

Some Results on the Generalized Rough Lie Subalgebras

S. B. Hosseini ${ }^{1, a}$; A. Kazemi ${ }^{\text {b }}$
Department of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran.
E-mail address: ${ }^{\text {a }}$ sbhosseini@iausari.ac.ir $;{ }^{\text {b }}$ Arefe.kazemi65@gmail.com
\section*{Article history:}
Received March 2013
Accepted October 2014
Available online October 2014

Abstract

The main purpose of this paper is to introduce and discuss the concept of T-roughness in Lie subalgebra and generalized T-rough Lie subalgebras. We define a set-valued homomorphism on a Lie algebra and study some of their properties and useful applications.

Keywords: Lower approximation; Upper approximation; T-rough set; Set-valued homomorphism; Lie algebras.

1. Introduction

The notion of rough sets has been introduced by Z. Pawlak [11, 12], Z. Pawlak and A. Skowron [13] and T. Iwinski [8]. It soon invoked a natural question concerning a possible connection between rough sets and algebraic systems. The algebraic approach to rough sets have been studied by Z. Bonikowaski [2]. R. Biswas and S. Nanda [1] introduced the notion of rough subgroups. N. Kuroki [10] introduced the notion of rough ideals in a semigroup. B. Davvaz [4] introduced the notion of rough subring with respect to an ideal of a ring. O. Kazanci, B. Davvaz [9] discussed the structure on the rough prime (primary) ideals. In [15], W. Zhang, W. Wu considered some other results. B. Davvaz [3] introduced T - rough set and T - rough homomorphism in a group. In [14], S. Yamak, O. Kazanci, B. Davvaz introduced the generalized lower and upper approximation in a ring. S. B. Hosseini et al. [6, 7] introduced T-rough ideal in a semigroup and in a commutative ring. The rough set theory is an extension of set theory, in which a subset of a universe is described by a pair of ordinary sets called the lower and the upper approximations. The lower approximation of a given set is the union of all the equivalence classes which are subsets of the set, and the upper approximation is the union of all the equivalence classes which have a non-empty

[^0]intersection with the set. The rough sets are a suitable mathematical model of vague concepts, i.e., concepts without sharp boundaries. In this paper, a set-valued homomorphism on a Lie algebra and the concept T-rough Lie subalgebra are introduced and some interesting properties are proved. Suppose that U is a non-empty set. A partition or classification of U is a family Θ of non-empty subsets of U such that each element of U is contained in exactly one element of Θ. It is vitally important to recall that an equivalence relation θ on a set U is a reflexive, symmetric and transitive binary relation on U. Each partition induces an equivalence relation on U. If θ is an equivalence relation on U, then for every $x \in U,[x]_{\theta}$ denotes the equivalence class of θ determined by x. For any $X \subseteq U$, we write X^{c} to denote the complement of X in U that is the set $U \backslash X$. A pair (U, θ) where $U \neq \varnothing$ and θ is an equivalence relation on U is called an approximation space. Let $P(U)$ be the set of all subsets of U and for an approximation space (U, θ) by a rough approximation in (U, θ) we mean a mapping
$$
\operatorname{Apr}: P(U) \rightarrow P(U) \times P(U) \text { defined by for every } X \in P(U), \operatorname{Apr}(X)=(\underline{\operatorname{Apr}}(X), \overline{\operatorname{Apr}}(X))
$$
where
$$
\underline{\operatorname{Apr}}(X)=\left\{x \in U \mid[x]_{\theta} \subseteq X\right\} ; \overline{\operatorname{Apr}}(X)=\left\{x \in U \mid[x]_{\theta} \cap X \neq \varnothing\right\} .
$$
$\operatorname{Apr}(X)$ is called the lower rough approximation of X in (U, θ) whereas $\overline{\operatorname{Apr}}(X)$ is called the upper rough approximation of X in (U, θ).

Given an approximation space (U, θ) a pair (A, B) in $P(U) \times P(U)$ is called a rough set in (U, θ) if $(A, B)=(\underline{A p r}(X), \overline{\operatorname{Apr}}(X))$ for some $X \in P(U)$.

2 Set-valued Lie homomorphism and T-rough Lie subalgebra

In this section, we define the concept of a set-valued Lie homomorphism and give some important examples of a set-valued mapping. We also investigate some basic properties of the generalized lower and upper approximation operators in a Lie algebra. We generalize the rough Lie subalgebra called T-rough Lie subalgebra. We apply the notion of T-rough sets in a Lie algebra and extend some theorems which have been proved in [3, 4, 6, 7].

Throughout in this section and the next, the set of all non-empty subsets of Y is denoted by $P^{*}(Y)$.

Definition 2.1[3] Let X and Y be two non-empty sets and $\varnothing \neq B \subseteq Y$. Let $T: X \rightarrow P^{*}(Y)$ be a setvalued mapping. The lower inverse and upper inverse of B under T are defined by

$$
L_{T}(B)=\{x \in X \mid T(x) \subseteq B\} ; U_{T}(B)=\{x \in X \mid T(x) \cap B \neq \varnothing\},
$$

respectively.
Definition 2.2 [3] Let X and Y be two non-empty sets and $B \in P^{*}(Y)$. Let $T: X \rightarrow P^{*}(Y)$ be a setvalued mapping. $\left(L_{T}(B), U_{T}(B)\right)$ is called a T - rough set with respect to B.

