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Abstract
In this paper, a characterization of the Marshall-Olkin-G family of distribution (MO-G) [A. W. Marshall, I. Olkin, Biometrika,

84 (1997), 641–652] by left and right truncated moments based on a certain continuous function of a random variable is discussed
under some necessary condition. We provide characterization of Marshall-Olkin Nadarajah-Haghighi distribution (MONH) [A.
J. Lemonte, G. M. Cordeiro, G. Moreno-Arenas, Statistics, 50 (2016), 312–337] and Marshall-Olkin generalized Erlang-truncated
exponential distribution (MOGETE) [I. E. Okorie, A. C. Akpanta, J. Ohakwe, Cogent Math., 4 (2017), 19 pages] for illustration.
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1. Introduction

Characterizations of probability models are a very important aspect in distribution theory. Character-
izing of a probability distribution, consequently, state a characteristic that it is the only distribution that
satisfied a specified condition. A characterization of probability models played a vital role in statistical
studies in various fields of sciences and applied sciences. A distribution characterizes a variable when
the conditions of the distribution are similar to those of the variable. Many researchers have investigated
the characterizations of absolutely continuous probability distributions over the years. For instance, the
characterization of distributions by truncated moments was studied by [11]. [4] discussed various tech-
niques of characterizations of probability distributions. [6] characterized distributions by the moments of
residual life. [19] investigated the characterizations of distributions by conditional expectations. Charac-
terizations through mean residual life and failure rates were studied by [17]. Recently, [8] Characterized
various distributions based on infinite divisibility. [1] provide a characterization of Lindley distribution
(L) based on left and right truncated moments. [14] characterized half logistic Poisson distribution (HLP)
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[15] based on left and right truncated moments. [10] characterized Lindley distribution (L) based on
truncated moments of order statistics.

MO-G distribution has received significant attention from many authors in recent years. The most
recent family of MO-G include the Marshall-Olkin Kappa [9] (MO-Kp) and the Marshall-Olkin length-
biased exponential (MO-LBE) [20] distributions among others. The characterization of Marshall-Olkin
Power Log-Normal (MOPLN) [5] and Marshall-Olkin Extended Burr Type XII (MOEBXII) [2] based on
truncated moments and hazard rate functions were considered by [7].

[1] characterized Lindley distribution by taking the conditional expectation based on a function of a
non-negative random variable Xn, n ∈ N.

In this paper, we follow similar procedure to [1, 14] using a different certain continuous function of
a non-negative random variable under some necessary condition to characterizes the Marshal-Olkin-G
family of distribution by left and right truncated expectations.

Some general results are considered to characterized the Marshal-Olkin-G family in Section 2. Two
particular cases using the MONH and MOGETE distributions are studied in Section 3. Conclusion is
presented in Section 4.

2. Characterization of MO-G via left and right truncated moments

In this section, a characterization of MO-G based on left and right truncated moments of a certain
continuous function of a random variable is discussed under some necessary condition.

The probability density function (pdf) f(x), cumulative distribution function (cdf) F(x), failure rate
function (hrf) h(x), reverse failure rate function (rhrf) r(x), and survival function s(x) (sf) of MO-G family
are given by

F(x) =
G(x; ξ)

1 − (1 −β)Ḡ(x; ξ)
, (2.1)

f(x) =
βg(x; ξ)

[1 − (1 −β)Ḡ(x; ξ)]2
,

h(x) =
f(x)

1 − F(x)
=

g(x; ξ)
Ḡ(x, ξ)[1 − (1 −β)Ḡ(x; ξ)]

,

r(x) =
f(x)

F(x)
=

βg(x; ξ)
G(x, ξ)[1 − (1 −β)Ḡ(x; ξ)]

,

s(x) =
βḠ(x; ξ)

G(x; ξ) +βḠ(x; ξ)
, (2.2)

respectively, where β > 0, ξ is a parameter vector, and G(x; ξ) and g(x; ξ) are any valid baseline cdf and
pdf, respectively.

Interpretation 2.1. Let (X,Z) be a random vector with joint density function f(x, z) defined on R2. Suppose that
the conditional cumulative distribution of X given Z = z is T(x|z) and Z ∼ c(z). Then the following defines the
unconditional survival function of X,

s(x) =

∫
T̄(x|z)c(z)dz.

