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Abstract
In this paper, we give a refinement of the well known Jessen’s inequality via weight functions. We discuss m-exponential

convexity of the functions associated with these weighted Jessen’s functionals. Cauchy and Lagrange mean value theorems are
also given that are useful in the construction of means with Stolarsky property.
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1. Introduction and preliminaries

A real valued function Ψ on S, where S is a convex set, is called convex if epigraph of Ψ is a convex
set. Alternatively, a function Ψ is convex if

Ψ(ρx+ (1 − ρ)y) 6 ρΨ(x) + (1 − ρ)Ψ(y)

for all x,y ∈ S and ρ ∈ [0, 1].
The well known king of inequalities, i.e., the Jensen’s inequality is the generalization of above in-

equality (see [3, 11]). The Jensen’s inequality states that if S ⊆ R and Ψ : S → R is convex then for all
xi ∈ S, (1 6 i 6 n) and ρi(1 6 i 6 n) non negative real such that ρ1 + · · ·+ ρn = 1 we have

Ψ

(
n∑
i=1

ρixi

)
6

n∑
i=1

ρiΨ(xi).

The classical integral form of Jensen’s inequality states that if λ is a positive measure on a σ-algebra
A on a set X, so that λ(X) = 1. If h ∈ L1(λ), h(x) ∈ S ⊆ R for all x ∈ X and Ψ : S → R is convex (see for
example [15, 18]), then

Ψ

(∫
X

hdλ

)
6

∫
X

(Ψ ◦ h)dλ.

∗Corresponding author
Email addresses: rishi.naeem@sns.nust.edu.pk (Rishi Naeem), manwar@sns.nust.edu.pk (Matloob Anwar)

doi: 10.22436/jmcs.019.03.04

Received: 2019-03-22 Revised: 2019-04-25 Accepted: 2019-04-30

http://dx.doi.org/10.22436/jmcs.019.03.04
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.019.03.04&domain=pdf


R. Naeem, M. Anwar, J. Math. Computer Sci., 19 (2019), 171–180 172

Let (X,A, λ1) and (Y,B, λ2) are two probability measure spaces. A (separately) weight function ω is
defined as a product-measurable mapping ω : X× Y → [0,∞), see for example [18], such that∫

X

ω(x,y)dλ1(x) = 1 (for everyy ∈ Y),
∫
Y

ω(x,y)dλ2(y) = 1 (for every x ∈ X). (1.1)

The following result is a refined form of integral Jensen’s inequality via weight function.

Theorem 1.1 ([16]). Suppose that (X,A, λ1) and (Y,B, λ2) are two probability measure spaces and ω is a weight
function (defined in (1.1)). If S ⊆ R, h ∈ L1(λ1), h(x) ∈ S for all x ∈ X and Ψ : S→ R is a real convex function,
then ∫

Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y)

has meaning and

Ψ

(∫
X

hdλ1

)
6

∫
Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) 6

∫
X

(Ψ ◦ h)dλ1. (1.2)

Let E( 6= ∅) and L be a linear class of real valued functions h : E→ R having the properties:

L1: h,k ∈ L⇒ (αh+βk) ∈ L for all α,β ∈ R;
L2: 1 ∈ L that is if h(l) = 1 for l ∈ E, then h ∈ L.

We also consider positive linear functionals A : L→ R possess the properties:

A1: A(αh+βk) = αA(h) +βA(k) for h,k ∈ L,α,β ∈ R;
A2: h ∈ L,h(l) > 0 on E⇒ A(h) > 0 (A is positive).

The mapping A is said to be normalized if

A3: A(1) = 1.

By a weight function, we mean a mapping ω : E× E→ R+ such that

A (ω(x,y)) = 1 (for each y in E), B (ω(x,y)) = 1 (for each x in E), (1.3)

where A and B satisfy the properties A1,A2, and A3.
Jessen in [7] (see also [15]) gave the following generalization of Jensen’s inequality for positive linear

functionals.

Theorem 1.2. Let L satisfy properties L1,L2 on a nonempty set E and let Ψ : S → R be a continuous convex
function on an interval S ⊆ R. If A is a positive linear functional on L with A(1) = 1, then for all h ∈ L such that
Ψ(h) ∈ L we have A(h) ∈ S and

Ψ(A(h)) 6 A(Ψ(h)).