Proposition 2.3 [3,6,7] Let X and Y be two non-empty sets and $A, B \subseteq Y$. Let $T: X \rightarrow P^{*}(Y)$ be a set-valued mapping, then the following holds:
(i) $U_{T}(A \bigcup B)=U_{T}(A) \bigcup U_{T}(B)$;
(ii) $L_{T}(A \cap B)=L_{T}(A) \cap L_{T}(B)$;
(iii) $A \subseteq B$ implies $L_{T}(A) \subseteq L_{T}(B)$ and $U_{T}(A) \subseteq U_{T}(B)$;
(iv) $L_{T}(A) \cup L_{T}(B) \subseteq L_{T}(A \bigcup B)$ and $U_{T}(A \bigcap B) \subseteq U_{T}(A) \cap U_{T}(B)$.

Example 2.4 (i) Let (U, θ) be an approximation space and $T: U \rightarrow P^{*}(U)$ be a set-valued mapping where $T(x)=[x]_{\theta}$, then for any $B \subseteq U, L_{T}(B)=\underline{\operatorname{Apr}}(B)$ and $U_{T}(B)=\overline{\operatorname{Apr}}(B)$. So, rough sets are T-rough sets. In fact, T-rough sets are a generalization of rough sets.
(ii) Let Z be integer numbers set and $T: \mathrm{Z} \rightarrow P^{*}(\mathrm{Z})$ be a set-valued mapping where $T(n)=n \mathbf{Z}$ for all $n \in Z$. If $A=2 Z$, then $L_{T}(A)=2 Z$ and $U_{T}(A)=Z$.

Definition 2.5 Let F be a field. A Lie algebra over F is an F-vector space L, together with a bilinear map, the Lie bracket

$$
L \times L \rightarrow L, \quad(x, y) \rightarrow[x, y]
$$

satisfying the following properties:

- $[x, x]=0$ for all $x \in L ;$
$\cdot[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$ for all $x, y, z \in L$.
The Lie bracket $[x, y]$ is often referred to as the commutator of x and y.
Condition (L2) is known as the Jacobi identity.
Definition 2.6 (i) If L is a Lie algebra. We defined a Lie subalgebra of L to be a vector subspace $\varnothing \neq K \subseteq L$ such that

$$
[x, y] \in K \quad \text { for all } \quad x, y \in K .
$$

(ii) If A and B be two Lie subalgebras of L then we define $[A, B]$ as follows:
$[A, B]=\operatorname{span}\{[a, b] \mid a \in A, b \in B\}=\left\{\sum_{i=1}^{n} \lambda_{i}\left[a_{i}, b_{i}\right] \mid \lambda_{i} \in F, a_{i} \in A, b_{i} \in B, n \in N\right\}$.
(iii) A subspace I of a Lie algebra L is called an ideal if

$$
[x, y] \in I \quad \text { for all } x \in L, y \in I .
$$

(iv) A Lie algebra L is called commutative when $[x, y]=0$ for all $x, y \in L$.
(v) If L_{1} and L_{2} are Lie algebras over F, then we say that a map $\varphi: L_{1} \rightarrow L_{2}$ is a Lie homomorphism if φ is a linear map and

$$
\varphi([x, y])=[\varphi(x), \varphi(y)] \quad \text { forall } x, y \in L_{1} .
$$

Definition 2.7 Let L and L' be two Lie algebras over field F and $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued mapping. T is called a set-valued Lie homomorphism if

- $T(x+y)=T(x)+T(y)$;
- $T(\lambda x)=\lambda T(x)$;
- $\{[a, b] \mid a \in T(x), b \in T(y)\}=T[x, y]$.
for all $\lambda \in F$ and $x, y \in L$.
It is clear that $T(0)=\{0\}$ and $T(-x)=-T(x)$ for all $x \in L$.
Example 2.8 (i) Let L is a Lie algebra and $T: L \rightarrow P^{*}\left(\frac{L}{I}\right)$ be a set-valued mapping and
$T(x)=\{x+I\}$ for all $x \in L$ which I is an ideal of L. Then T is a set-valued Lie homomorphism.
Here, $\frac{L}{I}$ is a Lie algebra over F and its the Lie bracket defined by

$$
[x+I, y+I]=[x, y]+I \text { for all } x, y \in L
$$

$\frac{L}{I}$ is called the quotient algebra of L by I.
(ii) Let $f: L \rightarrow L^{\prime}$ be a Lie algebra homomorphism and $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ defined by $T(x)=\{f(x)\}$, then T is a set-valued Lie homomorphism.
(iii) Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued mapping such that $T(x)=\{0\}$, then T is a set-valued Lie homomorphism.

The following corollaries are clear.
Corollary 2.9 Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism and $f: L^{\prime \prime} \rightarrow L$ be a Lie homomorphism, then Tof is a set-valued Lie homomorphism from $L^{\prime \prime}$ to $P^{*}\left(L^{\prime}\right)$ such that $U_{T o f}(B)=f^{-1}\left(U_{T}(B)\right)$ and $L_{T o f}(B)=f^{-1}\left(L_{T}(B)\right)$ for all $B \in P^{*}\left(L^{\prime}\right)$.

