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Abstract

In this paper, two new explicit formulas for r-Bell numbers are established. One formula is expressed in terms of r-Stirling
numbers of the second kind and r-Lah numbers. The other formula is expressed in terms of the non-central Stirling numbers
of the second kind and the ordinary Lah numbers. Moreover, some matrix relations are obtained involving r-Bell numbers,
r-Stirling numbers of the second kind, r-Lah numbers, non-central Stirling numbers of the second kind, and the ordinary Lah
numbers.
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1. Introduction

In a recent paper by Qi [9], the Bell numbers were given explicit formula expressed in terms of Lah
and Stirling numbers of the second kind as follows:

Bn =

n∑
k=1

(−1)n−k

[
k∑

l=1

L(k, l)

]
S(n,k), (1.1)

where L(k, l) denote the Lah numbers and S(n,k) the Stirling numbers of the second kind. These numbers
can be interpreted in terms of set partition as follows:

S(n,k) := the number of partitions of an n−set into k nonempty subsets;
L(k, l) := the number of partitions of an n-set into k nonempty linearly ordered subsets;
Bn := the number of partitions of an n-set.
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Now, consider two n× n matrices [Ŝ(i, j)]n×n and [L(i, j)]n×n whose entries are respectively the Stir-
ling numbers of the second kind and the Lah numbers. More precisely, we have

[
Ŝ(i, j)

]
n×n =


Ŝ(1, 1) 0 0 . . . 0
Ŝ(2, 1) Ŝ(2, 2) 0 . . . 0

. . . . . . . . . . . . . . . . . . . .
Ŝ(n, 1) Ŝ(n, 2) Ŝ(n, 3) . . . Ŝ(n,n)

 ,

[L(i, j)]n×n =


L(1, 1) 0 0 . . . 0
L(2, 1) L(2, 2) 0 . . . 0

. . . . . . . . . . . . . . . . . . . .
L(n, 1) L(n, 2) L(n, 3) . . . L(n,n)

 ,

where Ŝ(i, j) = (−1)i−jS(i, j). It can easily be seen using the explicit formula in (1.1) that the Bell numbers
Bi equal to the sum of the entries of the ith row of the matrix

[
pi,j
]
n×n, where[

pi,j
]
n×n =

[
Ŝ(i, j)

]
n×n [L(i, j)]n×n . (1.2)

The r-Stirling numbers of the first and second kind, denoted by s(n,k; r) and S(n,k; r), are respectively
defined by Broder [2] as follows:

s(n,k; r) := the number of permutations of an n-set into k nonempty cycles such that
the numbers 1, 2, . . . , r are in distinct cycles;

S(n,k; r) := the number of partitions of an n-set into k nonempty subsets such that
the numbers 1, 2, . . . , r are in distinct subsets.

These numbers have possessed several properties including recurrence relations, explicit formulas, gen-
erating functions and the following inverse relations

bn =

n∑
k=0

s(n,k; r)ak ⇐⇒ an =

n∑
k=0

(−1)n−kS(n,k; r)bk, (1.3)

and the relation containing the classical Stirling numbers of the second kind

S(n,k; r) =
n∑

j=k

(
n

j

)
S(j,k)rn−j. (1.4)

It is worth mentioning that the r-Stirling numbers of the second kind are closely related to the non-central
Stirling numbers of the second kind. Koutras [6] has defined the non-central Stirling numbers of the
second kind, denoted by Sa(n,k), by means of the following kth differences

Sa(n,k) =
1
k!
[
∆k(t− a)n

]
t=0 ,

where a and t are real numbers and n,k are non-negative integers. The non-central Stirling numbers of
the second kind have possessed several properties including their relation with Stirling numbers of the
second kind

Sa(n,k) =
n∑

j=k

(
n

j

)
S(j,k)(−a)n−j,

the explicit formula

Sa(n,k) =
1
k!

k∑
j=0

(−1)k−j

(
k

j

)
(j− a)n,
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the triangular recurrence relation

Sa(n+ 1,k) = Sa(n,k− 1) + (k− a)Sa(n,k),

and the horizontal generating function

(t− a)n =

n∑
k=0

Sa(n,k)(t)k. (1.5)

Clearly, for any non-negative integer r, the non-central Stirling numbers of the second kind can be ex-
pressed in terms r-Stirling numbers of the second kind with negative index as follows:

Sr(n,k) = S(n,k;−r).