The survival function s(x) is obtained by compounding the survival function T̄(x|z) = 1 − T(x|z) and the density
of c(z). Suppose that the survival function

T̄(x|z) = e−z
G(x;ξ)
βḠ(x;ξ) ,

where β > 0, ξ a parameter vector, G(x; ξ) is any valid cumulative distribution, Ḡ(x; ξ) = 1 −G(x; ξ), and Z
assumed to have exponential distribution with mean 1, then X has survival function in (2.2).
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Proof. For all x, z,β > 0, the survival function is given as

s(x) =

∫
T̄(x|z)c(z)dz =

∫∞
0
e
−z

G(x)
βḠ(x) e−zdz =

∫∞
0
e
−z
[
G(x)
βḠ(x)

+1
]
dz =

[
G(x)

βḠ(x)
+ 1
]−1

=
βḠ(x)

G(x) +βḠ(x)
.

2.1. Characterization of MO-G family by left truncated moments
Here, we provide an important lemma as a tool for the characterization of the MO-G by left truncated

moments.

Lemma 2.2. Suppose that the random variable X has an absolutely continuous c.d.f F(x) with F(0) = 0, F(x) > 0
for all x > 0, with density function f(x) = F ′(x) and failure rate h(x) = f(x)/[1 − F(x)]. Let q(x) be a continuous
function in x > 0 and E[q(X)] <∞. If E[q(X)|X > x] = τ(x)h(x), x > 0, where τ(x) is a differentiable function in
x > 0, then f(x) = K exp

[
−
∫x

0
q(y)+τ ′(y)

τ(y) dy
]
, x > 0, where K > 0 is a normalizing constant.

Proof. Since, E[q(X)|X > x] = 1
1−F(x)

∫∞
x q(y)f(y)dy, it follows that∫∞

x

q(y)f(y)dy = τ(x)f(x), (2.3)

differentiating both side of (2.3) we get

−q(x)f(x) = τ(x)f ′(x) + τ ′(x)f(x),

this implies

f ′(x) +

(
q(x) + τ ′(x)

τ(x)

)
f(x) = 0, (2.4)

which is first order linear differential equation w.r.t f(x). From the general solution of (2.4), we have

f(x) = K exp
[
−

∫x
0

q(y) + τ ′(y)

τ(y)
dy

]
, x > 0,

where K is normalizing constant.

Now, we provide the characterization of MO-G based on Lemma 2.2.

Theorem 2.3. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0, F(x) > 0
∀x > 0, with density function f(x) = F ′(x) and failure rate h(x) = f(x)/[1 − F(x)]. Assume that

E
[
1 − (1 −β)Ḡ(X; ξ)

]
<∞

for β > 0, ξ ∈ R, then X has the MO-G distribution if and only if

E
[
1 − (1 −β)Ḡ(X; ξ)|X > x

]
= h(x)τ(x), x > 0,

where τ(x) = [1−(1−β)Ḡ(x;ξ)]2 ln[1−(1−β)Ḡ(x;ξ)]
(1−β)g(x,ξ) , provided limx→0 g(x; ξ) 6= 0 and exist in the parameter region.

G(x; ξ) and g(x; ξ) are any valid baseline cdf and pdf respectively.

Proof. For necessity, suppose that lim→0 g(x; ξ) 6= 0 and exist for ξ ∈ R. For sufficiently, let q(x) =
1 − (1 −β)Ḡ(x; ξ), then

E
[
1 − (1 −β)Ḡ(X; ξ)|X > x

]
=
h(x)

f(x)

∫∞
x

βg(y; ξ)
1 − (1 −β)Ḡ(y; ξ)

dy,
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by letting t = 1 − (1 −β)Ḡ(x; ξ) and after some algebra we have

E
[
1 − (1 −β)Ḡ(X; ξ)|X > x

]
= h(x)τ(x),

where τ(x) = [1−(1−β)Ḡ(x;ξ)]2 ln[1−(1−β)Ḡ(x;ξ)]
(β−1)g(x;ξ) . Now, we obtain q(x)

τ(x) and τ ′(x)
τ(x) as

q(x)

τ(x)
=

(β− 1)g(x; ξ)
[1 − (1 −β)Ḡ(x; ξ)] ln[1 − (1 −β)Ḡ(x; ξ)]

and
τ ′(x)

τ(x)
=

2(1 −β)g(x; ξ)
[1 − (1 −β)Ḡ(x; ξ)]

+
(1 −β)g(x; ξ)

[1 − (1 −β)Ḡ(x; ξ)] ln[1 − (1 −β)Ḡ(x; ξ)]
−
g ′(x; ξ)
g(x; ξ)

.