Corollary 2.10 Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism and $f: L^{\prime} \rightarrow L^{\prime \prime}$ be a Lie homomorphism, then T_{f} is a set-valued Lie homomorphism from L to $P^{*}\left(L^{\prime \prime}\right)$ defined by $T_{f}(m)=f(T(m))$ such that $L_{T_{f}}(A)=L_{T}\left(f^{-1}(A)\right)$ and $U_{T_{f}}(A)=U_{T}\left(f^{-1}(A)\right)$ for all $A \in P^{*}\left(L^{\prime \prime}\right)$ and $m \in L$.

Lemma 2.11 Let W be an ideal L^{\prime} and $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then $L_{T}(W)$ and $U_{T}(W)$ are ideals of L.

Proof. It is clear that $0 \in L_{T}(W)$, therefore $L_{T}(W) \neq \varnothing$. Now we show that $L_{T}(W)$ is a subspace. Let $x, y \in L_{T}(W)$ and $\lambda \in F$, so $T(x) \subseteq W$ and $T(y) \subseteq W$. Therefore $\lambda T(x) \subseteq W$, hence $\lambda T(x)+T(y) \subseteq W$. Since T is a Lie homomorphism, so $T(\lambda x)+T(y) \subseteq W$. It yields that $T(\lambda x+y) \subseteq W$. It shows that $\lambda x+y \in L_{T}(W)$. Now to show that $L_{T}(W)$ is an ideal, we need to check that $[x, y] \in L_{T}(W)$ for all $x \in L_{T}(W)$ and $y \in L$, or $T([x, y]) \subseteq W$. In fact we show that $\{[a, b] \mid a \in T(x), b \in T(y)\} \subseteq W$. Let $[u, v] \in\{[a, b] \mid a \in T(x), b \in T(y)\}$ since $u \in T(x) \subseteq W$, and W is an ideal, then $[u, v] \in W$.

A little change to above proving, we can obtain the next result.
Lemma 2.12 Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then $\operatorname{ker} T=\{x \in L \mid T(x)=\{0\}\}$ is an ideal of L.
Corollary 2.13 Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism. If A and B be two non-empty
sets of L^{\prime}, then $\left[U_{T}(A), U_{T}(B)\right] \subseteq U_{T}([A, B])$ and $\left[L_{T}(A), L_{T}(B)\right] \subseteq L_{T}([A, B])$.
The following example shows that in general, the converse of above relations do not hold:
Example 2.14 Let L be a commutative Lie algebra and $A=L=B$ and $T: L \rightarrow P^{*}(L)$ defined by $T(x)=\{0\}$, then we have
(i) $L_{T}[A, B]=L_{T}[L, L]=L_{T}\{0\}=\{x \in L \mid T(x) \subseteq\{0\}\}=L$. On the other hand, $L_{T}(L)=\{x \in L \mid T(x) \subseteq L\}=L$, hence $\left[L_{T}(L), L_{T}(L)\right]=[L, L]=0$.
(ii) $U_{T}(L)=\{x \in L \mid T(x) \cap L \neq \varnothing\}=L$, hence $\left[U_{T}(L), U_{T}(L)\right]=[L, L]=0$. On the other hand, $U_{T}[L, L]=U_{T}\{0\}=\{x \in L \mid T(x) \cap\{0\} \neq \varnothing\}=L$.

Corollary 2.15 Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism. If A is a Lie subalgebra of L^{\prime}, then $U_{T}(A)$ and $L_{T}(A)$ are Lie subalgebras of L.

Proof. The proof is straightforward.
Theorem 2.16 Let $f: L \rightarrow L^{\prime}$ be an isomorphism and $T_{2}: L^{\prime} \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism. If $T_{1}(x)=\left\{u \in L \mid f(u) \in T_{2}(f(x))\right\}$ for all $x \in L$, then T_{1} is a set-valued Lie homomorphism from L to $P^{*}(L)$.

Proof. First, we show that T_{1} is a well-defined mapping. Suppose $x_{1}=x_{2}$, we have

$$
y_{1} \in T_{1}\left(x_{1}\right) \Leftrightarrow f\left(y_{1}\right) \in T_{2}\left(f\left(x_{1}\right)\right)=T_{2}\left(f\left(x_{2}\right)\right) \Leftrightarrow y_{1} \in T_{1}\left(x_{2}\right) .
$$

Then $T_{1}\left(x_{1}\right)=T_{1}\left(x_{2}\right)$. Now we show that $T_{1}\left(x_{1}+x_{2}\right)=T_{1}\left(x_{1}\right)+T_{1}\left(x_{2}\right)$.
Suppose $y \in T_{1}\left(x_{1}+x_{2}\right)$, then

$$
f(y) \in T_{2}\left(f\left(x_{1}+x_{2}\right)\right)=T_{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)=T_{2}\left(f\left(x_{1}\right)\right)+T_{2}\left(f\left(x_{2}\right)\right) .
$$

Hence there exist $a \in T_{2}\left(f\left(\left(x_{1}\right)\right)\right.$ and $b \in T_{2}\left(f\left(\left(x_{2}\right)\right)\right.$ such that $f(y)=a+b$. Since f is onto, then there exist $d, c \in L$ such that $f(c)=a, f(d)=b$. On the other hand, we have $f(c) \in T_{2}\left(f\left(x_{1}\right)\right)$, then $c \in T_{1}\left(x_{1}\right)$ and also $f(d) \in T_{2}\left(f\left(x_{2}\right)\right)$. Therefore $d \in T_{1}\left(x_{2}\right)$ and $f(y)=a+b=f(c)+f(d)=f(c+d)$. Since f is one to one, it implies $y=c+d$. So $y \in T_{1}\left(x_{1}\right)+T_{1}\left(x_{2}\right)$. It follows $T_{1}\left(x_{1}+x_{2}\right) \subseteq T_{1}\left(x_{1}\right)+T_{1}\left(x_{2}\right)$.

