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Abstract
The main purpose of this paper is to introduce and discuss the concept of
T-roughness in Lie subalgebra and generalized T-rough Lie subalgebras. We
define a set-valued homomorphism on a Lie algebra and study some of their
properties and useful applications.
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1. Introduction

The notion of rough sets has been introduced by Z. Pawlak [11, 12], Z. Pawlak and A. Skowron [13]
and T. lwinski [8]. It soon invoked a natural question concerning a possible connection between rough
sets and algebraic systems. The algebraic approach to rough sets have been studied by Z. Bonikowaski
[2]. R. Biswas and S. Nanda [1] introduced the notion of rough subgroups. N. Kuroki [10] introduced the
notion of rough ideals in a semigroup. B. Davvaz [4] introduced the notion of rough subring with respect
to an ideal of a ring. O. Kazanci, B. Davvaz [9] discussed the structure on the rough prime (primary)
ideals. In [15], W. Zhang, W. Wu considered some other results. B. Davvaz [3] introduced T- rough set
and T- rough homomorphism in a group. In [14], S. Yamak, O. Kazanci, B. Davvaz introduced the
generalized lower and upper approximation in a ring. S. B. Hosseini et al. [6, 7] introduced T-rough ideal
in a semigroup and in a commutative ring. The rough set theory is an extension of set theory, in which a
subset of a universe is described by a pair of ordinary sets called the lower and the upper approximations.
The lower approximation of a given set is the union of all the equivalence classes which are subsets of the
set, and the upper approximation is the union of all the equivalence classes which have a non-empty
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intersection with the set. The rough sets are a suitable mathematical model of vague concepts, i.e.,
concepts without sharp boundaries. In this paper, a set-valued homomorphism on a Lie algebra and the
concept T -rough Lie subalgebra are introduced and some interesting properties are proved. Suppose that
U is a non-empty set. A partition or classification of U is a family ® of non-empty subsets of U such
that each element of U is contained in exactly one element of ® . It is vitally important to recall that an
equivalence relation € on a set U is a reflexive, symmetric and transitive binary relation on U . Each
partition induces an equivalence relation on U . If @ is an equivalence relation on U , then for every

xeU,[x], denotes the equivalence class of & determined by X. For any X cU, we write X° to
denote the complement of X in U that is the set U\ X . A pair (U,8) where U = and @ is an
equivalence relation on U is called an approximation space. Let P(U) be the set of all subsets of U and
for an approximation space (U, ) by a rough approximation in (U, &) we mean a mapping

Apr : P(U) — P(U)x P(U) defined by for every X € P(U), Apr(X)=(Apr(X), Apr(X))
where
Apr(X)={x U |[x], = X} : Apr(X)={xeU |[x], "X =2},
M(X) is called the lower rough approximation of X in (U, &) whereas A_pr(X) is called the upper

rough approximation of X in (U,6).
Given an approximation space (U,8) a pair (A,B) in P(U)xP(U) is called a rough set in

(U,0) if (A B)=(Apr(X),Apr(X)) forsome X e P(U).
2 Set-valued Lie homomorphism and T1-rough Lie subalgebra

In this section, we define the concept of a set-valued Lie homomorphism and give some important
examples of a set-valued mapping. We also investigate some basic properties of the generalized lower and
upper approximation operators in a Lie algebra. We generalize the rough Lie subalgebra called T -rough
Lie subalgebra. We apply the notion of T -rough sets in a Lie algebra and extend some theorems which
have been proved in [3, 4, 6, 7].

Throughout in this section and the next, the set of all non-empty subsets of Y is denoted by P"(Y).

Definition 2.1 [3] Let X and Y be two non-empty setsand &= B cY .Let T: X — P (Y) be a set-
valued mapping. The lower inverse and upper inverse of B under T are defined by

L, (B)={xe X|T(x)<B}; U;(B)={xe X|T(X)nB=J},
respectively.

Definition 2.2 [3] Let X and Y be two non-empty setsand Be P"(Y).Let T : X — P"(Y) be a set-
valued mapping. (L; (B),U; (B)) iscalled a T - rough set with respect to B.
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Proposition 2.3 [3,6,7] Let X and Y be two non-empty setsand A, BcY. Let T: X —P"(Y) bea
set-valued mapping, then the following holds:

(i) U;(AUB)=U,(A)UU,(B);

(i) Lt (ANB) = L (ANL:(B);

(iii) Ac Bimplies L; (A) c L; (B) and U; (A) c U, (B);

(iv) Ly (A)UL; (B) < Ly (AUB) and U; (AN B) c U, (A) U+ (B).