This implies
τ ′(x) + q(x)

τ(x)
=

2(1 −β)g(x; ξ)
[1 − (1 −β)Ḡ(x; ξ)]

−
g ′(x; ξ)
g(x; ξ)

,

therefore ∫x
0

τ ′(y) + q(y)

τ(y)
dy = ln[1 − (1 −β)Ḡ(x; ξ)]2 − lnβ2 − lng(x; ξ) + lng(0),

hence

f(x) = Kexp

[
−

∫x
0

τ ′(y) + q(y)

τ(y)
dy

]
=

Kβ2g(x; ξ)g−1(0)
[1 − (1 −β)Ḡ(x; ξ)]2

,

thus K = g(0)β−1.

2.2. Characterization of MO-G family by right truncated moments
Now, we provide a supportive lemma for the characterization of the MO-G based on right truncated

moments.

Lemma 2.4. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0, F(x) > 0
∀x > 0, with density function f(x) = F ′(x) and reverse failure rate r(x) = f(x)/F(x). Let q(x) be a continuous
function in x > 0 and E[q(X)] < ∞. If E[q(X)|X 6 x] = w(x)r(x), x > 0, where w(x) is a differentiable function
in x > 0, then

f(x) = K exp
[
−

∫x
0

w ′(y) − q(y)

w(y)
dy

]
, x > 0,

where K > 0 is a normalizing constant.

Proof. We start by

E[q(X)|X 6 x] =
1
F(x)

∫x
0
q(y)f(y)dy,

we have that ∫x
0
q(y)f(y)dy = w(x)f(x). (2.5)

Differentiating both side of (2.5) we get

q(x)f(x) = w(x)f ′(x) +w ′(x)f(x),

this implies

f ′(x) +

(
w ′(x) − q(x)

w(x)

)
f(x) = 0, (2.6)

which is the first order homogeneous linear differential equation w.r.t f(x). From the general solution of
(2.6) we get

f(x) = K exp
[
−

∫x
0

w ′(y) − q(y)

w(y)
dy

]
, x > 0,

where K is normalizing constant.



M. Muhammad, L. Liu, J. Math. Computer Sci., 19 (2019), 192–202 196

Theorem 2.5. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0, F(x) > 0
∀x > 0, with density function f(x) = F ′(x) and reverse failure rate r(x) = f(x)/F(x). Assume that

E
[
1 − (1 −β)Ḡ(X; ξ)

]
<∞

for β > 0, ξ ∈ R, then, X has the MO-G family of distribution if and only if

E
[
1 − (1 −β)Ḡ(X; ξ)|X 6 x

]
= r(x)w(x), x > 0,

where w(x) =
[1−(1−β)Ḡ(x;ξ)]2[ln[1−(1−β)Ḡ(x;ξ)]−lnβ]

(1−β)g(x,ξ) provided lim→0 g(x; ξ) 6= 0 and exist in the parameter
region. G(x; ξ) and g(x; ξ) are any valid baseline cdf and pdf respectively.

Proof. For necessity, suppose that limx→0 g(x; ξ) 6= 0 and exist in the parameter region. For sufficiently,
let q(x) = 1 − (1 −β)Ḡ(x; ξ), then

E
[
1 − (1 −β)Ḡ(X; ξ)|X 6 x

]
=
r(x)

f(x)

∫x
0

βg(y; ξ)
1 − (1 −β)Ḡ(y; ξ)

dy,

by letting t = 1 − (1 −β)Ḡ(x; ξ) and after some algebraic manipulations we have

E
[
1 − (1 −β)Ḡ(X; ξ)|X 6 x

]
= r(x)w(x),

where w(x) = [1−(1−β)Ḡ(x;ξ)]2[ln[1−(1−β)Ḡ(x;ξ)]−lnβ]
(1−β)g(x,ξ) . Now, we obtained q(x)

w(x) and w ′(x)
w(x) as

q(x)

w(x)
=

(1 −β)g(x, ξ)
[1 − (1 −β)Ḡ(x; ξ)][ln[1 − (1 −β)Ḡ(x; ξ)] − lnβ]

and

w ′(x)

w(x)
=

2(1 −β)g(x; ξ)
[1 − (1 −β)Ḡ(x; ξ)]

+
(1 −β)g(x; ξ)

[1 − (1 −β)Ḡ(x; ξ)][ln[1 − (1 −β)Ḡ(x; ξ)] − lnβ]
−
g ′(x; ξ)
g(x; ξ)

.

