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Abstract
This manuscript is devoted to the numerical solutions of coupled system of fractional partial differential equations (FPDEs).

Using Legendre polynomials for two variables, we developed some operational matrices. Based on these matrices the considered
coupled system is converted to some algebraic equations which can be easily solved for the unknown coefficient matrices needed
in the approximate solutions of u(x, t), v(x, t). The established technique is then applied to some numerical examples and the
results are compared with some known wavelet methods, which demonstrate that our proposed method provides excellent
solutions as compared to the other numerical methods.
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1. Introduction

In last few decades, the area devoted to the existence theory and numerical solutions of fractional
ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs) has gained
the considerable attention of researchers [9, 18]. This is because of its frequent use in all disciplines of
science and engineering [3]. Many important phenomena in fluid flow, fluid dynamic like traffic model,
electromagnetic, solid mechanics, statistical mechanics, colored noise, polarization, electrochemical pro-
cesses, diffusion, modeling of frequency dependent damping behavior of viscoelastic flow, economics,
and bioengineering are well described by partial differential equations and integro differential equations
of non-integer order, see, for example [1, 2, 12–15, 19, 21, 22] and the references therein. Keeping in view,
that in most cases fractional differential equations are very complicated to be solved exactly and although
if an exact solution is obtained, that required very complicated calculations. Therefore, a lot of attention
has been paid to the numerical solutions of fractional ordinary and partial differential equations. Several
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efficient and powerful techniques are available dealing numerical approximations of FODEs and FPDEs.
Some of the most commonly used methods are variational iteration method (VIM) [23], generalized differ-
ential transform method (GTM) [17], Adomain decomposition method (ADM) [7], He’s variation iteration
method (HVIM) [4], Chebyshev wavelets [11], Homotopy perturbation method [10], and Legendre poly-
nomials approximation method [8].

Recently, numerical schemes based on operational matrices have gained the considerable attention of
researches, due to their efficient and reliable numerical solutions to both linear and non linear partial
differential equations of classical as well as fractional order. In this paper, we are determined to pull out
the application of Shift Legendre polynomial to obtained the numerical solutions of coupled system of
partial fractional differential equations given as

cD
p
tu(t, x) +

cDqxv(t, x) = f(t, x), t, x ∈ [0, 1],
cD
q
t v(t, x) +

cDqxu(t, x) = g(t, x), t, x ∈ [0, 1],
(1.1)

subject to the initial conditions

u(0, x) = φ(x), v(0, x) = θ(x),

where cDpt and cD
p
x represent the Caputo fractional derivatives of order p, such that 0 < p 6 1 w.r.t “t”

and “x”, respectively. By developing operational matrices of fractional order integration and differentia-
tion using Shifted Legendre polynomials, we convert the proposed system (1.1) to a system of algebraic
equations. Solving established system of algebraic equations for unknown coefficient matrices, using
them, we obtained the deserted solutions. In wide-range, algebraic equations of bulky system may lead
to massive computational and needs large storage capacity. However, the techniques used in this paper
are very straightforward and decrease the computational complexity. It is creditable to point out that the
rooted technique in operational matrix of an orthogonal functions for solving FPDEs is computer oriented
[8].

The rest of the paper is organized as follows. In Section 2, we presents some necessary definitions and
preliminaries of fractional calculus and Legendre polynomial. In Section 3, we develops the operational
matrices of fractional order derivatives and integration. In Section 4, we solve the coupled system of
partial fractional differential equation. In Section 5, we illustrate the proposed method by some number
of examples.

2. Preliminaries

The concerned section, is committed to the basic results, concepts and definitions of fractional calculus.
Fractional calculus is generalization of classical calculus, which combines and generalizes the notations
of integer order derivatives and n-fold integrals. There are numerous definitions of fractional order
derivatives and integrals, such as Caputo, Riemann- Liouville and Grunwald-Letnikov’s. Among these
notation, we prefer Caputo type fractional order derivative and Riemann- Liouville type fractional integral
through out this paper. The definitions of the needed materials are presented in the following sequel.

