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Abstract
This paper proposes a numerical scheme for nonlinear Schrödinger equations with periodic variable coefficients and stochas-

tic perturbation. The scheme is obtained by applying finite element method in spatial direction and finite difference scheme in
temporal direction, respectively. The scheme is stable in the sense that it preserves discrete charge of the Schrödinger equations.
The numerical examples verify the conservative property of the new scheme.
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1. Introduction

Schrödinger-type equations are important mathematical physical models in plasma physics, nonlin-
ear optics, engineering, celestial mechanics, Bose-Einstein condensations ([14]). With the idea of chirp in
optical soliton communication, they are used to study the propagation of picosecond optical pulses in
single-mode fiber. They can describe the state of motion of outer electrons and reflect the characteristic
wave-particle duality. Schrödinger-type equations are mathematical models for energy transfer in a mono-
layer molecular aggregate in the presence of thermal fluctuations. With average field theorem, they are
applied to analyze the property of macroscopic wave function of aggregate in Bose-Einstein condensation.

The research for deterministic Schrödinger-type equations is well done. There are many investiga-
tions for deterministic PDEs, such as exp-function method [8], homotopy perturbation method [23],
variational iteration method [22], collocation scheme [16], finite difference method [9] and so on. The
numerical analysis for deterministic Schrödinger-type equations, such as symplectic schemes [17] and
multi-symplectic schemes [20], pseudospectral method [4], compact method [6], finite volume scheme [7],
collocation method [24], and conservative scheme [12, 19], can be found in the references therein.

Stochastic Schrödinger-type equations become a hot research topic recently. Well-posedness results
for nonlinear Schrödinger equation (NSE) with linear Wiener noise is proved in [1]. Multi-symplectic
scheme is proposed for stochastic NSE in [10]. An exponential scheme is developed to simulate quantum
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observables of NSE [15]. A semi-discrete scheme is considered to NSE with power nonlinearity [5]. The
Strang-type splitting scheme is proposed to NSE with multiplicative noise [13]. A θ-scheme is analyzed
for NSE with Stratonovich noise [3].

It is found that, finite element method is a kind of important numerical methods for NSE. A mixed
finite-element method and the two-grid approach are applied to solve NSE [21]. Linearized Crank-
Nicolson Galerkin method is studied for generalized NSE [18]. Continuous Galerkin methods on the
space-time mesh are analyzed for NSE in [11]. Symplectic local discontinuous Galerkin method is pro-
posed to NSE with multiplicative noise [2].

In this paper, we focus on the numerical investigations of conservative stochastic NSE. For conservative
stochastic NSE, the reference of finite element method still lack. If we apply finite element method in
space and finite difference scheme in time to conservative stochastic NSE, how does the obtained scheme
behave? This motivates us to study the question in this paper. We try to observe the ability of our scheme
in preserving conservative property of stochastic NSE.

In below we consider the initial-boundary problem of the following NSE with periodic variable coef-
ficients and stochastic perturbation{

iut +α(t)uxx +β(t)|u|2u = εu ◦ χ̇, x ∈ I = [−a,a], t ∈ (0, T ],
u(x, 0) = ϕ(x),u(a, t) = u(−a, t) = 0, x ∈ I, t ∈ [0, T ], (1.1)

where i2 = −1,ut and uxx mean the first order partial derivative of u with respect to t and the second
order partial derivative of u with respect to x, respectively. α(t) and β(t) are real bounded functions,
ε is a small real number, and ◦ means Stratnovich product. χ̇ is a real-valued white noise which is
delta correlated in time, either smooth or delta correlated in space. ϕ(x) is a differential function. For
NSE, α(t)uxx,β(t)|u|2u, and εu ◦ χ̇ are dispersion term, nonlinear term, and potential disturbance term,
respectively. The balance between the effect of these terms can maintain the spatial profile of soliton
waves. If ε = 0, the system (1.1) is a deterministic system.

Proposition 1.1. Under the periodic boundary condition, the solution of (1.1) satisfies the charge conservation law:

N(t) =

∫a
−a

|u(x, t)|2 dx = N(0). (1.2)

So we also say that the NSE system (1.1) is conservative.

Proof. By multiplying (1.1) by ū and integrating it with respect to x, we obtain that

i

∫
I

utūdx+α(t)

∫
I

uxxūdx+β(t)

∫
I

|u|4dx = ε

∫
I

|u|2 ◦ χ̇dx.

According to the boundary condition, we derive that

i

∫
I

utūdx−α(t)

∫
I

|ux|
2dx+β(t)

∫
I

|u|4dx =

∫
I

ε|u|2 ◦ χ̇dx.