For example, the values of r-Stirling numbers of the second kind when n = 3, r = −3 are given by

S(2, 0;−2) = S2(2, 0) =
1
0!
(−2)2 = 4,

S(2, 1;−2) = S2(2, 1) =
1
1!
(−4 + 1) = −3,

S(2, 2;−2) = S2(2, 2) =
1
2!
(4 + (−1)(2)(1) + 0) = 1.

It has been mentioned in [6] that these numbers appear in the distribution of the sum W = X+ Y where
X is the sum of k independent random variables following the the truncated Poisson distribution away
from zero and Y is a Poisson random variable.

The r-Bell numbers, denoted by Bn,r, were defined by Mezo [7] as the sum of r-Stirling numbers of
the second kind. More precisely,

Bn,r =

n∑
k=0

S(n+ r,k+ r; r).

Obviously, the r-Bell numbers Bn,r can be interpreted as the number of partitions of a set with n + r
elements such that the first r elements are in distinct subsets in each partition.

Mezo [7] have obtained several properties for r-Bell numbers and one of these is the exponential
generating function, which is given by

∞∑
n=0

Bn,r
zn

n!
= ee

z−1+rz. (1.6)

Clearly, when r = 0, this will give the exponential generating function for the ordinary Bell numbers.
On the other hand, Nyul and Racz [8] defined combinatorially the r-Lah numbers L(n,k; r) as follows:

L(n,k; r) := the number of partitions of a set with n+ r elements into k+ r nonempty ordered
subsets such that r distinguished elements have to be in distinct ordered blocks.

In particular, when r = 0, these numbers will reduce to the ordinary Lah numbers. That is,

L(n,k; 0) = L(n,k).

The r-Lah numbers have also possessed several properties including their relation with r-Stirling numbers
of the first and second kind

L(n,k; r) =
n∑

j=k

s(n, j; r)S(j,k; r), (1.7)
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the orthogonality relation
n∑

j=k

(−1)n−jL(n, j; r)L(j,k; r) = δn,k, (1.8)

and the inverse relation

bn =

n∑
k=0

L(n,k; r)ak ⇐⇒ an =

n∑
k=0

(−1)n−kL(n,k; r)bk.

In this present paper, we establish a relation between r-Bell numbers and the sums of row entries of the
product of two matrices containing r-Lah numbers and r-Stirling numbers of the second kind. Moreover,
as consequences of this relation, some interesting matrix relations are obtained involving the r-Stirling
numbers of the first kind. Finally, another form of matrix relation is established between a matrix whose
sums of row entries are r-Bell numbers and the product of two matrices whose entries are non-central
Stirling numbers of the second kind and Lah numbers. As consequences of this relation, some interesting
matrix relations are obtained involving the non-central Stirling numbers of the first kind.

2. Preliminary results

The inverse relation in (1.3) can be written as

bn =

n∑
j=0

s(n, j; r)aj ⇐⇒ an =

n∑
j=0

(−1)n−jS(n, j; r)bj.

Using (1.7) with bn = L(n,k; r) and aj = S(j,k; r), we have

an =

n∑
j=0

(−1)n−jS(n, j; r)bj,

S(n,k; r) =
n∑
j=0

(−1)n−jS(n, j; r)L(j,k; r). (2.1)

This relation implies the following matrix equation

[S(i, j; r)]n×n =
[
(−1)i−jS(i, j; r)

]
n×n [S(i, j; r)]n×n . (2.2)

To illustrate this equation, let us consider the case where r = 5 and n = 6. That is,[
(−1)i−jS(i, j; 5)

]
6×6 [L(i, j; 5)]6×6

=



1 0 0 0 0 0
−5 1 0 0 0 0
25 −11 1 0 0 0

−125 91 −18 1 0 0
625 −671 217 −26 1 0

−3125 4651 −2190 425 −35 1





1 0 0 0 0 0
10 1 0 0 0 0
110 22 1 0 0 0
1320 396 36 1 0 0

17160 6864 936 52 1 0
240240 120120 21840 1820 70 1



=



1 0 0 0 0 0
5 1 0 0 0 0
25 11 1 0 0 0

125 91 18 1 0 0
625 671 217 26 1 0
3125 4651 2190 425 35 1

 = [S(i, j; 5)]6×6 .