The concept of m-exponentially convex functions was introduced by Pečarić and Perić in [14]. An
elegant method from [6] is used to construct m-exponential convexity, see [1, 2, 4, 5, 8–10, 12, 13].

The next section deals with the investigation ofm-exponential convexity of the kind of functionals that
are related with the refined form of weighted integral Jensen’s inequality (1.2). The result are deduced
about exponential convexity as well as the log-convexity. Lagrange and Cauchy type mean value theorems
are established and the construction of means is made using Stolarsky property. In Section 3, we refine the
Jessen’s inequality via weight function and discuss m-exponential convexity of the functions associated
with these linear functionals. We present several families of functions related to our main results and
mean value theorems are also given. On the other hand, in [13] we proved the counterpart of this refined
inequality over a compact interval S = [η, ζ] and investigate its exponential and log-convexity.
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2. m-exponential convexity of weighted integral Jensen’s inequality

A real valued function Ψ : S → R is m-exponentially convex if it is m-exponentially J-convex and
continuous on I; hence it is an exponentially convex function (for detail see [14]).

Remark 2.1. A positive real valued function Ψ : S → R is log-J-convex if and only if it is 2-exponentially
J-convex. Converse is true provided that Ψ is continuous also.

Remark 2.2. If the divided difference [s1, s2;Ψ] > 0 for every s1, s2 ∈ S, then Ψ is increasing on its domain.

Lemma 2.3 ([5]). If Ψ : S→ R is log-convex, then for l < r < s (l, r, s ∈ S),

(Ψ(r))s−l 6 (Ψ(l))s−r (Ψ(s))r−l .

Remark 2.4. We consider the following functionals under the assumption of Theorem 1.1,

Ω(Ψ) =

∫
Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Ψ

(∫
X

hdλ1

)
, (2.1)

z(Ψ) =

∫
X

(Ψ ◦ h)dλ1 −

∫
Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y). (2.2)

Then Ω(Ψ) and z(Ψ) are positive.

We construct m-exponentially convex functions and exponentially convex functions by applying an
elegant method from [6]. In the following theorem and its corollaries we have used the notation as: C is a
real open interval, S is any real interval, and Γ = {gl|l ∈ C} is a family of functions defined on S. Ω(Ψ) is
as given in (2.1). Then we have the following useful results which produce new m-exponentially convex
functions.

Theorem 2.5. Suppose that the function l 7→ [s1, s2, s3;gl] is m-exponentially J-convex on C, where s1, s2, s3 are
distinct points of S. Then l 7→ Ω(gl) is an m-exponentially J-convex function on C. In addition, the continuity of
this function implies the m-exponential convexity on C.

Proof. Assume li, lj ∈ C, lij =
li+lj

2 and ai,aj ∈ R for i, j ∈ {1, . . . ,m}. Consider the function ∆ on S
defined as

∆(s) =

m∑
i,j=1

aiajglij(s).

Being the linear combination of continuous functions, ∆ is continuous. The hypothesis of m-exponential
J-convexity of l 7→ [s1, s2, s3;gl] yields

[s1, s2, s3;∆] =
m∑
i,j=1

aiaj[s1, s2, s3;glij ] > 0,

implying the convexity of ∆ on S. Hence Ω(∆) > 0. Further the linearity of Ω, gives

m∑
i,j=1

aiajΩ(glij) > 0.

We conclude that the function l 7→ Ω(gl) is an m-exponentially J-convex function on C.

The following corollaries are consequences of above theorem.

Corollary 2.6. Suppose that the function l 7→ [s1, s2, s3;gl] is exponentially J-convex on C, where s1, s2, s3 are
distinct points of S. Then l 7→ Ω(gl) is an exponentially J-convex function on C. In addition, the continuity of this
function implies the exponential convexity on C.
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Corollary 2.7. Suppose that the function l 7→ [s1, s2, s3;gl] is 2-exponentially J-convex on C, where s1, s2, s3 are
distinct points of S. Then the following statements hold.