Thus
w ′(x) − q(x)

w(x)
=

2(1 −β)g(x; ξ)
[1 − (1 −β)Ḡ(x; ξ)]

−
g ′(x; ξ)
g(x; ξ)

,

therefore ∫x
0

w ′(y) − q(y)

w(y)
dy = ln[1 − (1 −β)Ḡ(x; ξ)]2 − lnβ2 − lng(x; ξ) + lng(0).

Hence

f(x) = Kexp

[
−

∫x
0

τ ′(y) − q(y)

τ(y)
dy

]
=

Kβ2g(x; ξ)g−1(0)
[1 − (1 −β)Ḡ(x; ξ)]2

,

and the normalizing constant K, must be K = g(0)β−1.

3. Characterization of MONH and MOGETE distributions based on left and right truncated moments

In this section, we consider two particular cases of MO-G family. A characterization of MONH and
MOGETE is presented based on the results in Section 2.

3.1. Characterization of MONH distribution based on left and right truncated moments
The following gives an example of characterization of MO-G based on a particular distribution called

Marshall-Olkin Nadarajah-Haghighi (MONH). The MONH distribution is obtained by considering the
baseline distribution G(x; ξ) in (2.1) to be Nadarajah-Haghighi exponential type of distribution (NH)
[16]. The NH has cdf and pdf as GNH(x) = 1 − e[1−(1+λx)α] and gNH(x) = αλ(1 + λx)α−1e[1−(1+λx)α],
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respectively, for x,α, λ > 0. Therefore, the cdf, pdf, hrf, and rhrf of the MONH distribution are:

FMONH(x) =
1 − e[1−(1+λx)α]

1 − (1 −β)e[1−(1+λx)α ,

fMONH(x) =
αβλ(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α)]]2
,

hMONH(x) =
fMONH(x)

1 − FMONH(x)
=

αλ(1 + λx)α−1

1 − (1 −β)e[1−(1+λx)α] ,

rMONH(x) =
fMONH(x)

FMONH(x)
=

αβλ(1 + λx)α−1e[1−(1+λx)α]

[1 − e[1−(1+λx)α]][1 − (1 −β)e[1−(1+λx)α]]
,

respectively, where x,α, λ,β > 0. The following Proposition 3.1 discusses the characterization of MONH
base on left truncated moment while Proposition 3.2 provides the characterization of MONH base on
right truncated moment.

Proposition 3.1. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0,
F(x) > 0 ∀x > 0, with density function f(x) = F ′(x) and failure rate h(x) = f(x)/[1 − F(x)]. Assume that
E
[
1 − (1 −β)e[1−(1+λX)α]

]
<∞ for α,β, λ > 0, then X has the MONH distribution if and only if

E
[
1 − (1 −β)e[1−(1+λX)α]|X > x

]
= h(x)τ(x), x > 0,

where,

τ(x) =
[1 − (1 −β)e[1−(1+λx)α]]2 ln[1 − (1 −β)e[1−(1+λx)α]]

αλ(β− 1)(1 + λx)α−1e[1−(1+λx)α] .

Proof. For necessity, limx→0 gNH(x) = αλ, ∀α, λ. For sufficiently, let q(x) = 1 − (1 −β)e[1−(1+λx)α], then

E
[
1 − (1 −β)e[1−(1+λX)α]|X > x

]
=
h(x)

f(x)

∫∞
x

(1 − (1 −β)e[1−(1+λy)α])f(y)dy

=
h(x)[1 − (1 −β)e[1−(1+λx)α]]2

(1 + λx)α−1e[1−(1+λx)α]

∫∞
x

(1 + λy)α−1e[1−(1+λy)α]

1 − (1 −β)e[1−(1+λy)α] dy.

Letting u = 1 − (1 −β)e[1−(1+λy)α], then by some algebraic manipulations we obtained

E
[
1 − (1 −β)e[1−(1+λX)α]|X > x

]
=
h(x)[1 − (1 −β)e[1−(1+λx)α]]2 ln[1 − (1 −β)e[1−(1+λx)α]]

αλ(β− 1)(1 + λx)α−1e[1−(1+λx)α] .