(2.3)
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Furthermore, replacing k with j and summing up both sides over i of the equation in (2.1) yield

S(n, j; r) =
n∑

k=0

(−1)n−kS(n,k; r)L(k, j; r),

n∑
j=0

S(n, j; r) =
n∑
j=0

n∑
k=0

(−1)n−kS(n,k; r)L(k, j; r),

Bn,r =

n∑
k=0

(−1)n−k

 k∑
j=0

L(k, j; r)

S(n,k; r).

This is exactly the explicit formula that appeared in [4]. Now, we can rewrite the above sum as

Bn,r = S1 + S2 + · · ·+ Sn,

where

Sj =

n∑
k=0

(−1)n−kS(n,k; r)L(k, j; r), j = 1, 2, . . . ,n.

This result is formally stated in the following theorem.

Theorem 2.1. For n ∈ N, the r-Bell numbers Bi,r equal to the sum of the entries of the ith row of the product of
two matrices [

(−1)i−jS(i, j; r)
]
n×n [L(i, j; r)]n×n ,

whose entries are respectively the r-Stirling numbers of the second kind and the r-Lah numbers.

For example, if we sum up the entries of each row of the matrix in (2.3), we obtain the column vector
whose entries are the r-Bell numbers

1
5 + 1

25 + 11 + 1
125 + 91 + 18 + 1

625 + 671 + 217 + 26 + 1
3125 + 4651 + 2190 + 425 + 35 + 1

 =



1
6
37
235
1540

10427

 =



B0,5
B1,5
B2,5
B3,5
B4,5
B5,5

 .

Now, let us consider some interesting consequences of the matrix relation in (2.2). First, we recall that
the r-Stirling numbers of the first and second kind satisfy the following orthogonality relation [2]∑

k

s(k,n; r)S(m,k; r)(−1)k = (−1)nδm,n.

When m = n, this can be written as

n∑
k=0

(−1)n−kS(n,k; r)L(k,n; r) = δn,n = 1, (2.4)

and when m 6= n, δm,n = 0, which gives∑
k

(−1)m−kS(m,k; r)s(k,n; r) = (−1)n−mδm,n = 0. (2.5)

Clearly, equations (2.4) and (2.5) imply the following matrix relation[
(−1)i−jS(i, j; r)

]
n×n [s(i, j; r)]n×n = In,
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where In is the identity matrix of order n. Thus,[
(−1)i−jS(i, j; r)

]−1
n×n = [s(i, j; r)]n×n .

Multiplying both sides of the matrix relation in (2.2) by[
(−1)i−jS(i, j; r)

]−1
n×n ,

yields
[s(i, j; r)]n×n [s(i, j; r)]n×n = [S(i, j; r)]n×n , (2.6)

which is equivalent to the identity in (1.7). To illustrate equation (2.6), let us consider the case where r = 5
and n = 6. That is,

[s(i, j; 5)]6×6 [S(i, j; 5)]6×6 =



1 0 0 0 0 0
5 1 0 0 0 0
30 11 1 0 0 0
210 107 18 1 0 0

1680 1066 251 26 1 0
15120 11274 3325 485 35 1





1 0 0 0 0 0
5 1 0 0 0 0

25 11 1 0 0 0
125 91 18 1 0 0
625 671 217 26 1 0
3125 4651 2190 425 35 1



=



1 0 0 0 0 0
10 1 0 0 0 0
110 22 1 0 0 0
1320 396 36 1 0 0

17160 6864 936 52 1 0
240240 120120 21840 1820 70 1

 = [L(i, j; 5)]6×6 .

Remark 2.2. One can easily see that equation (1.8) implies

[L(i, j; r)]−1
n×n =

[
(−1)i−jS(i, j; r)

]
n×n .

Hence, the matrix relation in (2.6) can further be written as[
(−1)i−jL(i, j; r)

]
n×n [s(i, j; r)]n×n [S(i, j; r)]n×n = In.

3. Main results

Parallel to the method of Qi [9], one can derive another form of explicit formula for r-Bell numbers us-
ing the Faa di Bruno’s formula and certain identity of Bell polynomials of the second kind. The following
theorem contains the desired formula, which is expressed in terms of the non-central Stirling numbers of
the second kind and the ordinary Lah numbers.