Example 2.4 (i) Let (U,8) be an approximation space and T :U — P"(U) be a set-valued mapping
where T (x) =[X],, thenforany BcU , L;(B) = Apr(B) and U, (B) = M(B). So, rough sets are

T -rough sets. In fact, T -rough sets are a generalization of rough sets.

(ii) Let Z be integer numbers set and T : Z — P"(Z) be a set-valued mapping where T(n) =nZ for
all neZ If A=2Z,then L;(A)=2Z and U;(A)=Z

Definition 2.5 Let F be a field. A Lie algebra over F isan F -vector space L, together with a
bilinear map, the Lie bracket

LxL—>L, (Xy)—[xv]
satisfying the following properties:
« [x,x]=0for all xelL; (L1)
s [XLY, 211+ [z,[x, Y1) +[Y.[z,X]] =0 for all x,y,z e L. (L2)
The Lie bracket [X, y] is often referred to as the commutator of X and y .

Condition (L2) is known as the Jacobi identity.

Definition 2.6 (i) If L is a Lie algebra. We defined a Lie subalgebra of L to be a vector subspace
&+ K < L such that

[Xx,y]eK forall x,yeK.

(ii) If A and B be two Lie subalgebras of L then we define [A, B] as follows:

[A B]=spar{[a,b]|]ac Abe B}:{Z;t,[ai,bi]u,I eF,a e Ab €B,neN}.
i=1
(iii) A subspace | of a Lie algebra L is called an ideal if
[Xx,y]el forall xeL,yel.
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(iv) A Lie algebra L is called commutative when [x,y]=0 forall X,y eL.

(v) If L, and L, are Lie algebras over F , then we say thata map ¢: L, — L, is a Lie homomorphism if
@ is alinear map and

o([x YD) =[p(x).(y)] forallx,yeL,.

Definition 2.7 Let L and L be two Lie algebras over field F and T :L — P"(L) be a set-valued
mapping. T is called a set-valued Lie homomorphism if

c T(xX+Yy)=T(X)+T(y);
e T(AX) = AT (X);

- {[a,bl|aeT(x),beT(y)}=TI[x yl.
forall AeF and x,yeL.
It is clear that T (0) ={0} and T (—x) =T (x) forall x e L.

Example 2.8 (i) Let L isaLiealgebraand T :L — P*(TL) be a set-valued mapping and
T(X) ={x+1} forall xe L which | isanideal of L. Then T is a set-valued Lie homomorphism.
Here, IE is a Lie algebra over F and its the Lie bracket defined by
[x+1,y+1]=[x,y]+1 for allx,y e L.
IL is called the quotient algebra of L by | .

(i) Let f:L — L bea Lie algebra homomorphismand T : L — P"(L) defined by T (x) ={f (X)},
then T is a set-valued Lie homomorphism.

(iii) Let T:L—P"(L) be a set-valued mapping such that T(x) ={0}, then T is a set-valued Lie
homomorphism.

The following corollaries are clear.
Corollary 2.9 Let T:L — P"(L) be a set-valued Lie homomorphismand f :L — L bea Lie

homomorphism, then Tof is a set-valued Lie homomorphism from L to P"(L) such that
U, (B) = f (U, (B)) and L., (B) = f (L, (B)) forall BeP"(L).

Corollary 2.10 Let T:L — P"(L) be a set-valued Lie homomorphismand f :L — L be a Lie

homomorphism, then T, is a set-valued Lie homomorphism from L to P"(L") defined by
T, (m) = £(T(m)) such that L, (A) =L, (f(A)) and U, (A)=U, (f*(A)) forall AcP’(L)

and me L.
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Lemma2.11 Let W beanideal L and T:L — P"(L) be a set-valued Lie homomorphism, then
L, (W) and U, (W) are ideals of L.