Definition 2.1 ([18]). The Riemann-Liouville integral of arbitrary order p(p > 0) of a function u(t) is
defined by

Ipu(t) =
1
Γ(p)

∫t
0
(t− τ)p−1u(τ)dτ,

where Γ(p) =
∫∞

0 t
p−1e−tdt is the gamma function and provided that the integral on right hand side

converges pointwise on (0,∞). The Riemann-Liouville integral satisfies the following relations

(1) IpIqu(t) = IqIpu(t);
(2) IpIqu(t) = Ip+qu(t);
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(3) Iptq =
Γ(q+1)
Γ(p+q+1)t

p+q.

Definition 2.2 ([18]). For a given function u(t), the Caputo fractional order derivative of order p is defined
as

cDpu(t) =
1

Γ(n− p)

∫t
0

u(n)(t)

(t− τ)p+1−ndτ, n− 1 6 p < n , n = [p] + 1,

such that the right side is pointwise defined on (0,∞). Further, the operator cD satisfies the following
properties in particular for any constant C,

cDpc = 0, cDptj =


0, j ∈ N, j < [p],
Γ(1 + j)

Γ(1 + j− p)
tj−p.

Some of the important results which are helpful in the rest of the paper are as follows.

Theorem 2.3 ([18]). For any function u(t), the following results hold.

(a) cDpIpu(t) = u(t);
(b) cIpDpu(t) = u(t) −

∑n−1
j=0 u

(j) tj

Γ(j+1) ;
(b) cDp(λu(t) + µv(t)) = λcDpu(t) + µcDpv(t).

2.1. Shifted Legendre polynomials and their properties
The Legendre basis polynomials defined on [−1, 1] are given by (for details see [20])

Wj+1(z) =
(2j+ 1)
(j+ 1)

zWj(z) −
j

(j+ 1)
Wj−1(z), j = 1, 2, 3, . . . ,

where W0(z) = 1 and W1(z) = 2z− 1. By taking the transformation t = z+1
2 , which transforms the [−1, 1]

to [0, 1], the shifted Legendre polynomial of degree j is

Lj(t) =

j∑
k=0

(−1)j+k
(j+ k)!tk

(j− k)!(k!)2 ,

where
Lj(0) = (−1)j and Lj(1) = 1.

The orthogonality conditions is ∫ 1

0
Lj(t)Lk(t)dt =

{
0, j 6= k,

1
2j+1 , j = k.

Thus a function u(t) ∈ L2(0, 1) may be approximated in-term of shifted Legendre polynomials as

u(t) ≈
m∑
j=0

EjLj(t),

where the coefficients Ej are given by

Ej = 〈u(t),Lj(t)〉 = (2j+ 1)
∫ 1

0
u(t)Lj(t)dt, j = 1, 2, 3 . . . .

In vector notation, we have
u(t) = KTMŜM,
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where Ŝ is M term vector function, K is coefficient vector, and M = m+ 1. Legendre polynomial in two
variable of order M = m+ 1 as a product of two Legendre polynomials can be defined as

Ln(t, x) = Li(t)Lj(x), n =Mi+ j+ 1, i, j = 0, 1, 2, 3, . . . ,m. (2.1)

The orthogonality condition for un(t) can be written as∫ 1

0

∫ 1

0
Li(t)Lj(x)Lk(t)Ll(x)dtdx =

{
0, if i 6= k, j 6= l

1
(2i+1)(2j+1) , if i = k, j = l.

Similarly, for the function u(t, x) ∈ L2([0, 1]× [0, 1]), we get its approximation in term of Legendre poly-
nomials as

u(t, x) ≈
m∑
i=0

m∑
j=0

EijLi(t)Lj(x), (2.2)

where Eij can be written in a form of

Eij = (2i+ 1)(2j+ 1)
∫ 1

0

∫ 1

0
u(t, x)Li(t, x)Lj(t, x)dtdx.

We represent the notation En = Eij, where n =Mi+ j+ 1, then (2.2) implies

u(t, x) ≈
M2∑
n=1

EnLn(t, x) = KTM2ΨM2(t, x),

where KM2 is M2 × 1 coefficient row vector and ΨM2(t, x) is M2 × 1 column vector of functions provided
as

ΨM2(t, x) =
(
ψ11(x,y) · · · ψ1M(t, x) ψ21(t, x) · · · ψ2M(t, x) · · · ψMM(t, x)

)T , (2.3)

where ψj+1,k+1(t, x) = (Lj(t))(Lk(x)), j,k = 0, 1, 2, . . . ,n.