Conversely, assume that $y \in T_{1}\left(x_{1}\right)+T_{1}\left(x_{2}\right)$, then there are $a \in T_{1}\left(x_{1}\right), b \in T_{1}\left(x_{2}\right)$ such that $y=a+b$. Hence

$$
\begin{aligned}
& f(y)=f(a)+f(b)=f(a+b) \in T_{2}\left(f\left(x_{1}\right)\right)+T_{2}\left(f\left(x_{2}\right)\right)=T_{2}\left(f\left(x_{1}+x_{2}\right)\right) . \\
& \quad \Rightarrow y \in T_{1}\left(x_{1}+x_{2}\right) .
\end{aligned}
$$

So $T_{1}\left(x_{1}\right)+T_{1}\left(x_{2}\right) \subseteq T_{1}\left(x_{1}+x_{2}\right)$. Also we show that $T_{1}(\lambda x)=\lambda T_{1}(x)$. Suppose $u \in T_{1}(\lambda x)$. So $f(u) \in T_{2}(f(\lambda x))=\lambda T_{2}(f(x))$. Then there exists $z \in T_{2}(f(x))$ such that $f(u)=\lambda z$. Since f is onto, then there is $m \in L_{1}$ such that $z=f(m)$. Therefore we have $f(u)=\lambda f(m)=f(\lambda m)$ and since f is one to one, it implies that $u=\lambda m$. So $z=f(m) \in T_{2}(f(x))$. It shows that $m \in T_{1}(x)$. Therefore $\lambda m \in \lambda T_{1}(x)$. Then $u \in \lambda T_{1}(x)$. Now for proving $\lambda T_{1}(x) \subseteq T_{1}(\lambda x)$, let $u \in \lambda T_{1}(x)$. By definition, there exists $z \in T_{1}(x)$ such that $u=\lambda z$. So $f(u)=\lambda f(z)$. Since $f(z) \in T_{2}(f(x))$ and $f(u) \in \lambda T_{2}(f(x))=T_{2}(f(\lambda x))$, hence $f(u) \in T_{2}(f(\lambda x)) \Rightarrow u \in T_{1}(\lambda x)$.
Now we show that T_{1} preserves the Lie bracket, that means

$$
T_{1}[x, y]=\left\{[a, b] \mid a \in T_{1}(x), b \in T_{1}(y)\right\} .
$$

First, we show that $f[a, b] \in T_{2}(f[x, y])$ for all $a \in T_{1}(x)$ and $b \in T_{1}(y)$. Let $f(a) \in T_{2}(f(x))$ and $f(b) \in T_{2}(f(y))$. Since f is a Lie homomorphism, therefore

$$
\begin{aligned}
f[a, b] & =[f(a), f(b)] \in\left\{[u, v] \mid u \in T_{2}(f(x)), v \in T_{2}(f(y))\right\} \\
& =T_{2}[f(x), f(y)] .
\end{aligned}
$$

It implies $\left\{[a, b] \mid a \in T_{1}(x), b \in T_{1}(y)\right\} \subseteq T_{1}[x, y]$. Now we show

$$
T_{1}[x, y] \subseteq\left\{[a, b] \mid a \in T_{1}(x), b \in T_{1}(y)\right\}
$$

We have $T_{1}[x, y]=\left\{u \in L \mid f(u) \in T_{2}(f[x, y])\right\}$

$$
\begin{aligned}
& =\left\{u \in L \mid f(u) \in T_{2}([f(x), f(y)])\right\} \\
& =\left\{u \in L|f(u)|\left\{[a, b] \mid a \in T_{2}(f(x)), b \in T_{2}(f(y))\right\} .\right.
\end{aligned}
$$

Now let $f(u)=[a, b]$ then there exist $a \in T_{2}(f(x))$ and $b \in T_{2}(f(y))$. Since f is onto, then there exist $d, c \in L$ such that $f(c)=a$ and $f(d)=b$. It is clear that $c \in T_{1}(x)$ and $d \in T_{1}(y)$ and $f(u)=[f(c), f(d)]=f[c, d]$. Since f is one to one, then

$$
u=[c, d] \in\left\{\left[t_{1}, t_{2}\right] \mid t_{1} \in T_{1}(x), t_{2} \in T_{1}(y)\right\} \subseteq\left\{[a, b] \mid a \in T_{1}(x), b \in T_{1}(y)\right\} .
$$

Theorem 2.17 Let $f: L \rightarrow L^{\prime}$ be a Lie algebra isomorphism and let $T_{2}: L^{\prime} \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism. If for any $x \in L, T_{1}(x)=\left\{u \in L \mid f(u) \in T_{2}(f(x))\right\}$ and A is a subalgebra of L^{\prime}, then
(i) $f\left(L_{T_{1}}(A)\right)=L_{T_{2}}(f(A))$;
(ii) $f\left(U_{T_{1}}(A)\right)=U_{T_{2}}(f(A))$.