Taking the imaginary part of above equation yields that∫
I

utū+ uūtdx =
d

dt

∫
I

uūdx = 0.

This implies the charge conservation law (1.2), which can be used to test the efficiency of numerical
methods for the NSE system (1.1).

Denote u = p+ iq. Then the NSE (1.1) can be written in the following form{
pt +α(t)qxx +β(t)(p2 + q2)q = εq ◦ χ̇,
−qt +α(t)pxx +β(t)(p2 + q2)p = εp ◦ χ̇. (1.3)

2. New numerical scheme

In below, for simplicity, we apply the uniform mesh grids {xk = −a+ kh, tn = nτ} with step-sizes
h = 2a/K and τ = T/M. Numerical values of u(xk, tn) are denoted by unk .
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The standard Sobolev space is denoted by

H1
0(I) = {ψ(x)|ψ,ψ ′ ∈ L2(I),ψ(a) = ψ(−a) = 0, x ∈ I}.

For any ψ ∈ H1
0(I), with the boundary condition and Green formula, we can derive the following weak

equations of (1.3), ∫
I

ptψdx−α(t)

∫
I

qxψxdx+β(t)

∫
I

(p2 + q2)qψdx = ε

∫
I

qψ ◦ χ̇dx,

−

∫
I

qtψdx−α(t)

∫
I

pxψxdx+β(t)

∫
I

(p2 + q2)pψdx = ε

∫
I

pψ ◦ χ̇dx.

Additionally, we denote the finite element space by Vh. Accordingly, the discrete form of the weak
equations is: to find ph,qh ∈ Vh, such that for any ψh ∈ Vh, the following equations∫

I

(ph)tψhdx−α(t)

∫
I

(qh)x(ψh)xdx+β(t)

∫
I

(p2
h + q2

h)qhψhdx = a
h
q, (2.1)

−

∫
I

(qh)tψhdx−α(t)

∫
I

(ph)x(ψh)xdx+β(t)

∫
I

(p2
h + q2

h)phψhdx = a
h
p (2.2)

are satisfied.
In below, we will solve the discrete weak equations (2.1) and (2.2). We choose the space of segmental

continuous linear function as Vh. Then Vh is the linear expansion space generated by φ1,φ2, . . . ,φK+1,
where

φ1(x) =

{ x1−x
h , x ∈ (x0, x1],

0, x /∈ (x0, x1],
φK+1(x) =

{ x−xK

h , x ∈ (xK, xK+1],
0, x /∈ (xK, xK+1],

φk(x) =


x−xk−1

h , x ∈ (xk−1, xk],
xk+1−x

h , x ∈ (xk, xk+1],
0, x /∈ (xk−1, xk+1],

k = 2, . . . ,K.

Suppose that

ph =

K+1∑
k=1

ak(t)φk(x), qh =

K+1∑
k=1

bk(t)φk(x). (2.3)

Replacing ψh by φj and inserting (2.3) into (2.1) and (2.2) yield that

AP ′ − [α(t)B−β(t)D(P,Q) + εC]Q = 0, (2.4)
AQ ′ + [α(t)B−β(t)D(P,Q) + εC]P = 0, (2.5)

where P = (a1,a2, . . . ,aK+1)
T , Q = (b1,b2, . . . ,bK+1)

T , A = (akj),B = (bkj),C = (ckj), and D(P,Q) =
(dkj) with the following notations

akj =

∫
I

φkφjdx,bkj =
∫
I

φ ′kφ
′
jdx, ckj =

∫
I

φkφj ◦ χ̇dx,

dkj =

∫
I

∣∣∣∣∣
K+1∑
m=1

am(t)φm

∣∣∣∣∣
2

+

∣∣∣∣∣
K+1∑
m=1

bm(t)φm

∣∣∣∣∣
2φkφjdx.

Then we apply the following finite difference scheme to (2.4)-(2.5) and get the new scheme for the
NSE system (1.3),

A
Pn+1 − Pn

τ
− [αnB−βnD(Pn,Qn) + εCn]Qn+ 1

2 = 0, (2.6)

A
Qn+1 −Qn

τ
+ [αnB−βnD(Pn,Qn) + εCn]Pn+ 1

2 = 0, (2.7)

where αn = α(tn),βn = β(tn),Pn+1/2 = (Pn+1 + Pn)/2,Qn+1/2 = (Qn+1 +Qn)/2. The elements in
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D(P,Q),C are substituted by the numerical solutions to get D(Pn,Qn),Cn.