Theorem 2.4 ([5, 6, 22]). If u(t, x) is a continuous function defined over a region [0, 1]× [0, 1] has bounded mixed
fourth order partial derivative ∂2

∂t2∂x2u(t, x), then the Legendre expansion of the function converges uniformly to
the function. Moreover the error of the approximation for sufficiently smooth function u(t, x) over the region
[0, 1]× [0, 1] is given by

‖u(t, x) − SM(t, x)‖2 6

[
1
4

max
(t,x)∈[0,1]×[0,1]

∣∣∣∣ ∂M+1

∂tM+1u(t, x)
∣∣∣∣+ 1

4
max

(t,x)∈[0,1]×[0,1]

∣∣∣∣ ∂M+1

∂xM+1u(t, x)
∣∣∣∣

+
1
16

max
(t,x)∈[0,1]×[0,1]

∣∣∣∣ ∂2M+2u(t, x)
∂tM+1∂xM+1

∣∣∣∣ 1
MM+1

]
1

MM+1 .

3. Operational matrices of integrations and differentiations

The concerned section is committed to the study of operational matrices of fractional order derivatives
and integrals based on Shifted Legendre polynomials, which are needed throughout in this paper. The
operational matrices of fractional order derivatives and integration by Legendre polynomials in case of
single variable are studied in [20]. In this article we develop the operational matrices of fractional order
integration and differentiations and extend the notation to case of two variables.

Theorem 3.1. Consider ΨM2(t, x) as given in (2.3), then the p order integration of ΨM2(t, x) w.r.t “t” is given by

IpΨM2(t, x) ' Ŝ
(p,t)
M2×M2ΨM2(t, x)

with Ŝ
(p,t)
M2×M2 being the operational matrix of integration of order p > 0 given by
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Ŝ
(p,t)
M2×M2 =



Λ1,1,k Λ1,2,k · · · Λ1,r,k · · · Λ1,M2,k
Λ2,1,k Λ2,2,k · · · Λ2,r,k · · · Λ2,M2,k

...
...

...
...

...
...

Λµ,1,k Λµ,2,k · · · Λµ,r,k · · · Λµ,M2,k
...

...
...

...
...

...
ΛM2,1,k ΛM2,2,k · · · ΛM2,r,k · · · ΛM2,M2,k


,

and r =Mi+ j+ 1, µ =Ma+ b+ 1, Λµ,r,k = Ei,j,a,b,k for i, j,a,b = 0, 1, 2, . . . ,m,

Ei,j,a,b,k =

a∑
k=0

δi,b(2i+ 1)
i∑
l=0

(−1)i+l+a+k(i+ l)!(a+ k)!
(i− l)!(l!)2(k+ p+ l+ 1)(a− k)!k!Γ(p+ k+ 1)

.

Proof. To prove the above result, applying the fractional integral of order p on (2.1), w.r.t “t, ” we get

IpLn(t, x) = IpLa(t)Lb(x) =

a∑
k=0

(−1)a+k(a+ k)!
(a− k)!(k!)2 I

p
t t
kLb(x). (3.1)

In view of definition of fractional derivative, equation (3.1), can be written as

IpLa(t)Lb(x) =

i∑
k=0

(−1)a+k(a+ k)!
(a− k)!(k!)Γ(k+ p+ 1)

tk+pLb(x), b = 1, 2, 3, . . . ,M. (3.2)

Now, approximating tk+pLb(x) by Legendre polynomial in two variables, we get

Lb(x)t
k+p ≈

m∑
i=0

m∑
j=0

EijLi(t)Lj(x),

where Eij = (2i+ 1)(2j+ 1)
∫1

0

∫1
0 Lb(x)t

k+pLi(t)Lj(x)dtdx, and using the orthogonality relation, we get

Eij =

{
0, if b 6= j,
(2i+ 1)

∑i
l=0

(−1)i+j(i+1)!
(i−l)!(l!)2(k+l+p+1) , if b = j.