(i) The continuity of the function l 7→ Ω(gl) implies the 2-exponential convexity of l 7→ Ω(gl) on C, and hence
the function is log-convex. That is for l, r, s ∈ C such that r < s < l, the following holds

Ωl−r(gs) 6 Ω
l−s(gr)Ω

s−r(gl).

(ii) Assume that the function l 7→ Ω(gl) on C is strictly positive and differentiable. Then for l 6 u and r 6 v,
(l, r,u, v ∈ C) yields

τ(l, r,Ω) 6 τ(u, v;Ω),

where

τ(l, r;Ω) =


(
Ω(gl)
Ω(gr)

) 1
l−r

, l 6= r,

exp
( d
dl (Ω(gl))

Ω(gl)

)
, otherwise.

Proof.

(i) This is an immediate consequence of Theorem 2.5 and Remark 2.1.

(ii) The log-convexity of l 7→ Ω(gl) on C follows from (i). It implies the convexity of l 7→ logΩ(gl) on C.
Applying [14, Proposition 3.2] with l 6 u, r 6 v, we get

logΩ(gl) − logΩ(gr)

l− r
6

logΩ(gu) − logΩ(gv)

u− v
, (2.3)

thus we have
τ(l, r,Ω) 6 τ(u, v;Ω).

The cases l = r and u = v follow from (2.3) as limit cases.

Now we present different families of functions to investigate exponential convexity. The following
lemma will be useful to construct new exponentially convex functions. Since the below mentioned result
is the simple consequence of some basic examples and remarks given in [6], so we omit the proof.

Lemma 2.8.
(i) Define a real valued function fl on S = R by fl(s) = 1

l2 exp(ls), (l > 0). This implies the exponential
convexity on (0,∞) of l 7→ d2

ds2 fl(s) for each s ∈ S.
(ii) Let gl be a real valued function defined on S = R+ by gl(s) = sl

l(l−1) , (l > 1). It implies the exponential

convexity on (1,∞) of the function l 7→ d2

ds2gl(s) for each s ∈ S.
(iii) Consider a positive real valued function defined on S = R+ by hl(s) = l−s

(log l)2 , (l > 1). It implies the

exponential convexity on (1,∞) of the function l 7→ d2

ds2hl(s) for each s ∈ S.
(iv) Define a positive real valued function kl on S = R+ by kl(s) = 1

l exp(−s
√
l), (l > 0). This implies the

exponential convexity on (0,∞) of the function l 7→ d2

ds2kl(s) for each s ∈ S.

Remark 2.9. The following positive functionals are useful in defining the basic inequality of log-convex
functions.

Ω(fl) =
1
l2

(∫
Y

exp
(
l

∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) − exp

(
l

∫
X

hdλ1

))
,

Ω(gl) =
1

l(l− 1)

(∫
Y

(∫
X

h(x)ω(x,y)dλ1(x)

)l
dλ2(y) −

(∫
X

hdλ1

)l)
,

Ω(hl) =
1

(log l)2

(∫
Y

l−(
∫
X h(x)ω(x,y)dλ1(x))dλ2(y) − l

−(
∫
X hdλ1)

)
,

Ω(kl) =
1
l

(∫
Y

exp
(
−
√
l

∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) − exp

(
−
√
l

∫
X

hdλ1

))
.
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Theorem 2.10. Let Ω(Ψ) be the linear functional defined by (2.1) and consider the function φi : (0,∞) → R for
i = 1, 4 and φi : (1,∞) → R for i = 2, 3 defined as φ1(l) = Ω(fl), φ2(l) = Ω(gl), φ3(l) = Ω(hl), φ4(l) =
Ω(kl), where fl,gl,hl and kl are defined in Lemma 2.8. Then

(i) the functions φi are continuous on (0,∞) for i = 1, 4 and continuous on (1,∞) for i = 2, 3;

(ii) if m ∈ N, l1, . . . , lm ∈ (0,∞) for i = 1, 4 and l1, . . . , lm ∈ (1,∞) for i = 2, 3. Then
[
φi

