

Hence         ‖      (   )       (   )       (   ) ‖    

This proves the result. 

(b) The result follows by similar arguments. 

(c) Using the relation (2.1), we have 

  ‖        ‖  ‖     ‖   ‖              ‖ 

Therefore       ‖        ‖  ‖     ‖. Hence the result. 

The following result holds for any topological vector space, hence we state it without proof. 

Proposition 2.9 The intersection of a finite number of dense open subsets of a G-normed space   is dense 

in  . 

Definition 2.11 A linear function   from a G-normed space (  ‖     ‖ ) into a G-normed space 

(  ‖     ‖ ) is said to be bounded if there exists     such that  

                                  ‖ ( )  ( )  ( )‖   ‖     ‖                              (2.5) 

Definition 2.12 A linear function   from a G-normed space (  ‖     ‖ ) into a G-normed space 

(  ‖     ‖ ) is continuous at      if there exists a sequence      in   such that 

       (  )   (  ) 

Equivalently,   is continuous at a point    if for given     and     there exists     and     

such that ‖ ( )   (  )  (  )   ( )  ( )   ( )‖    for every     for which  ‖        

     ‖   . 

  is continuous if it is continuous at every point in  . 

From now on we denote ‖     ‖  (or ‖     ‖ ) simply by ‖     ‖.  

Theorem 2.2 Every bounded linear function is continuous. 

Proof.  Let   be a bounded linear function from a G-normed space (  ‖     ‖)   into a G-normed 

space (  ‖     ‖). Then there exists     such that 

‖ ( )  ( )  ( )‖    ‖     ‖              
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Hence for          and given      there exists     ⁄    such that ‖ (   )  (   )  (  

 )‖    whenever  ‖           ‖   . Since   is linear, hence ‖ ( )   ( )  ( )  

 ( )  ( )   ( )‖    whenever ‖           ‖   , i.e.   is continuous. 

We now state and prove the famous Banach's fixed point theorem for G-normed spaces. 

Theorem 2.3 Let    be a G-Banach space and       be a mapping satisfying the following condition 

for all         

                          ‖                 ‖   ‖           ‖                     (2.6) 

Where       ). Then   has a unique fixed point.  

Proof.  Let       be a mapping satisfying the condition (2.6). Let       be an arbitrary point. 

Define a sequence      by the relation        , then by the given condition we have 

‖                     ‖   ‖                 ‖ 

Or                                         ‖                 ‖   ‖                 ‖ 

Continuing the same argument, we have 

                                   ‖                 ‖    ‖             ‖                (2.7) 

For all natural numbers   and   (  ), by using [N 4] we have 

‖             ‖  ‖                 ‖  ‖                     ‖ 

                                                                                  ‖                 ‖ 

Since         hence on using the relation (2.7), we get 

‖             ‖  (              )‖             ‖ 

                                                                 
  

   
‖             ‖ 

This yields ‖             ‖    as      . Now 

‖                 ‖  ‖                       ‖ 

                                                                            ‖             ‖  ‖             ‖ 

Therefore           ‖                 ‖    and hence      is a Cauchy sequence. Since   

is complete, there exists     such that     . 

Suppose that     , then  

‖           ‖  ‖                   ‖  ‖             ‖ 

                                                       ‖           ‖  ‖               ‖ 
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Taking the limits as     and using the fact that the G-norm is a continuous function of its variables, 

we observe that LHS is independent of   and RHS tends to zero. Hence we must have     . 

 For uniqueness of  , suppose that     is such that     . Then we have 

‖         ‖  ‖             ‖   ‖         ‖ 

Which yields a contradiction as        . Hence we have    . 

Definition 2.13 Let   be a  -normed space and   be a self mapping on  . Then   is called expansive 

mapping if there exists a constant     such that for all          , we have 

                                  ‖                 ‖   ‖           ‖               (2.8) 

Theorem 2.4 Let   be a linear surjective self mapping on a  -Banach space   satisfying the condition 

(2.8). Then   has a unique fixed point. 

Proof.  First we see that   is invertible, for if      , taking       for      , condition (2.8) gives   

 , i.e.   is injective and hence invertible. 

Let   be the inverse mapping of  . Then   is linear and 

‖           ‖  ‖  (   )   (   )   (   )‖   ‖                 ‖ 

or                      ‖                 ‖   ‖           ‖ where    
 ⁄ . 

Hence by Theorem 2.3 the mapping   has a unique fixed point     such that      . Now    

(  )   (  )    . Thus   is also a fixed point of  . 

If there exists some      such that     , then      (  )  (  )   (  ), i.e.    is another 

fixed point of  . By uniqueness of fixed point for   we conclude that       , i.e.   is a fixed point 

of  .  

Theorem 2.5 Let   be a  -Banach space and let   and   be self mappings on   satisfying the following 

conditions: 

(1)  ( )   ( ), 

(2)   is continuous, 

(3) ‖                 ‖   ‖                 ‖  for every         and 

     . 

Then   and   have a unique common fixed in   provided   and   commute. 

Proof. Let    be an arbitrary point in  . Since  ( )   ( ) hence there exists a point    such that     

   . In general we can choose       such that             .  From (3) we have 

‖                           ‖   ‖                           ‖ 

                                                                                      ‖                     ‖ 
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Proceeding in above manner we have 

‖                           ‖    ‖                 ‖ 

‖                 ‖    ‖             ‖ 

Hence for all natural numbers   and  (  ), it can be shown that 

‖             ‖  
  

   
‖             ‖ 

This yields ‖             ‖ as      . Now 

‖                 ‖  ‖             ‖  ‖             ‖    

as         . Hence      is a Cauchy sequence. Since   is complete, there exists      such 

that      . Since              , hence we have                                . 

Now   is continuous hence 

   
   

        
   

        

Also   and   commute, therefore 

   
   

        
   

        
   

        

Taking            and      in (3) we have 

‖                   ‖   ‖                   ‖ 

Making     , we have  ‖           ‖   ‖           ‖ . Which gives      . For 

otherwise     contradicting the fact that      . 

Similarly on taking          and     in (3) and making     , we have      . Therefore 

       , i.e.   is a common fixed point of   and  . 

For uniqueness of  , suppose that     is such that        . Then we have 

‖         ‖  ‖             ‖   ‖             ‖  ‖         ‖ 

 Thus we get a contradiction, hence we have    .  
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