(3.3)

We can rewrite the above equation (3.3) as

Eij,b = δj,b(2i+ 1)
i∑
l=0

(−1)i+j(i+ 1)!
(i− l)!(l!)2(k+ l+ p+ 1)

,

where δj,b =

{
0, ifb 6= j,
1, if b = j. Now, substitution the values in equation (3.2), we obtain

IpLa(t)Lb(x) =

a∑
k=0

(−1)a+k(a+ k)!
(a− k)!(k!)Γ(k+ p+ 1)

m∑
i=0

m∑
j=0

Eij,bLi(t)Lj(x),

=

m∑
i=0

m∑
j=0

a∑
k=0

(−1)a+k(a+ k)!
(a− k)!(k!)Γ(k+ p+ 1)

Eij,bLi(t)Lj(x),

=

m∑
i=0

m∑
j=0

Eij,b,a,kLi(t)Lj(x),

where

Ei,j,a,b,k =

a∑
k=0

δi,b(2i+ 1)
i∑
l=0

(−1)i+l+a+k(i+ l)!(a+ k)!
(i− l)!(l!)2(k+ p+ l+ 1)(a− k)!k!Γ(p+ k+ 1)

.
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Using the notation like

r =Mi+ j+ 1, µ =Ma+ b+ 1, Λµ,r,k = Ei,j,a,b,k for i, j,a,b = 0, 1, 2, . . . ,m,

we get

IpLa(t)Lb(x) =

M2∑
µ=1

M2∑
r=1

Λµ,r,kLi(t)Lj(x), for a,b, i, j = 0, 1, 2, . . . ,m.

Consequently, the desired result follows.

Theorem 3.2. Consider the function vector ΨM2(t, x) defined in (2.3), then the fractional order differentiation of
ΨM2(t, x) w.r.t “x” is given by

cDp(ΨM2(t, x)) 'H
(p,x)
M2×M2ΨM2(t, x),

where H
(p,x)
M2×M2 is the operational matrix given as

H
(p,x)
M2×M2 =



∐
1,1,k

∐
1,2,k · · · ∐

1,r,k · · · ∐
1,M2,k∐

2,1,k
∐

2,2,k · · · ∐
2,vr,k · · · ∐

2,M2,k
...

...
...

...
...

...∐
µ,1,k

∐
µ,2,k · · · ∐

µ,r,k · · · ∐
µ,M2,k

...
...

...
...

...
...∐

M2,1,k
∐
M2,2,k · · · ∐M2,µ,k · · · ∐M2,M2,k


,

and µ = Ni+ j+ 1, r = Na+ b+ 1, for i, j,a,b = 0, 1, 2, . . . ,n,

∐
µ,r,k

= Ei,j,b,a,k =

a∑
k=dpe

δi,a(2j+ 1)
j∑
l=0

(−1)j+l+b+k(j+ l)!(b+ k)!
(j− l)!(l!)2(k+ l− p+ 1)(b− k)!Γ(k− p+ 1)

with
Ei,j,b,a,k = 0, if b < p.

Similarly, the fractional order differentiation of ΨM2(t, x) w.r.t “t” is given as

cDp(ΨM2(t, x)) 'H
(p,t)
M2×M2ΨM2(t, x),

where H
(p,t)
M2×M2 is the operational matrix given as

H
(p,t)
M2×M2 =



∐
1,1,k

∐
1,2,k · · · ∐

1,r,k · · · ∐
1,M2,k∐

2,1,k
∐

2,2,k · · · ∐
2,r,k · · · ∐

2,M2,k
...

...
...

...
...

...∐
µ,1,k

∐
µ,2,k · · · ∐

µ,r,k · · · ∐
µ,M2,k

...
...

...
...

...
...∐

M2,1,k
∐
M2,2,k · · · ∐M2,µ,k · · · ∐M2,M2,k


and µ = Ni+ j+ 1, r = Na+ b+ 1, for i, j,a,b = 0, 1, 2, . . . ,n,

∐
µ,r,k

= Ei,j,b,a,k =

a∑
k=dpe

δi,a(2j+ 1)
j∑
l=0

(−1)j+l+b+k(j+ l)!(b+ k)!
(j− l)!(l!)2(k+ l− p+ 1)(b− k)!Γ(k− p+ 1)

with
Ei,j,b,a,k = 0, if b < p.