(
lj+lk

2

)]m
j,k=1

are

positive semidefinite matrices;
(iii) φi are exponentially convex on (0,∞) when i = 1, 4 and on (1,∞) for i = 2, 3;
(iv) let l, r, s ∈ (0,∞) for i = 1, 4 and r, s, l ∈ (1,∞) for i = 2, 3 with l < r < s, then

(φi(r))
s−l 6 (φi(l))

s−r (φi(s))
r−l ,

where φi(l) for i = 1, 2, 3, 4 are defined in Remark 2.9;
(v) if the functions φi are differentiable and strictly positive on (0,∞) for i = 1, 4 and on (1,∞) for i = 2, 3, then

for every l, r,u, v ∈ (0,∞) for i = 1, 4 and l, r,u, v ∈ (1,∞) for i = 2, 3 such that l 6 u and r 6 v, we have

τ(l, r,φi) 6 τ(u, v;φi),

where

τ(l, r;φi) =


(
φi(l))
φi(r)

) 1
l−r

, l 6= r,

exp
( d
dl (φi(l))

φi(l)

)
, otherwise.

Proof.

(i) The continuity of these functions is obvious.

(ii) Let dj, lj ∈ R, where j = 1, . . . ,m (m is any natural number). Define the auxiliary function ∆1 on
S = R by

∆1(s) =

m∑
j,k=1

djdkf lj+lk
2

(s).

Since

∆ ′′1 (s) =

m∑
j,k=1

djdk
d2

ds2 f lj+lk
2

(s) > 0

for s ∈ S by Lemma 2.8. This implies ∆1 is convex. Now Theorem 1.1 implies that Ω(∆1) > 0. This means

that
[
φ1

(
lj+lk

2

)]m
j,k=1

is a positive semidefinite matrix.

To prove the remaining positive semidefinite matrices, we can define the auxiliary functions ∆i for
i = 2, 3, 4 in the similar manner.

(iii) and (iv) are simple consequences of (i), (ii), and Lemma 2.3. We can easily prove (v) by using basic
inequality of log-convex functions given in part (iv).

2.1. Mean value theorems
To prove our main results, the following lemma is very useful.

Lemma 2.11 ([15]). Suppose Ψ ∈ C2([µ,ν]) and Ψ : [µ,ν] → R, where [µ,ν] ⊆ R, Ψ ′′ is bounded. Assume
d = infl∈[µ,ν] Ψ

′′(l), D = supl∈[µ,ν] Ψ
′′(l). Then the functions Ψ1,Ψ2 : [µ,ν]→ R defined by

Ψ1(l) =
D

2
l2 −Ψ(l), Ψ2(l) = Ψ(l) −

d

2
l2

are convex.
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Theorem 2.12. Assume Ψ : S = [µ,ν]→ R,Ψ ∈ C2(S), where S ⊆ R is compact. If (X,A, λ1) and (Y,B, λ2) are
two probability measure spaces and ω is a weight function (defined in (1.1)) such that h ∈ L1(λ1),h(x) ∈ S for all
x ∈ X. Then there exists $ ∈ S such that∫

Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Ψ

(∫
X

hdλ1

)
= ζΨ ′′($), (2.4)

where

ζ =
1
2

[∫
Y

(∫
X

h(x)ω(x,y)dλ1(x)

)2

dλ2(y) −

(∫
X

hdλ1

)2
]

.

Proof. Suppose D = maxl∈S Ψ ′′(l) and d = minl∈S Ψ ′′(l). Then the convexity of the functions Ψ1,Ψ2 : S→
R follows from Lemma 2.11. Since they are also continuous. Applying left-hand side of the inequality
(1.2), we get ∫

Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Ψ

(∫
X

hdλ1

)
6 ζD,

and ∫
Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Ψ

(∫
X

hdλ1

)
> ζd.

Now combining these two inequalities and since ψ ′′ is continuous, there exists $ ∈ S (d 6 Ψ ′′($) 6 D)
such that (2.4) holds.