Theorem 3.1. For n ∈N, the r-Bell numbers Bn,r are equal to

Bn,r =

n∑
k=0

(−1)n−k


k∑

j=1

L(k, j)

Sr(n,k). (3.1)

Proof. Let us recall the following identity from [1, 5] on the nth derivative of the exponential function e±
1
t

expressed in terms of the Lah numbers

(
e±

1
t

)(n)
= (−1)ne±

1
t

n∑
k=1

(±1)kL(n,k)
1

tn+k
,
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the identity from [3] on Bell polynomials of the second kind

Bn,k(abx1,ab2x2, . . . ,abn−k+1xn−k+1) = a
kbnBn,k(x1, x2, . . . , xn−k+1),

and the famous identity from [3] on Faá di Bruno formula described in terms of the Bell polynomials of
the second kind

dn

dtn
f ◦ h(t) =

n∑
k=0

f(k)(h(t))Bn,k(h
′(t),h ′′(t), . . . ,h(n−k+1)(t)).

Then taking kth derivative both sides of (1.6) with z replaced by −z yields

e

∞∑
n=k

(−1)kBn,r
zn−k

(n− k)!
=
dk

dzk
ee

−z−rz. (3.2)

Using Leibniz formula, we have

dn

dzn
ee

−z−rz =
dn

dzn
ee

−z

e−rz

=

n∑
k=0

(
n

k

)
dk

dzk
ee

−z dn−k

dzn−k
e−rz

=

n∑
k=0

(
n

k

)
k∑

j=0

dj

duj
e1/u(z)Bk,j(u

′(z),u ′′(z), . . . ,u(k−j+1)(z))

× (−r)n−ke−rz,

where u(z) = ez. When k = n and evaluating at z = 0, equation (3.2) gives

e(−1)nBn,r = e

n∑
k=0

(
n

k

) k∑
j=0

{
(−1)j

j∑
l=1

L(j, l)

}
S(k, j)(−r)n−k,

Bn,r =

n∑
j=0

j∑
l=0


n∑

k=j

(
n

k

)
S(k, j)(−r)n−k

 (−1)n−jL(j, l).

Applying the above property of r-Stirling numbers of the second kind in (1.4) yields

Bn,r =

n∑
j=0

j∑
l=0


n∑

k=j

(
n

k

)
S(k, j)(−r)n−k

 (−1)n−jL(j, l) =
n∑
j=0

(−1)n−jSr(n,k)
j∑

l=0

L(j, l).

This is exactly the formula in (3.1).

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. For n ∈ N, the r-Bell numbers Bi,r equal to the sum of the entries of the ith row of the product of
two matrices [

(−1)i−jSr(i, j)
]
n×n [L(i, j)]n×n ,

whose entries are respectively the non-central Stirling numbers of the second kind and the Lah numbers.

Proof. We can rewrite the formula in Theorem 3.1 as

Bi,r =

i∑
l=0

Til, i = 0, 1, 2, . . . ,n,
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where

Til =

i∑
j=0

(−1)i−jSr(i, j)L(j, l), l = 0, 1, 2, . . . , i.

Clearly, Til is the (i, l)-entry of the product of two matrices as
[
(−1)i−jSr(i, j)

]
n×n [L(i, j)]n×n , containing

the non-central Stirling Numbers of the second kind and Lah numbers, respectively.

To illustrate this corollary, let us consider the case where r = 2, n = 6. That is,

[
(−1)i−jS2(i, j)

]
6×6 [L(i, j)]6×6 =



1 0 0 0 0 0
2 1 0 0 0 0
4 3 1 0 0 0
8 7 3 1 0 0
16 15 7 2 1 0
32 31 15 5 0 1





1 0 0 0 0 0
0 1 0 0 0 0
0 2 1 0 0 0
0 6 6 1 0 0
0 24 36 12 1 0
0 120 240 120 20 1



=



1 0 0 0 0 0
2 1 0 0 0 0
4 5 1 0 0 0
8 19 9 1 0 0
16 65 55 14 1 0
32 211 285 125 20 1

 .