Proof. (i) If $y \in f\left(L_{T_{1}}(A)\right)$, then there exists $x \in L_{T_{1}}(A)$ such that $y=f(x)$. But if $x \in L_{T_{1}}(A)$, then we have $T_{1}(x) \subseteq A$. Now if $w \in T_{2}(f(x))$, since f is onto, then there exists $z \in L$ such that $w=f(z)$. So,

$$
\begin{aligned}
& w=f(z) \in T_{2}(f(x)) \Rightarrow z \in T_{1}(x) \subseteq A \\
& \Rightarrow w=f(z) \in f(A) \\
& \Rightarrow T_{2}(f(x)) \subseteq f(A) \\
& \Rightarrow y \in L_{T_{2}}(f(A)) .
\end{aligned}
$$

Therefore $f\left(L_{T_{1}}(A)\right) \subseteq L_{T_{2}}(f(A))$.
Conversely, if $y \in L_{T_{2}}(f(A))$, then $T_{2}(y) \subseteq f(A)$. On the other hand, f is onto, then there is $x \in L$ such that $y=f(x)$. Hence, we have $T_{2}(f(x)) \subseteq f(A)$.

Let $u \in T_{1}(x)$, then $f(u) \in f(A)$, therefore there exists $a \in A$ such that $f(u)=f(a)$. But f is one to one, so $u=a$. Hence we have

$$
u \in A \Rightarrow T_{1}(x) \subseteq A \Rightarrow x \in L_{T_{1}}(A) \Rightarrow y \in f\left(L_{T_{1}}(A)\right)
$$

So, $L_{T_{2}}(f(A)) \subseteq f\left(L_{T_{1}}(A)\right)$.
(ii) If $y \in f\left(U_{T_{1}}(A)\right)$, then there exists $x \in U_{T_{1}}(A)$ such that $y=f(x)$. But if $x \in U_{T_{1}}(A)$, then $T_{1}(x) \cap A \neq \varnothing$. Let $a \in T_{1}(x) \cap A$. Therefore

$$
\begin{aligned}
& f(a) \in T_{2}(f(x)) \cap f(A) \Rightarrow T_{2}(f(x)) \cap f(A) \neq \varnothing \\
& \Rightarrow f(x) \in U_{T_{2}}(f(A)) \\
& \Rightarrow y \in U_{T_{2}}(f(A)) .
\end{aligned}
$$

It means that $f\left(U_{T_{1}}(A)\right) \subseteq U_{T_{2}}(f(A))$. Conversely, if $y \in U_{T_{2}}(f(A))$, since f is onto, then there exist $x \in L$ such that $y=f(x)$, and $T_{2}(y) \cap f(A) \neq \varnothing$. So, we have $T_{2}(f(x)) \cap f(A) \neq \varnothing$. Hence there is $z \in T_{2}(f(x)) \cap f(A)$. It means that there exists $a \in A$ such that $z=f(a) \in T_{2}(f(x))$. Then $a \in T_{1}(x) \cap A \neq \varnothing$. It obtains that $x \in U_{T_{1}}(A)$. Then $y=f(x) \in f\left(U_{T_{1}}(A)\right)$. It follows that $U_{T_{2}}(f(A)) \subseteq f\left(U\left(_{T_{1}}(A)\right)\right.$.
Definition 2.18 A congruence θ on L is called complete iffor any $x, y \in L$ and $r \in F$
(i) $[x]_{\theta}+[y]_{\theta}=[x+y]_{\theta}$;
(ii) $r[x]_{\theta}=[r x]_{\theta}$;
(iii) $[[x, y]]_{\theta}=\left\{[a, b] \mid a \in[x]_{\theta}, b \in[y]_{\theta}\right\}$.

By using the above theorems and definition, we obtain the following:
Corollary 2.19 Let θ_{2} be a complete congruence relation on Lie algebra L_{2} and $f: L_{1} \rightarrow L_{2}$ be a Lie algebra isomorphism and $\theta_{1}=\left\{(x, y) \in L_{1} \times L_{1} \mid f(x), f(y) \in \theta_{2}\right\}$, then θ_{1} is a complete congruence relation on L_{1} that $\varnothing \neq A \subseteq L_{1}$
(i) $f\left(\underline{A p r}_{\theta_{1}}(A)\right)=\underline{A p r}_{\theta_{2}}(f(A))$;
(ii) $f\left(\overline{\operatorname{Apr}}_{\theta_{1}}(A)\right)=\overline{A p r}_{\theta_{2}}(f(A))$.

3 Generalized T-rough Lie algebras

In this section, we define a T-rough Lie algebra with respect to a Lie subalgebra of a Lie algebra, is called the generalized T-rough Lie algebra and study some of their appealing properties.

Definition 3.1 Let A and B be two Lie subalgebras of L^{\prime} and $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then

$$
L_{T}^{A}(B)=\{x \in L \mid(T(x)+A) \subseteq B\} ; U_{T}^{A}(B)=\{x \in L \mid(T(x)+A) \cap B \neq \varnothing\}
$$

are called the generalized lower and upper approximations of B, respectively, with respect to the Lie subalgebra A.

In the special case, if $A=0$, then $L_{T}^{A}(B)=L_{T}(B)$ and $U_{T}^{A}(B)=U_{T}(B)$. Furthermore, if $0 \in A \subseteq B$, then $L_{T}^{A}(B) \subseteq L_{T}(B)$ and $U_{T}^{A}(B) \subseteq U_{T}(B)$.