Theorem 2.1. Denote Un = Pn + iQn. Let ‖Un‖2 = h|Un|2 = h
∑
Un

kU
n
k . Then ‖Un‖2 is the discrete charge

invariant of the scheme (2.6)-(2.7), which implies the discrete charge conservation law of (1.1). So in this sense, we
also say that the scheme (2.6)-(2.7) behaves conservatively and stably.

Proof. The scheme (2.6)-(2.7) is equivalent to

A
Un+1 −Un

τ
+ i[αnB−βnD(Pn,Qn) + εCn]Un+ 1

2 = 0, (2.8)

where Un+1/2 = (Un+1 +Un)/2. This is a finite difference scheme to the NSE (1.1). By multiplying (2.8)

with Un+ 1
2 , we obtain that

A
|Un+1|2 − |Un|2 +Un+1Un −Un+1Un

2τ
+ i [αnB−βnD(Pn,Qn) + εCn] |Un+ 1

2 |2 = 0. (2.9)

Considering the real symmetry and invertibility of A, the real part of above equation (2.9) implies that

‖Un‖2 = ‖Un+1‖2.

3. Numerical results

We apply above scheme (2.6)-(2.8) to solve three NSEs with periodic boundary condition and test the
conservative property of the scheme. We consider ‖Un‖ as the discrete charge of N(tn). The numerical
residuals of N(t) is measured by the error ‖Un‖− ‖U0‖.

Example 3.1. First we consider the following NSE with constant coefficients{
iut + uxx + |u|2u = εu ◦ χ̇, x ∈ I = [−5, 5], t > 0,
u(x, 0) =

√
2

2 exp(i
x
2 )sech(

x
2 ),u(5, t) = u(−5, t), x ∈ I, t > 0.

(3.1)

The step-sizes we used are h = 1/8 and τ = 1/100. In Figure 1, we plot the discrete charge (left)
and its residuals (right) for numerical solutions of (3.1) with ε = 0.4, respectively. The figure verifies that
our scheme preserves the discrete charge conservation law of (3.1) approximately. Numerical results are
similar to other step-sizes h, τ and other perturbation size ε.
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Figure 1: Discrete charge (left) and its residuals (right) for numerical solutions of the NSE (3.1).
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Example 3.2. Second, we consider the following NSE with variable coefficients iut +
1
2 cos(t)uxx +

cos(t)
sin(t)+3 |u|

2u = εu ◦ χ̇, x ∈ I = [−5, 5], t > 0,

u(x, 0) =
√

3
3 exp

(
i(x2−1)

6

)
sech

(
x
3

)
,u(5, t) = u(−5, t), x ∈ I, t > 0.

(3.2)

The step-sizes we applied are h = 1/8 and τ = 1/100. In Figure 2, we depict the discrete charge (left)
and its residuals (right) for numerical solutions of (3.2) with ε = 0.5, respectively. The figure shows that
the method also preserves the discrete charge invariant of (3.2) approximately. To other step-sizes h, τ
and other perturbation size ε, we obtain similar numerical results.
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Figure 2: Discrete charge (left) and its residuals (right) for numerical solutions of the NSE (3.2).

Example 3.3. Third, we consider the following NSE with variable coefficients iut +
1
2 [cos(t) +

√
2 cos(

√
2t)]uxx +

cos(t)+
√

2 cos(
√

2t)
sin(t)+sin(

√
2t)+5

|u|2u = εu ◦ χ̇, x ∈ I = [−5, 5], t > 0,

u(x, 0) =
√

5
5 exp

(
i(x2−1)

10

)
sech

(
x
5

)
,u(5, t) = u(−5, t), x ∈ I, t > 0.

(3.3)

The step-sizes we used are h = 1/8 and τ = 1/100. In Figure 3, we plot the discrete charge (left) and
its residuals (right) for numerical solutions of (3.3) with ε = 0.6, respectively. The figure tells us that the
method preserves the discrete charge conservative property of (3.3) approximately. It follows analogously
for other step-sizes h, τ and other perturbation size ε.
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Figure 3: Discrete charge (left) and its residuals (right) for numerical solutions of the NSE (3.3).

In Figure 4, we plot the three-dimensional graph for imaginary parts of numerical solutions for Exam-
ple 3.1 (left), Example 3.2 (middle), and Example 3.3 (right), respectively. Although the profile of soliton
waves is maintained, the small noise produces stochastic fluctuations on the waves.
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Figure 4: Imaginary parts graph for numerical solutions of the NSEs.

4. Conclusion

We combine finite element method and finite difference scheme to obtain a new scheme to NSEs. The
stable scheme has conservative discrete charge for NSEs. We also investigate the scheme for three NSE
examples with periodic variable coefficients and stochastic perturbation. Further discussion and research
about the numerical analysis of stochastic NSEs will be followed.
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