Proof. Like the proof of Theorem 3.1, one can easily obtain the proof.
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4. Numerical scheme based on the operational matrices

The present section is devoted to used the aforesaid operational matrices to perform numerical anal-
ysis of the proposed coupled system of FPDEs given as

cD
p
tu(t, x) +

cDqxv(t, x) = f(t, x), t, x ∈ [0, 1],
cD
p
t v(t, x) +

cDqxu(t, x) = g(t, x), t, x ∈ [0, 1],
(4.1)

subject to the initial conditions

u(0, x) = φ(x), v(0, x) = θ(x). (4.2)

First of all, we convert the system of coupled equations (4.1) into the simple algebraic equations, which
are very easy to soluble.

We approximate the partial fractional order derivatives by Legendre polynomial of order M in two
variables as

cD
p
tu(t, x) = KM2ΨM2(t, x), cD

q
t v(t, x) = ZM2ΨM2(t, x). (4.3)

Now, applying integral of order p, q, respectively, with respect to t and inview of Definition 2.1, we have

u(t, x) = c0 + KM2 Ŝ
(p,t)
M2×M2ΨM2(t, x), v(t, x) = c1 + ZM2 Ŝ

(q,t)
M2×M2ΨM2(t, x).

Using the initial conditions of (4.2) yields that

u(t, x) = φ(x) + KM2 Ŝ
(p,t)
M2×M2ΨM2(t, x), v(t, x) = θ(x) + ZM2 Ŝ

(q,t)
M2×M2ΨM2(t, x). (4.4)

Now, we approximat φ(x) and θ(x) as follows

φ(x) = F(1)ΨM2(t, x), θ(x) = F(2)ΨM2(t, x).

Now inview of the relation obtained in (4.4), we have

u(t, x) = F(1)ΨM2 + KM2 Ŝ
(p,t)
M2×M2ΨM2(t, x), v(t, x) = F(2)ΨM2 + ZM2 Ŝ

(q,t)
M2×M2ΨM2(t, x). (4.5)

Applying fractional derivatives of order p and q on equations (4.5), one can gets

cD
p
tu(t, x) = F(1)H

(p,t)
M2×M2ΨM2(t, x) + KM2 Ŝ

(p,t)
M2×M2H

(p,t)
M2×M2ΨM2(t, x),

cD
q
t v(t, x) = F(2)H

(q,t)
M2×M2ΨM2(t, x) + ZM2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2ΨM2(t, x).

(4.6)

Similarly, we find the relation for cDqxu(t, x) and cD
p
xv(t, x) as follows:

cDqxu(t, x) = F(1)H
(q,x)
M2×M2ΨM2(t, x) + KM2 Ŝ

(q,x)
M2×M2H

(q,x)
M2×M2ΨM2(t, x),

cDpxv(t, x) = F(2)H
(p,x)
M2×M2ΨM2(t, x) + ZM2 Ŝ

(p,x)
M2×M2H

(q,x)
M2×M2ΨM2(t, x).

(4.7)

Approximating f(t, x) = G
(1)
M2ΨM2(t, x), g(t, x) = G

(2)
M2ΨM2(t, x) and using equations (4.3), (4.6), and (4.7)

in our considered system of FPDEs (4.1), then we get as

KM2ΨM2(t, x) = −F(2)H
(q,t)
M2×M2ΨM2(t, x) − ZM2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2ΨM2(t, x) + G

(1)
M2ΨM2(t, x),

ZM2ΨM2(t, x) = −F(1)H
(q,t)
M2×M2ΨM2(t, x) − KM2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2ΨM2(t, x) + G

(2)
M2ΨM2(t, x).
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Now, we can write the above equation in matrix form as[
KM2uM2(t, x)
ZM2uM2(t, x)

]
=

[
−F(2)H

(q,t)
M2×M2ΨM2(t, x)

−F(1)H
(q,t)
M2×M2ΨM2(t, x)

]
+

[
−ZM2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2ΨM2(t, x)

−KM2 Ŝ
(q,t)
M2×M2H

(p,t)
M2×M2ΨM2(t, x)

]

+

[
G

(1)
M2ΨM2(t, x)

G
(2)
M2ΨM2(t, x)

]
.