Definition 3.2 Let L be a Lie algebra. If A be a Lie subalgebra of L and $\varnothing \neq S \subseteq F$, then $S A$ denotes the set of $\left\{\sum_{i=1}^{n} s_{i} a_{i} \mid s_{i} \in S, a_{i} \in A, n \in \mathbf{N}\right\}$.

Theorem 3.3 Let $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, the following holds:
(i) If A and B are two Lie subalgebras of L^{\prime} such that $A \subseteq B$, then $L_{T}^{A}(B)$ is Lie subalgebra of L;
(ii) If A is an ideal of L^{\prime} and B is a Lie subalgebra of L^{\prime}, then $U_{T}^{A}(B)$ is Lie subalgebra of L.

Proof. (i) First, we show that $L_{T}^{A}(B)$ is a subspace. It is clear that $0 \in L_{T}^{A}(B)$. Now suppose that x, y be two elements of $L_{T}^{A}(B)$ and $\lambda \in F$. If $x \in L_{T}^{A}(B)$, since A is a Lie subalgebra, hence $0 \in A$ then $T(x) \subseteq B$, so $\lambda T(x) \subseteq B$. On the other hand, $A \subseteq B$. Therefore $\lambda T(x)+A \subseteq B$, and so $T(\lambda x)+A \subseteq B$. Also $T(y)+A \subseteq B$. Hence $T(\lambda x)+T(y)+A \subseteq B$. It deduces that $T(\lambda x+y)+A \subseteq B$. Therefore $\lambda x+y \in L_{T}^{A}(B)$. Now we show that if $x, y \in L_{T}^{A}(B)$, then $[x, y] \in L_{T}^{A}(B)$. Since $T[x, y]=\{[a, b] \mid a \in T(x), b \in T(y)\}$, from $a \in T(x)$ and $b \in T(y)$, we have
$a \in B$ and $b \in B$, therefore $[a, b] \in B$. It means that $\{[a, b] \mid a \in T(x), b \in T(y)\} \subset B$, so $T[x, y] \subset B$. On the other hand, $A \subseteq B$ which implies $T[x, y]+A \subseteq B$. It follows $[x, y] \in L_{T}^{A}(B)$.
(ii) First, we show that $U_{T}^{A}(B)$ is a subspace. It is clear that $0 \in U_{T}^{A}(B)$. Now suppose that x, y be two elements of $U_{T}^{A}(B)$ and $\lambda \in F$. If $x \in U_{T}^{A}(B) \Rightarrow(T(x)+A) \cap B \neq \varnothing$ and since $y \in U_{T}^{A}(B)$, then $(T(y)+A) \cap B \neq \varnothing$, so there exist $a, b \in L^{\prime}$ such that $a \in(T(x)+A) \cap B$ and $b \in(T(y)+A) \cap B$. It implies that $\lambda a \in T(\lambda x)+\lambda A \subseteq T(\lambda x)+A$. On the other hand, $\lambda a \in \lambda B \subset B$, so $\lambda a \in B$. It deduces that $\lambda a \in(T(\lambda x)+A) \cap B$, since $b \in(T(y)+A) \cap B$, therefore $\lambda a+b \in(T(\lambda x+y)+A) \cap B$. It shows that $(T(\lambda x+y)+A) \cap B \neq \varnothing$. It follows $\lambda x+y \in U_{T}^{A}(B)$.

Now we show that if $x, y \in U_{T}^{A}(B)$, then $[x, y] \in U_{T}^{A}(B)$. Since $x \in U_{T}^{A}(B)$, then $(T(x)+A) \cap B \neq \varnothing$, so there exists $u \in(T(x)+A) \cap B$, and since $y \in U_{T}^{A}(B)$, then $(T(y)+A) \cap B \neq \varnothing$ so there exists $v \in(T(x)+A) \cap B$. It implies that $[u, v] \in B$. Let $u=x_{1}+a_{1}$ such that $x_{1} \in T(x), a_{1} \in A$ and $v=x_{2}+a_{2}$ such that $x_{2} \in T(y), a_{2} \in A$, we have

$$
\begin{aligned}
{[u, v] } & =\left[x_{1}+a_{1}, x_{2}+a_{2}\right] \\
& =\left[x_{1}, x_{2}\right]+\left[x_{1}, a_{2}\right]+\left[a_{1}, x_{2}\right]+\left[a_{1}, a_{2}\right] \in B .
\end{aligned}
$$

Since A is ideal of Lie algebra L^{\prime}, so $\left[x_{1}, a_{2}\right],\left[a_{1}, x_{2}\right],\left[a_{1}, a_{2}\right] \in A$. Hence we have

$$
\begin{aligned}
\left\{\left[x_{1}, x_{2}\right]+A \mid x_{1} \in T(x), x_{2} \in T(y)\right\} \subset B & \Rightarrow T[x, y]+A \subset B \\
& \Rightarrow T[x, y]+A \cap B \neq \varnothing \\
& \Rightarrow[x, y] \in U_{T}^{A}(B) .
\end{aligned}
$$