Theorem 2.13. AssumeΦ,Ψ : S = [µ,ν]→ R,Φ,Ψ ∈ C2(S), where S ⊆ R is compact. If (X,A, λ1) and (Y,B, λ2)
are two probability measure spaces and ω is a weight function (defined in (1.1)) such that h ∈ L1(λ1),h(x) ∈ S for
all x ∈ X. Then $ ∈ S exists that ensures

Ψ ′′($)

[∫
Y

Φ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Φ

(∫
X

hdλ1

)]
= Φ ′′($)

[∫
Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Ψ

(∫
X

hdλ1

)]
.

(2.5)

Proof. Suppose a function k ∈ C2(S) defined as k = c1Φ− c2Ψ, where c1 and c2 are defined by

c1 =

∫
Y

Ψ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Ψ

(∫
X

hdλ1

)
,

and

c2 =

∫
Y

Φ

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) −Φ

(∫
X

hdλ1

)
.

As k ∈ C2(S), applying Theorem 2.12 on k ensures that there exists some $ ∈ S such that the following
holds ∫

Y

k

(∫
X

h(x)ω(x,y)dλ1(x)

)
dλ2(y) − k

(∫
X

hdλ1

)
= ζk ′′($).

The left-hand side of this equation equals to zero and the term ζ on the right-hand side is non zero,
so we have that k ′′($) = 0. Thus the assertion of our theorem follows directly.

Remark 2.14. If Φ ′′/Ψ ′′ is invertible, then means of various kinds can be defined by (2.5). That is,

$ =

(
Φ ′′

Ψ ′′

)−1(
Ω(Φ)

Ω(Ψ)

)
.
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If we apply Cauchy type mean value Theorem 2.13 on functions Φ = fl and Ψ = fr (defined in Lemma
2.8), it yields

M(l, r;Ω) = log τ(l, r;Ω)

satisfy

µ 6M(l, r;Ω) 6 ν,

where

τ(l, r;Ω) =


(
Ω(fl)
Ω(fr)

) 1
l−r

, l 6= r,

exp
(
Ω(id.fl)
Ω(fl)

)
· exp

(
−2
l

)
, l = r 6= 0.

If we set µ = minl∈[µ,ν]{f(l)} and ν = maxl∈[µ,ν]{f(l)}, then

min
l∈[µ,ν]

{f(l)} 6M(l, r;Ω) 6 max
l∈[µ,ν]

{f(l)},

which shows that M(l, r;Ω) are means of f(l), l ∈ [µ,ν]. If l 6 u, r 6 v where l, r,u, v ∈ R, then it yields
by Theorem 2.10 that these means are monotonic.

Now, if we apply Cauchy type mean value Theorem 2.13 on functions Φ = gl and Ψ = gr (defined in
Lemma 2.8), this yields that there exists $ ∈ [µ,ν] such that

$l−r =
Ω(gl)

Ω(gr)
.

Since the function $ 7→ $l−r is invertible for l 6= r, we get

µ 6

(
Ω(gl)

Ω(gr)

) 1
l−r

6 ν.

If we set µ = minl∈[µ,ν]{f(l)} and ν = maxl∈[µ,ν]{f(l)}, then in this case τ(l, r;Ω) are means of f(l), l ∈
[µ,ν], where

τ(l, r;Ω) =


(
Ω(gl)
Ω(gr)

) 1
l−r

, l 6= r,

exp
(

1−2l
l(l−1)

)
· exp

(
−
Ω(g0gl)
Ω(gl)

)
, l = r 6= 1.

Note that in this case, the monotonicity property also holds for τ(l, r;Ω).

Remark 2.15. We can construct similar results for the positive functional z(Ψ) defined in (2.2). Moreover,
by introducing suitable weight functions, Rooin gave the refinement of the discrete Jensen’s inequality
and some of its applications (see [17]). We can prove similar results for the positive functionals associated
with this refined form of discrete Jensen’s inequality.

3. A new refinement of Jessen’s inequality and exponential convexity

The following theorem is the refinement of Jessen’s inequality.