(3.3)

Hence, summing up the entries of each row of the matrix in (3.3) gives the following column vector whose
entries are the r-Bell numbers with r = 2

1
2 + 1

4 + 5 + 1
8 + 19 + 9 + 1

16 + 65 + 55 + 14 + 1
32 + 211 + 285 + 125 + 20 + 1

 =



1
3
10
37
151
674

 =



B0,2
B1,2
B2,2
B3,2
B4,2
B5,2

 .

We observe that the entries of the matrix in (3.3) are values of r-Stirling numbers of the second kind
S(i, j; 2) when i, l = 0, 1, . . . , 6. That is,

1 0 0 0 0 0
2 1 0 0 0 0
4 5 1 0 0 0
8 19 9 1 0 0
16 65 55 14 1 0
32 211 285 125 20 1

 = [S(i, j; 2)]6×6 .

This implies that S(i, j; r) =
∑i

j=0(−1)i−jS2(i, j)L(j, l), i, l = 0, 1, . . . , 6.

Remark 3.3. In general, the r-Stirling numbers of the second kind satisfy the following explicit formula

S(i, j; r) =
i∑

j=0

(−1)i−jSr(i, j)L(j, l),

that is,
[S(i, j; r)]n×n =

[
(−1)i−jSr(i, j)

]
n×n [L(i, j)]n×n .
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For example,

[
(−1)i−jS5(i, j)

]
6×6 [L(i, j)]6×6 =



1 0 0 0 0 0
5 1 0 0 0 0
25 9 1 0 0 0

125 61 12 1 0 0
625 369 97 14 1 0
3125 2101 660 125 15 1





1 0 0 0 0 0
0 1 0 0 0 0
0 2 1 0 0 0
0 6 6 1 0 0
0 24 36 12 1 0
0 120 240 120 20 1



=



1 0 0 0 0 0
5 1 0 0 0 0

25 11 1 0 0 0
125 91 18 1 0 0
625 671 217 26 1 0
3125 4651 2190 425 35 1

 = [S(i, j; 5)]6×6 .

This is exactly the matrix relation in (3.3) when r = 5, n = 6.

Theorem 3.4. For n ∈N, the following matrix relation holds[
(−1)i−jsr(i, j)

]
n×n [S(i, j; r)]n×n = [L(i, j)]n×n , (3.4)

which is equivalent to the following identity:

L(n, j) =
n∑

k=0

(−1)n−ksr(n,k)S(k, j; r).

Proof. We recall that the non-central Stirling numbers of the first kind, denoted by sa(n,k), satisfy the
following horizontal generating function

(t)n =

n∑
k=0

sr(n,k)(t− r)k. (3.5)

We can rewrite equations (1.5) and (3.5) as follows:

(t+ r)n =

n∑
k=0

(−1)nSr(n,k)(−t)k, (−t)n =

n∑
k=0

(−1)ksr(n,k)(t+ r)k.

These imply the following orthogonality relation

n∑
k=0

(−1)n−jSr(n,k)sr(k, j) = δn,j,

which can further be written as
n∑

k=0

[
(−1)n−kSr(n,k)

] [
(−1)k−jsr(k, j)

]
= δn,j. (3.6)

Equation (3.6) gives the following matrix relation[
(−1)i−jSr(i, j)

]
n×n

[
(−1)i−jsr(i, j)

]
n×n = In,

where In is the identity matrix of order n. Thus,[
(−1)i−jSr(i, j)

]−1
n×n =

[
(−1)i−jsr(i, j)

]
n×n .
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Multiplying both sides of the matrix relation in Remark 3.3 by
[
(−1)i−jSr(i, j)

]−1
n×n , yields

[
(−1)i−jSr(i, j)

]−1
n×n [S(i, j; r)]n×n = [L(i, j)]n×n ,

which is equivalent to (3.4).

For example, when n = 5 and r = 5, we have

[
(−1)i−js5(i, j)

]
6×6 [S(i, j; 5)]6×6=



1 0 0 0 0 0
−5 1 0 0 0 0
20 −9 1 0 0 0
−60 47 −12 1 0 0
120 −154 71 −14 1 0
−120 274 −225 85 −15 1





1 0 0 0 0 0
5 1 0 0 0 0
25 11 1 0 0 0

125 91 18 1 0 0
625 671 217 26 1 0
3125 4651 2190 425 35 1



=



1 0 0 0 0 0
0 1 0 0 0 0
0 2 1 0 0 0
0 6 6 1 0 0
0 24 36 12 1 0
0 120 240 120 20 1

 = [L(i, j)]6×6 ,

which satisfies (3.4) when r = 5, n = 6.