Notice: In the above theorem, the condition $A \subseteq B$ is necessary, because $0 \notin L_{T}^{A}(B)$.
The following example shows that in condition (ii) to A 's being ideal is a necessity.
Example 3.4 Let $L_{1}=L_{2}=\operatorname{gl}(n, F)$ be the set of all $n \times n$ matrices over F and
$T: g l(n, F) \rightarrow P^{*}(g l(n, F))$ and for any $x \in g l(n, F)$ we define $T(x)=\{x\}$. Now if $A=b(n, F)$ is the upper triangular matrices and $B=\{0\}$, then A is not an ideal of $g l(n, F)$ and $U_{T}^{A}(B)=A$. for

$$
\begin{aligned}
U_{T}^{A}(B) & =\{x \in L \mid(T(x)+A) \cap B \neq \varnothing\} \\
& =\{x \in L \mid\{x\}+b(n, F) \cap\{0\} \neq \varnothing\}=b(n, F)=A .
\end{aligned}
$$

Now we have T is a Lie algebra homomorphism
(i) $T(A+B)=\{A+B\}=\{A\}+\{B\}=T(A)+T(B)$;
(ii) $T(\lambda A)=\{\lambda A\}=\lambda\{A\}=\lambda T(A)$;
(iii) $T[A, B]=\{[A, B]\}=\{[a, b] \mid a \in T(A), b \in T(B)\}$.

Lemma 3.5 Let L be a Lie algebra and A, B be non-empty Lie subalgebras of L^{\prime} such that $A \subseteq B$ and let S be a subspace of L^{\prime}. If $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then
(i) $L_{T}^{B}(S) \subseteq L_{T}^{A}(S)$;
(ii) $U_{T}^{A}(S) \subseteq U_{T}^{B}(S)$.

Proof. The proof is straightforward.
The following corollary follows by Lemma 3.5.
Corollary 3.6 Let A, B be Lie subalgebras of L^{\prime} and S be a non-empty subset of L^{\prime}. If
$T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then
(i) $L_{T}^{A}(S) \cap L_{T}^{B}(S) \subseteq L_{T}^{A \cap B}(S)$;
(ii) $U_{T}^{A \cap B}(S) \subseteq U_{T}^{A}(S) \cap U_{T}^{B}(S)$.

Theorem 3.7 Suppose S be a non-empty subset of F and B be Lie subalgebra of L^{\prime} and A be a subspace of L^{\prime}. If $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then
(i) If $A \subseteq B$, then $S L_{T}^{A}(B) \subseteq L_{T}^{A}(S B)$;
(ii) $S U_{T}^{A}(B) \subseteq U_{T}^{A}(S B)$.

Proof. (i) Let x be any element of $S L_{T}^{A}(B)$, then $x=\sum_{i=1}^{n} s_{i} b_{i}$ for some $s_{i} \in S, b_{i} \in L_{T}^{A}(B)$ and $n \in \mathbf{N}$. Now, we have $T\left(b_{i}\right)+A \subseteq B$, and so $s_{i} T\left(b_{i}\right)+A \subseteq s_{i} B \subseteq S B$, for all $i=1,2, \ldots, n$. Then we have $T\left(s_{i} b_{i}\right)+A \subseteq S B \quad$ which \quad implies $\quad s_{i} b_{i} \in L_{T}^{A}(S B)$. Therefore $\quad x=\sum_{i=1}^{n} s_{i} b_{i} \in L_{T}^{A}(S B) \quad$ and \quad so $S L_{T}^{A}(B) \subseteq L_{T}^{A}(S B)$.
(ii) Let x be any element of $S U_{T}^{A}(B)$, then $x=\sum_{i=1}^{n} s_{i} b_{i}$ for some $s_{i} \in S, b_{i} \in U_{T}^{A}(B)$ and $n \in \mathbf{N}$. Now, we have $\left(T\left(b_{i}\right)+A\right) \cap B \neq \varnothing$ for all $i=1,2, \ldots, n$. So there exists $a_{i} \in\left(T\left(b_{i}\right)+A\right) \cap B$. Hence $s_{i} a_{i} \in B \quad$ and $\quad s_{i} a_{i} \in s_{i} T\left(b_{i}\right)+A=T\left(s_{i} b_{i}\right)+A . \quad$ So $\quad \sum_{i=1}^{n} s_{i} a_{i} \in S B \quad$ and $\quad \sum_{i=1}^{n} s_{i} a_{i} \in T\left(\sum_{i=1}^{n} s_{i} b_{i}\right)+A$. Therefore $\Sigma_{i=1}^{n} s_{i} a_{i} \in(T(x)+A) \cap S B$. Thus $(T(x)+A) \cap S B \neq \varnothing$ which implies $x \in U_{T}^{A}(S B)$, and so $S U_{T}^{A}(B) \subseteq U_{T}^{A}(S B)$.

Theorem 3.8 Suppose that A, B and C be Lie subalgebras of L^{\prime}. If $T: L \rightarrow P^{*}\left(L^{\prime}\right)$ be a set-valued Lie homomorphism, then
(i) $L_{T}^{A}(C)+L_{T}^{B}(C)=L_{T}^{A+B}(C)$;
(ii) $U_{T}^{A}(C)+U_{T}^{B}(C)=U_{T}^{A+B}(C)$.