Theorem 3.1. Let L satisfies properties L1 and L2 on a nonempty set E, and assume that Ψ is a continuous convex
function on an interval S ⊆ R. If A and B are positive linear functionals with A(1) = B(1) = 1 and ω is a weight
function (defined in (1.3)) then for all h,h ·ω ∈ L such that Ψ(A(h ·ω)),Ψ(h) ∈ L we have A(h ·ω),A(h) ∈ S
and

Ψ(A(h)) 6 B(Ψ(A(h ·ω))) 6 A(Ψ(h)).
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Proof.
B(Ψ(A(h ·ω))) > Ψ(B(A(h ·ω))) > Ψ(B(A(h))) = Ψ(A(h)).

Let S = [a,b]. From a 6 h(l) 6 b for all l ∈ E we obtain a 6 A(h) 6 b and a 6 A(h ·ω) 6 b. For
arbitrary but fixed ε > 0 there exist α,β ∈ R such that for ρ = αρ0 + βρ1 (ρj(l) = lj for j = 0, 1) we have
(i) ρ 6 Ψ, it yields ρ(A(h)) 6 Ψ(A(h ·ω)). (ii) ρ(A(h)) > Ψ(A(h ·ω)) − ε which implies B(ρ(A(h))) >
B(Ψ(A(h ·ω))) − ε. (If a < A(h) < b and a < A(h ·ω) < b or if h,h ·ω have finite derivatives in [a,b], we
can replace (ii) by ρ(A(h)) = Ψ(A(h ·ω))). Now (i) implies ρ ◦ h 6 Ψ ◦ h; hence

A(Ψ ◦ h) > A(ρ ◦ h) = α+βA(h) = B(ρ(A(h))) > B(Ψ(A(h ·ω))) − ε.

Since ε is arbitrary, the proof is complete.

If ω = 1, then we deduce the following result.

Corollary 3.2. Let L satisfies properties L1 and L2 on a nonempty set E, and assume that Ψ is a continuous convex
function on an interval S ⊆ R. If A and B are positive linear functionals with A(1) = B(1) = 1, then for all h ∈ L
such that Ψ(A(h)),Ψ(h) ∈ L we have A(h) ∈ S and

Ψ(A(h)) 6 B(Ψ(A(h))) 6 A(Ψ(h)).

Remark 3.3. We consider the following functionals under the assumption of Theorem 3.1,

Λ(Ψ) = B(Ψ(A(h ·ω))) −Ψ(A(h)), (3.1)
k(Ψ) = A(Ψ(h)) −B(Ψ(A(h ·ω))). (3.2)

Then Λ(Ψ) and k(Ψ) are positive.

In the following theorem and its corollaries we have used the notations as: C is a real open interval,
S is any interval, and Θ = {gl|l ∈ C} is a family of functions defined on S. Λ(Ψ) is as given in Remark
3.3. Then the following results produce new m-exponentially convex functions. Since the proofs are
analogous to those in the continuous case given in the previous section, so we omit the proofs.

Theorem 3.4. Suppose the function l 7→ [s1, s2, s3;gl] is m-exponentially J-convex on C, where s1, s2, s3 are
distinct points of S. Then l 7→ Λ(gl) is an m-exponentially J-convex function on C. In addition, the continuity of
this function implies m-exponential convexity on C.

The following corollaries are consequences of above theorem.

Corollary 3.5. Suppose the function l 7→ [s1, s2, s3;gl] is exponentially J-convex on C, where s1, s2, s3 are distinct
points of S. Then l 7→ Λ(gl) is an exponentially J-convex function on C. In addition, the continuity of this function
implies the exponential convexity on C.

Corollary 3.6. Suppose the function l 7→ [s1, s2, s3;gl] is 2-exponentially J-convex on C, where s1, s2, s3 are
distinct points of S. Then l 7→ Λ(gl) is 2-exponentially J-convex function on C. In addition, the continuity of this
function implies the exponential convexity on C and thus the function is log-convex. That is, for l, r, s ∈ C such
that r < s < l, the following holds

Λl−r(gs) 6 Λ
l−s(gr)Λ

s−r(gl).

Now we present different families of functions to investigate exponential convexity.