Remark 3.5. The following identity immediately follows from Theorem 3.4,

L(n, j) =
n∑

k=0

(−1)n−ksr(n,k)S(k, j; r).

Remark 3.6. When r = 0, the identity in (1.8) can be reduced to

n∑
j=0

(−1)n−jL(n, j)L(j,k) = δn,k,

which yields the following matrix relation

[L(i, j)]−1
n×n =

[
(−1)i−jL(i, j)

]
n×n .

Multiplying both sides of (3.4) by [L(i, j)]−1
n×n gives[

(−1)i−jL(i, j)
]
n×n

[
(−1)i−jsr(i, j)

]
n×n [S(i, j; r)]n×n = In.

4. Concluding remarks and observation

The two methods of Qi [9] in deriving new explicit formula for Bell numbers have been successfully
applied to obtain new explicit formula for r-Bell numbers. However, unlike the one obtained by Qi,
these two methods yield two different forms of explicit formulas for r-Bell numbers. Moreover, these
explicit formulas imply several matrix relations involving r-Bell numbers, r-Stirling numbers of the first
and second kind, the r-Lah numbers, and the ordinary Lah numbers. With these results, one may try
to apply Qi’s methods to obtain new explicit formulas for other Bell-type numbers like the r-Dowling
numbers.



R. B. Corcino, C. B. Corcino, J. T. Malusay, G. R. Bercero, J. Math. Computer Sci., 19 (2019), 181–191 191

Acknowledgment

The authors would like to thank the Center for Research and Development of Cebu Normal University
for funding this research project. The authors would also like to thank the referees for their helpful
comments and suggestions.

References

[1] K. N. Boyadzhiev, Lah Numbers, Laguerre Polynomials of Order Negative One, and the nth Derivative of exp(1/x), Acta
Univ. Sapientiae Math., 8 (2016), 22–31. 3.1

[2] A. Z. Broder, The r-Stirling numbers, Discrete Math., 49 (1984), 241–259. 1, 2
[3] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, (1974). 3.1
[4] R. B. Corcino, J. T. Malusay, J. Cillar, G. Rama, O. Silang, I. Tacoloy, Analogies of the Qi formula for some Dowling

type numbers, arXiv, 2018 (2018), 22 pages. (Accepted for Publication in Utilitas Mathematica). 2
[5] S. Daboul, J. Mangaldan, M. Z. Spivey, P. J. Taylor, The Lah numbers and the n–th derivative of e1/x, Math. Mag., 86

(2013), 39–47. 3.1
[6] M. Koutras, Non-Central Stirling Numbers and Some Applications, Discrete Math., 42 (1982), 73–89. 1, 1
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[8] G. Nyul, G. Rácz, The r–Lah numbers, Discrete Math., 338 (2015), 1660–1666. 1
[9] F. Qi, An explicit formula for the Bell numbers in terms of Lah and Stirling numbers, Mediterr. J. Math., 13 (2016),

2795–2800. 1, 3, 4

http://doi.org/10.1515/ausm-2016-0002
http://doi.org/10.1515/ausm-2016-0002
https://doi.org/10.1016/0012-365X(84)90161-4
https://books.google.com/books?hl=en&lr=&id=C0HPgWhEssYC&oi=fnd&pg=PP15&ots=rHeAj_-qx7&sig=bZzCH4bHK15LP1GoawqjwtJlc20
https://pdfs.semanticscholar.org/2e3c/89518ad470a7d23aa3f77049ca8b7e02b060.pdf
https://pdfs.semanticscholar.org/2e3c/89518ad470a7d23aa3f77049ca8b7e02b060.pdf
https://doi.org/10.4169/math.mag.86.1.039
https://doi.org/10.4169/math.mag.86.1.039
https://doi.org/10.1016/0012-365X(82)90056-5
http://emis.ams.org/journals/JIS/VOL14/Mezo/mezo9.pdf
https://doi.org/10.1016/j.disc.2014.03.029
https://doi.org/10.1007/s00009-015-0655-7
https://doi.org/10.1007/s00009-015-0655-7

	Introduction
	Preliminary results
	Main results
	Concluding remarks and observation