(4.8)

By taking transpose and rearranging the matrices of the system (4.8), we get[
KT
M2 ZT

M2

] [ ΨM2(t, x) O

O ΨM2(t, x)

]
= −

[
F2H

(q,t)
M2×M2 F1H

(q,t)
M2×M2

] [
ΨM2(t, x) O

O ΨM2(t, x)

]
−
[

ZT
M2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2 KT

M2 Ŝ
(q,t)
M2×M2H

(p,t)
M2×M2

] [
ΨM2(t, x) O

O ΨM2(t, x)

]
+
[

G1
M2 G2

M2

] [ ΨM2(t, x) O

O ΨM2(t, x)

]
.

(4.9)

Let us denote

A =

[
ΨM2(t, x) O

O ΨM2(t, x)

]
.

Then equation (4.9), becomes[
KT
M2 ZT

M2

]
A+

[
F2H

(q,t)
M2×M2 F1H

(q,t)
M2×M2

]
A

+
[

ZT
M2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2 KT

M2 Ŝ
(q,t)
M2×M2H

(p,t)
M2×M2

]
A+

[
G1
M2 G2

M2

]
A = O,

which implies that[
KT
M2 ZT

M2

]
+
[

F2H
(q,t)
M2×M2 F1H

(q,t)
M2×M2

]
+
[

ZT
M2 Ŝ

(q,t)
M2×M2H

(p,t)
M2×M2 KT

M2 Ŝ
(q,t)
M2×M2H

(p,t)
M2×M2

]
+
[

G1
M2 G2

M2

]
= O.

(4.10)

It is obvious that (4.10) is an algebraic equation of matrices, which can be solved for the unknown matrix[
KT
M2 ZT

M2

]
.

After computation and putting its value in (4.5), one can get the approximate solution of the considered
problem.

5. Numerical examples

The present section is concerning to test the above technique by some well known interest problems
given bellow.

Example 5.1. Consider the coupled system of homogenous FPDEs given by
cD
p
tu(t, x) +

cDqxv(t, x) = 0, 0 < p, q 6 1, t, x ∈ [0, 1],
cD
q
t v(t, x) +

cDqxu(t, x) = 0, 0 < p, q 6 1, t, x ∈ [0, 1],
(5.1)

subject to the initial conditions

u(0, x) = exp(x), v(0, x) = exp(−x).

It should be noted that the exact solution of (5.1) at p = q = 1 is given in [16] as
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u(t, x) = exp(x) cosh(t) + exp(−x) sinh(t), v(t, x) = exp(−x) cosh(t) − exp(x) sinh(t).

We find the approximate solutions using the proposed method and compared the results with the Leg-
endre multiwavelets and Chebyshev multiwavelet of u(t, x) and v(t, x). For the afore said comparison we
have taken scale level M = 6 in Tables 1 and 2, respectively. We see that our proposed method is more
efficient than the given method as shown in Tables 1 and 2 and Figures 1 and 2, respectively.
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Figure 1: (a) Plot of absolute error for u(t, x) at M = 4,p = q = 0.9. (b) Comparison of approximate and exact solution for u(t, x)
of Example 5.1 at M = 4.
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Figure 2: (c) Plot of absolute error for v(t, x) at M = 4,p = q = 0.9. (d) Comparison of approximate and exact solution for v(t, x)
of Example 5.1 at M = 4.

Table 1: Comparison between the results obtained by Legendre operational matrices method (LOM), Legendre Multiwavelet
method (LMW), and Chebeshive multiwavelet method (CMW) of u(t, x) for Example 5.1 at p = q = 1.

x/t = 0.1 |uEaxct − uLOM| |uEaxct − uLMW| |uEaxct − uCMW|

0 1× 10−10 4.3× 10−5 4.3× 10−5

0.1 1.9× 10−10 3.3× 10−5 3.3× 10−5

0.2 4.3× 10−9 8.3× 10−6 8.3× 10−6

0.3 2.6× 10−8 1.3× 10−5 1.3× 10−5

0.4 1.8× 10−8 2.1× 10−5 2.1× 10−5

0.5 8.4× 10−7 1.2× 10−5 1.2× 10−5

0.6 9.7× 10−7 5.6× 10−6 5.6× 10−6

0.7 3.8× 10−7 2.2× 10−5 2.2× 10−5

0.8 6.5× 10−6 1.8× 10−5 1.8× 10−5

0.9 5.4× 10−6 3.1× 10−5 3.1× 10−5

1.0 7.8× 10−5 1.5× 10−4 4.3× 10−5
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Table 2: Comparison between the results obtained for v(t, x) by Legendre operational matrices method (LOM), Legendre Multi-
wavelet method (LMW), and Chebyshev Multiwavelet method (CMW) for Example 5.1 at p = q = 1.