Remark 3.7. The following positive functionals are useful in defining the basic inequality of log-convex
functions,

Λ(fl) =
1
l2

(B (exp (lA(h ·ω))) − exp(lA(h))) ,
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Λ(gl) =
1

l(l− 1)
(
B
(
(A(h ·ω))l

)
− (A(h))l

)
,

Λ(hl) =
1

(log l)2

(
B
(
l−A(h·ω)

)
− l−A(h)

)
,

Λ(kl) =
1
l

(
B
(

exp
(
−A(h ·ω)

√
l
))

− exp
(
−A(h)

√
l
))

.

Theorem 3.8. Let Λ(Ψ) be the linear functional defined by (3.1) and consider the function φi : (0,∞) → R for
i = 1, 4 and φi : (1,∞) → R for i = 2, 3 defined by φ1(l) = Λ(fl), φ2(l) = Λ(gl), φ3(l) = Λ(hl), φ4(l) =
Λ(kl), where fl,gl,hl, and kl are defined in Lemma 2.8. Then

(i) the functions φi are continuous on (0,∞) for i = 1, 4 and continuous on (1,∞) for i = 2, 3;
(ii) if m ∈ N, l1, . . . , lm ∈ (0,∞) for i = 1, 4 and l1, . . . , lm ∈ (1,∞) for i = 2, 3, then the matrices[

φi

(
lj+lk

2

)]m
j,k=1

are positive semidefinite;

(iii) the functions φi are exponentially convex on (0,∞) for i = 1, 4 and exponentially convex on (1,∞) for
i = 2, 3;

(iv) let l, r, s ∈ (0,∞) for i = 1, 4 and r, s, l ∈ (1,∞) for i = 2, 3 with l < r < s, then

(φi(r))
s−l 6 (φi(l))

s−r (φi(s))
r−l ,

where φi(l) for i = 1, 2, 3, 4 are defined in Remark 3.7.

3.1. Mean value theorems
Now, we state the mean value theorems of Lagrange and Cauchy type.

Theorem 3.9. Let L satisfies properties L1 and L2 on a nonempty set E, and let Ψ : S = [a,b] → R,Ψ ∈ C2(S),
where S ⊆ R is a compact real interval. If A and B are positive linear functionals with A(1) = B(1) = 1, and ω
is a weight function (defined in (1.3)) then for all h,h ·ω ∈ L such that Ψ(A(h ·ω)), (A(h ·ω))2 ∈ L there exists
some $ ∈ S such that the following holds

B(Ψ(A(h ·ω))) −Ψ(A(h)) =
Ψ ′′($)

2
[
B((A(h ·ω))2) − (A(h))2] .

Theorem 3.10. Let L satisfies properties L1 and L2 on a nonempty set E, and let Φ,Ψ : S = [a,b] → R,Φ,Ψ ∈
C2(S), where S ⊆ R is a compact real interval. If A and B are positive linear functionals with A(1) = 1 and
B(1) = 1, and ω is a weight function (defined in (1.3)), then for all h,h ·ω ∈ L such that Φ(A(h ·ω)),Ψ(A(h ·
ω)), (A(h ·ω))2 ∈ L and B((A(h ·ω))2) − (A(h))2 6= 0, there exists some $ ∈ S such that the following holds

Ψ ′′($) [B(Φ(A(h ·ω))) −Φ(A(h))] = Φ ′′($) [B(Ψ(A(h ·ω))) −Ψ(A(h))] .

Remark 3.11. We can construct similar results for the positive functional k(Ψ) defined in (3.2).
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[2] S. I. Butt, R. Jakšić, L. Kvesić, J. Pečarić, n–Exponential convexity of weighted Hermite–Hadamard’s inequality, J. Math.
Inequal., 8 (2014), 299–311. 1

[3] S. S. Dragomir, J. Pečarić, L. E. Persson, Properties of some functionals related to Jensen’s inequality, Acta Math.
Hungar., 70 (1996), 129–143. 1

https://doi.org/10.1155/2010/728251
https://doi.org/10.1155/2010/728251
http://files.ele-math.com/articles/jmi-08-21.pdf
http://files.ele-math.com/articles/jmi-08-21.pdf
https://doi.org/10.1007/BF00113918
https://doi.org/10.1007/BF00113918


R. Naeem, M. Anwar, J. Math. Computer Sci., 19 (2019), 171–180 180
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