Thus

τ(x) =
[1 − (1 −β)e[1−(1+λx)α]]2 ln[1 − (1 −β)e[1−(1+λx)α]]

αλ(β− 1)(1 + λx)α−1e[1−(1+λx)α] .

We compute q(x)τ(x) and τ ′(x)
τ(x) as

q(x)

τ(x)
=

αλ(β− 1)(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α]] ln[1 − (1 −β)e[1−(1+λx)α]]

and

τ ′(x)

τ(x)
=

αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α]] ln[1 − (1 −β)e[1−(1+λx)α]]

+
2αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

1 − (1 −β)e[1−(1+λx)α] −
(α− 1)λ
1 + λx

+αλ(1 + λx)α−1,
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respectively, therefore

τ ′(x) + q(x)

τ(x)
=

2αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

1 − (1 −β)e[1−(1+λx)α] −
(α− 1)λ
1 + λx

+αλ(1 + λx)α−1

and ∫y
0

τ ′(y) + q(y)

τ(y)
dy = 2 ln[1 − (1 −β)e[1−(1+λx)α]] − 2 lnβ− ln(1 + λx)α−1 + [(1 + λx)α − 1].

Hence, we have

f(x) = K exp
[
−

∫y
0

τ ′(y) + q(y)

τ(y)
dy

]
=
Kβ2(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α]]2
,

where the normalizing constant is K = αλβ−1.

Proposition 3.2. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0,
F(x) > 0, ∀x > 0, with density function f(x) = F ′(x) and reverse failure rate r(x) = f(x)/F(x). Assume that
E
[
1 − (1 −β)e[1−(1+λX)α]

]
< ∞ for α,β, λ > 0, then, X has the MONH family of distribution if and only if

E
[
1 − (1 −β)e[1−(1+λX)α]|X 6 x

]
= r(x)w(x), x > 0, where,

w(x) =
[1 − (1 −β)e[1−(1+λx)α]]2[ln[1 − (1 −β)e[1−(1+λx)α]] − lnβ]

αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α] .

Proof. For necessity, limx→0 gNH(x) = αλ, ∀α, λ. For sufficiently, let q(x) = 1 − (1 − β)e[1−(1+λx)α], we
have that

E
[
1 − (1 −β)e[1−(1+λX)α]|X 6 x

]
=
r(x)

f(x)

∫x
0
(1 − (1 −β)e[1−(1+λy)α])f(y)dy

=
r(x)[1 − (1 −β)e[1−(1+λx)α]]2

(1 + λx)α−1e[1−(1+λx)α]

∫x
0

(1 + λy)α−1e[1−(1+λy)α]

1 − (1 −β)e[1−(1+λy)α] dy.

Letting u = 1 − (1 −β)e[1−(1+λy)α] and after some algebra we get

E
[
1 − (1 −β)e[1−(1+λX)α]|X 6 x

]
= r(x)w(x),

where

w(x) =
[1 − (1 −β)e[1−(1+λx)α]]2[ln[1 − (1 −β)e[1−(1+λx)α]] − lnβ]

αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α] .

Then we obtain q(x)
w(x) and w ′(x)

w(x) as

q(x)

w(x)
=

αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α]][ln[1 − (1 −β)e[1−(1+λx)α]] − lnβ]

and

w ′(x)

w(x)
=

αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α]][ln[1 − (1 −β)e[1−(1+λx)α]] − lnβ]

+
2αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

1 − (1 −β)e[1−(1+λx)α] −
(α− 1)λ
1 + λx

+αλ(1 + λx)α−1,
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respectively, thus

w ′(x) − q(x)

w(x)
=

2αλ(1 −β)(1 + λx)α−1e[1−(1+λx)α]

1 − (1 −β)e[1−(1+λx)α] −
(α− 1)λ
1 + λx

+αλ(1 + λx)α−1

and ∫y
0

w ′(y) − q(y)

w(y)
dy = ln[1 − (1 −β)e[1−(1+λx)α]]2 − lnβ2 − ln(1 + λx)α−1 + [(1 + λx)α − 1].

Finally we have

f(x) = K exp
[
−

∫y
0

w ′(y) − q(y)

w(y)
dy

]
=
Kβ2(1 + λx)α−1e[1−(1+λx)α]

[1 − (1 −β)e[1−(1+λx)α]]2
,

and the normalizing constant K = αλβ−1.