Proof. (i) Since $A \subseteq A+B$ and $B \subseteq A+B$, then by Lemma 3.5,

$$
L_{T}^{A+B}(C) \subseteq L_{T}^{A}(C) \subseteq L_{T}^{A}(C)+L_{T}^{B}(C)
$$

Now, let $x \in L_{T}^{A}(C)+L_{T}^{B}(C)$, then $x=y+z$ for some $y \in L_{T}^{A}(C)$ and $z \in L_{T}^{B}(C)$. Hence
$T(y)+A \subseteq C$ and $T(z)+B \subseteq C$, then $T(y+z)+A+B \subseteq C$ which implies $x \in L_{T}^{A+B}(C)$. Therefore we obtain $L_{T}^{A}(C)+L_{T}^{B}(C)=L_{T}^{A+B}(C)$.
(ii) Since $A \subseteq A+B$ and $B \subseteq A+B$, by Lemma 3.5, $U_{T}^{A}(C) \subseteq U_{T}^{A+B}(C)$ and $U_{T}^{B}(C) \subseteq U_{T}^{A+B}(C)$ and so $U_{T}^{A}(C)+U_{T}^{B}(C) \subseteq U_{T}^{A+B}(C)$. Also $U_{T}^{A+B}(C) \subseteq U_{T}^{A}(C) \subseteq U_{T}^{A}(C)+U_{T}^{B}(C)$.
And the equality in relation (ii) is true when $A+B$ is an ideal. Now we have $U_{T}^{A+B}(C) \subseteq U_{T}^{A}(C)+U_{T}^{B}(C)$. Let $x \in U_{T}^{A+B}(C)$, then $(T(x)+A+B) \cap C \neq \varnothing$, so there exists $u \in T(x)+A+B \cap C$, therefore we have $u=x_{1}+a+b$ such that $x_{1} \in T(x), a \in A, b \in B$, so $u-b=x_{1}+a \in T(x)+A$. Since $A+B$ is an ideal, then $U_{T}^{A+B}(C)$ is a Lie subalgebra, so $A+B \subset C$. On the other hand, $A \subset A+B \subset C$ and $B \subset A+B \subset C$. Hence $A \subset C$ and $B \subset C$. So

$$
(T(x)+A) \cap C \neq \varnothing \Rightarrow x \in U_{T}^{A}(C) \subset U_{T}^{A}(C)+U_{T}^{B}(C) .
$$

Proposition 3.9 Let L be a Lie algebra and A is a Lie subalgebra of L^{\prime} and B is non-empty subset of L^{\prime}, then
(i) $L_{T}^{A}\left(B^{c}\right)=\left(U_{T}^{A}(B)\right)^{c}$;
(ii) $U_{T}^{A}\left(B^{c}\right)=\left(L_{T}^{A}(B)\right)^{c}$.

Proof. (i) We have

$$
\begin{aligned}
& x \in L_{T}^{A}\left(B^{c}\right) \Leftrightarrow T(x)+A \subseteq B^{c} \Leftrightarrow(T(x)+A) \cap B=\varnothing \\
& \Leftrightarrow x \notin U_{T}^{A}(B) \Leftrightarrow x \in\left(U_{T}^{A}(B)\right)^{c} .
\end{aligned}
$$

(ii) By substitution B^{c} for B in (i) we get $U_{T}^{A}\left(B^{c}\right)=\left(L_{T}^{A}(B)\right)^{c}$.

4 Conclusion

In this work, the lower T-rough and upper T-rough Lie subalgebras are formulated in the context of Lie algebra theory. We introduced the notion of the set-valued Lie homomorphism and generalized T-rough Lie subalgebra in a Lie algebra which is an extended notion of Lie homomorphism and Lie subalgebra of a Lie algebra. We hope that this extended research may provide a powerful tool in approximate reasoning. We strongly believe that T-rough Lie algebra offered here will turn out to be more useful in the theory and applications of the rough sets.

Acknowledgement

The authors are highly grateful to an anonymous for her/his valuable comments and suggestions for improving the paper.

References

[1] R. Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math 42(1994), 251-254.
[2] Z. Bonikowaski, Algebraic structures of rough sets, in: W.P. Ziarko (Ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, Berlin, 1995, pp. 242-247.
[3] B. Davvaz, A short note on algebraic T-rough sets, Information Sciences 178 (2008) 3247-3252.
[4] B. Davvaz, Roughness in rings, Information Sciences 164 (2004), 147-163.
[5] B. Davvaz, M. Mahdavipour, Roughness in modules, Information Sciences 176 (2006) 3658-3674.
[6] S. B. Hosseini, N. Jafarzadeh, A. Gholami, T-rough Ideal and T-rough Fuzzy Ideal in a Semigroup, Advanced Materials Research, Vols. 433-440 (2012) pp 4915-4919.
[7] S. B. Hosseini, N. Jafarzadeh, A. Gholami, Some Results on T-rough (prime, primary) Ideal and T-rough Fuzzy (prime, primary) Ideal on Commutative Rings, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 7, 337 - 350
[8] T. Iwinski, Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math. 35 (1987), 673-683.
[9] O. Kazanci, B. Davvaz, On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings, Information Sciences, 178 (2008), 1343-1354.
[10] N. Kuroki, Rough ideals in semigroups, Information Sciences ,100 (1997), 139-163.
[11] Z. Pawlak, Rough sets basic notions, ICS PAS Rep. 436(1981).
[12] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982),341-356.
[13] Z. Pawlak, A. Skowron, Rough sets: some extensions, Information Sciences, 177 (2007), 28-40.
[14] W. Zhang, W. Wu, Theory and Method of Roughness, Science Press, Beijing, 2001.

[^0]: ${ }^{1}$ Corresponding author.