x/t = 0.1 |vEaxct − vLOM| |vEaxct − uLMW| |vEaxct − VCMW|

0 1.2× 10−9 7.9× 10−5 7.9× 10−5

0.1 1.0× 10−9 1.7× 10−5 1.7× 10−5

0.2 3.9× 10−8 2.9× 10−5 2.9× 10−5

0.3 2.0× 10−8 4.9× 10−6 4.9× 10−6

0.4 1.4× 10−8 2.2× 10−5 2.2× 10−5

0.5 7.8× 10−7 3.1× 10−5 3.1× 10−5

0.6 4.9× 10−7 1.6× 10−5 1.6× 10−5

0.7 6.5× 10−7 1.5× 10−5 1.5× 10−5

0.8 1.2× 10−6 3.4× 10−5 3.4× 10−5

0.9 2.9× 10−6 5.0× 10−6 4.9× 10−6

1.0 1.0× 10−5 1.7× 10−4 7.9× 10−5

Example 5.2. Consider the coupled system of homogeneous FPDEs given by

cD0.9
t u(t, x) +

cD0.8
x v(t, x) = f(t, x), t, x ∈ [0, 1],

cD0.9
t v(t, x) +

cD0.8
x u(t, x) = g(t, x), t, x ∈ [0, 1],

(5.2)

subject to the initial conditions

u(0, x) = x2 + 1, v(0, x) = exp(x).

where

f(t, x) =
∞∑
k=0

(−1)ktk−0.9

Γ(k− 0.1)
+

∞∑
k=0

xk−0.8

Γ(k− 0.2)
, g(t, x) =

t1.1

Γ(2.1)
+

x1.1

Γ(2.1)
.

It is to be noted that the exact solution of (5.2) at p = q = 1 is given as

u(t, x) = x2 + exp(−t) v(t, x) = t2 + exp(x).

We find the approximate solutions using the proposed method of u(t, x) and v(t, x). We see that our
proposed method is more efficient and provide more excellent solutions even at a small scale level as
shown in Figures 3 and 4, respectively. Further we also computed the absolute error at various scale
levels in Table 3. We see that as scale level is increasing, the absolute error is decreasing and vice versa,
which has been shown in Table 3.
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5.2 at M = 4.
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Table 3: Absolute error at different scale levels in the solutions recited by Legendre operational matrices method for Example 5.2
using fractional order at p = 0.9, q = 0.8.

(t, x) Scale=M |uExact − uApp| |vExact − vApp|

(0.1, 0.1) 4 8.17634× 10−6 2.00033× 10−4

(0.1, 0.3) 5 2.09597× 10−7 1.09597× 10−4

(0.4, 0.5) 6 1.29274× 10−8 4.9278× 10−5

(0.5, 0.5) 7 1.00725× 10−8 1.00074× 10−5

(0.6, 0.4) 8 1.55176× 10−10 2.8921× 10−6

(0.4, 0.6) 10 1.55176× 10−10 1.55176× 10−8

(0.7, 0.2) 12 3.01549× 10−11 1.00345× 10−8

(0.3, 0.7) 14 9.05935× 10−12 6.55176× 10−10

(0.8, 0.1) 15 1.51204× 10−13 2.12346× 10−12

(0.9, 0.2) 16 2.93874× 10−14 7.36153× 10−13

(0.4, 0.9) 18 8.82871× 10−16 9.5016× 10−15

(1.0, 1.0) 20 1.47354× 10−16 8.23160× 10−16

6. Conclusion

In the aforesaid analysis, we have successfully obtained a numerical scheme for the approximate so-
lutions of coupled system of FPDEs subject to initial conditions. The results obtained by the proposed
method have been compared with the results received by using Legendre and Chebyshev Multiwavelet
method [16] for Example 5.1. From the comparison, one can easily understood that the proposed method
is an efficient and reliable as compared to the mentioned methods. In the mentioned methods discretiza-
tion is used while in the proposed method it has of no need. The method is computer oriented.
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