Note: If α = 1 we obtained the characterization of Marshal-Olkin exponential distribution (MOE) [13].

3.2. Characterization of MOGETE distribution based on left and right truncated moments
The following is the characterization of Marshall-Olkin generalized Erlang-truncated exponential dis-

tribution (MOGETE) [18]. The MOGETE distribution is obtained by considering the baseline distribution
G(x; ξ) in (2.1) to be the Erlang- truncated exponential distribution (ETE) [3]. The ETE has cdf and pdf as
GETE(x) = 1 − e−α(1−e−θ)x and gETE(x) = α(1 − e−θ)e−α(1−e−θ)x, respectively, for x,α, θ > 0. Therefore,
the cdf, pdf, hrf, and rhrf of the MOGETE distribution are:

FMOGETE(x) =
1 − e−α(1−e−θ)x

1 − (1 −β)e−α(1−e−θ)x
,

fMOGETE(x) =
αβ(1 − e−θ)e−α(1−e−θ)x

[1 − (1 −β)e−α(1−e−θ)x]2
,

hMOGETE(x) =
fMOGETE(x)

1 − FMOGETE(x)
=

α(1 − e−θ)

1 − (1 −β)e−α(1−e−θ)x
,

rMOGETE(x) =
fMOGETE(x)

FMOGETE(x)
=

αβ(1 − e−θ)e−α(1−e−θ)x

[1 − e−α(1−e−θ)x][1 − (1 −β)e−α(1−e−θ)x]
,

respectively, where x,α,β, θ > 0. The following Proposition 3.3 discusses the characterization of MOGETE
by left truncated moment and Proposition 3.4 is the characterization of MOGETE by right truncated
moment based on certain continuous function.

Proposition 3.3. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0,
F(x) > 0, ∀x > 0, with density function f(x) = F ′(x) and failure rate h(x) = f(x)/[1 − F(x)]. Assume
that E

[
1 − (1 −β)e−α(1−e−θ)X

]
< ∞ for α,β, θ > 0, then X has the MOGETE distribution if and only if

E
[
1 − (1 −β)e−α(1−e−θ)X|X > x

]
=
h(x)(1−(1−β)e−α(1−e−θ)x)2 ln[1−(1−β)e−α(1−e−θ)x]

α(β−1)(1−e−θ)e−α(1−e−θ)x
, x > 0.

Proof. For necessity, limx→0 gETE(x) = α(1− e−θ). For sufficiently, let q(x) = 1− (1−β)e−α(1−e−θ)x, then

E[q(X)|X > x] =
h(x)

f(x)

∫∞
x

(1 − (1 −β)e−α(1−e−θ)y)f(y)dy

=
h(x)(1 − (1 −β)e−α(1−e−θ)x)2

e−α(1−e−θ)x

∫∞
x

e−α(1−e−θ)y

1 − (1 −β)e−α(1−e−θ)y
dy.
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By letting u = 1 − (1 −β)e−α(1−e−θ)y and some algebra we get,

E
[
1 − (1 −β)e−α(1−e−θ)X|X > x

]
=
h(x)(1 − (1 −β)e−α(1−e−θ)x)2 ln[1 − (1 −β)e−α(1−e−θ)x]

α(β− 1)(1 − e−θ)e−α(1−e−θ)x
,

thus

τ(x) =
(1 − (1 −β)e−α(1−e−θ)x)2 ln[1 − (1 −β)e−α(1−e−θ)x]

α(β− 1)(1 − e−θ)e−α(1−e−θ)x
.

In similar way, we get q(x)τ(x) and τ ′(x)
τ(x) as

q(x)

τ(x)
=

α(β− 1)(1 − e−θ)e−α(1−e−θ)x

(1 − (1 −β)e−α(1−e−θ)x) ln[1 − (1 −β)e−α(1−e−θ)x]

and

τ ′(x)

τ(x)
=

α(1 −β)(1 − e−θ)e−α(1−e−θ)x

(1 − (1 −β)e−α(1−e−θ)x) ln[1 − (1 −β)e−α(1−e−θ)x]

+
2α(1 − e−θ)(1 −β)e−α(1−e−θ)x

1 − (1 −β)e−α(1−e−θ)x
+α(1 − e−θ),

respectively. Next, we have that q(x)+τ
′(x)

τ(x) =
2α(1−e−θ)(1−β)e−α(1−e−θ)x

1−(1−β)e−α(1−e−θ)x
+α(1 − e−θ) and

∫x
0

q(y) + τ ′(y)

τ(y)
dy = 2 ln[1 − (1 −β)e−α(1−e−θ)x] − 2 lnβ+α(1 − e−θ)x,

therefore we have

f(x) = K exp
[
−

∫x
0

q(y) + τ ′(y)

τ(y)
dy

]
=

Kβ2e−α(1−e−θ)x

(1 − (1 −β)e−α(1−e−θ)x)2
.

Hence the normalizing constant K =
α(1−e−θ)

β .

Proposition 3.4. Suppose that the random variable X has an absolutely continuous cdf F(x) with F(0) = 0,
F(x) > 0, ∀x > 0, with density function f(x) = F ′(x) and reverse failure rate r(x) = f(x)/F(x). Assume that
E
[
1 − (1 −β)e−α(1−e−θ)X

]
< ∞ for α,β, θ > 0, then X has the MOGETE family of distribution if and only if

E
[
1 − (1 −β)e−α(1−e−θ)X|X 6 x

]
=
r(x)(1−(1−β)e−α(1−e−θ)x)2[ln[1−(1−β)e−α(1−e−θ)x]−lnβ]

α(1−β)(1−e−θ)e−α(1−e−θ)x
, x > 0.

Proof. For necessity, limx→0 gETE(x) = α(1− e−θ). For sufficiently, let q(x) = 1− (1−β)e−α(1−e−θ)x, then

E[q(X)|X 6 x] =
r(x)

f(x)

∫x
0
(1 − (1 −β)e−α(1−e−θ)y)f(y)dy

=
r(x)(1 − (1 −β)e−α(1−e−θ)x)2

e−α(1−e−θ)x

∫x
0

e−α(1−e−θ)y

1 − (1 −β)e−α(1−e−θ)y
dy.

By setting u = 1 − (1 −β)e−α(1−e−θ)y and after some algebraic manipulations we have

E
[
1 − (1 −β)e−α(1−e−θ)X|X 6 x

]
=
r(x)(1 − (1 −β)e−α(1−e−θ)x)2[ln[1 − (1 −β)e−α(1−e−θ)x] − lnβ]

α(1 −β)(1 − e−θ)e−α(1−e−θ)x
,
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thus

w(x) =
(1 − (1 −β)e−α(1−e−θ)x)2[ln[1 − (1 −β)e−α(1−e−θ)x] − lnβ]

α(β− 1)(1 − e−θ)e−α(1−e−θ)x
.

Therefore, we have q(x)
w(x) and w ′(x)

w(x) as

q(x)

w(x)
=

α(1 −β)(1 − e−θ)e−α(1−e−θ)x

(1 − (1 −β)e−α(1−e−θ)x)[ln[1 − (1 −β)e−α(1−e−θ)x] − lnβ

and

w ′(x)

w(x)
=

α(1 −β)(1 − e−θ)e−α(1−e−θ)x

(1 − (1 −β)e−α(1−e−θ)x)[ln[1 − (1 −β)e−α(1−e−θ)x] − lnβ]

+
2α(1 − e−θ)(1 −β)e−α(1−e−θ)x

1 − (1 −β)e−α(1−e−θ)x
+α(1 − e−θ),

respectively. Next, we have that w
′(x)−q(x)
w(x) =

2α(1−e−θ)(1−β)e−α(1−e−θ)x

1−(1−β)e−α(1−e−θ)x
+α(1 − e−θ) and∫x

0

w ′(y) − q(y)

w(y)
dy = 2 ln[1 − (1 −β)e−α(1−e−θ)x] − 2 lnβ+α(1 − e−θ)x,

therefore

f(x) = K exp
[
−

∫x
0

w ′(y) − q(y)

w(y)
dy

]
=

Kβ2e−α(1−e−θ)x

(1 − (1 −β)e−α(1−e−θ)x)2
,

and K =
α(1−e−θ)

β .

4. Conclusion

In this work, the characterization of the MO-G family of distribution by left and right truncated
moments based on some certain continuous function of a non-negative random variable is provided.
The characterizations of two families of MO-G are discussed, in particular, the MONH and MOGETE
distributions.
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