Proof. It is clear that 0 € L; (W), therefore L, (W) = <. Now we show that L; (W) is a subspace. Let
X,yelL, (W) and AeF,so T(x)cW and T(y) cW . Therefore AT (X) =W , hence

AT(X)+T(y) <W. Since T is a Lie homomorphism, so T (AxX)+T(y) W . It yields that

T(AX+y) <W. It shows that AX+Yy € L. (W) . Now to show that L (W) is an ideal, we need to check
that [x,y]e L; (W) forall xeL; (W) and ye L, or T([X, y]) cW . In fact we show that
{[a,b]|aeT(x),beT(y)}<W. Let [u,v]e{[a,b]|acT(x),beT(y)} since ueT(x)cW,and
W is an ideal, then [u,v]eW .

A little change to above proving, we can obtain the next result.

Lemma2.12 Let T:L — P"(L) be aset-valued Lie homomorphism, then kerT ={x e L| T (x) ={0}}
is an ideal of L.

Corollary 2.13 Let T :L — P"(L) be a set-valued Lie homomorphism. If A and B be two non-empty

sets of L, then [U (A),U; (B)]c U, ([A B]) and [L, (A),L, (B)]c L, ([A B]).
The following example shows that in general, the converse of above relations do not hold:

Example 2.14 Let L be a commutative Lie algebraand A=L =B and T:L — P"(L) defined by
T(x) ={0}, then we have

(i) L[AB]=L/[L L]=L{0}={xeL|T(x) ={0}}= L. On the other hand,

L. (L) ={xeL|T(x) c L}=L, hence [L, (L), L, (L)]=[L,L]=0.

(i) U;(L)={xeL|T(X)nL=J}=L, hence [U;(L),U;(L)]=[L,L]=0. On the other hand,
U, [L, L] =U. {0} ={xeL|T(x)n{0}= T} = L.

Corollary 2.15 Let T : L — P"(L) be a set-valued Lie homomorphism. If A is a Lie subalgebra of L,
then U, (A) and L, (A) are Lie subalgebras of L.

Proof. The proof is straightforward.

Theorem 2.16 Let f :L — L be an isomorphismand T,:L — P"(L) be a set-valued Lie
homomorphism. If T,(x) ={ueL| f(u) eT,(f(x))} forall xeL,then T, is a set-valued Lie

homomorphism from L to P"(L).

Proof. First, we show that T, is a well-defined mapping. Suppose X, = X,, we have

Vi €Ti(x) & F(%) eT,(T (%)) =T,(F (%)) = ¥, €T (%,).
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Then T,(x,) = T,(X,). Now we show that T, (X, + X,) = T, (X)) + T,(X,) .
Suppose Y €T (X, +X,), then
F(y) €T,(F (%)) = To(F () + F00)) = T,(F () + T (x,)).
Hence there exist a e T, (f ((x,)) and b e T, (f ((x,)) suchthat f(y)=a+Db.Since f isonto, then
there exist d,c € L such that f(c) =a, f(d) =Db. On the other hand, we have f(c)eT,(f(x)),then
ceT,(x) andalso f(d)eT,(f(x,)). Therefore d €T ,(X,) and
f(y)=a+b=1f(c)+ f(d)= f(c+d).Since f isonetoone,itimplies y=c+d.So
yeT (%) +T.(x,). Itfollows T, (X, +X,) < T,(x) +T,(X,) .

Conversely, assume that yeT,(X)+T,(X,), then there are aeT,(x),beT,(X,) such that
y =a+Db. Hence

f(y)=f(a)+f(b)= f(a+h) eT,(f(x))+T,(f (X)) =T, (f(x +Xx,)).
= yeT (X +X,).
So T,(x%)+T,(%)<T (X +X,). Also we show that T,(Ax) = AT,(X). Suppose ueT,(4Ax). So
f(u) eT,(f(Ax)) = AT,(f(X)). Then there exists zeT,(f(x)) such that f(u)=Az. Since f is
onto, then there is me L, such that z = f(m). Therefore we have f(u)=Af(m)= f(4Am) and since
f is one to one, it implies that u =Am. So z = f(m) e T,(f (x)). It shows that m €T, (x) . Therefore
Am e AT, (X). Then u € AT,(X). Now for proving AT,(x) = T,(Ax), let u € AT,(x). By definition, there
exists zeT/(X) such that u=Az. So f(u)=Af(z). Since f(z)eT,(f(x)) and
f(u) € AT, (f (X)) =T, (f(AX)), hence f(u) eT,(f(AX))=ueT,(1X).
Now we show that T, preserves the Lie bracket, that means
T[x yl={[a,b]|a T, (x),beT(y)}.
First, we show that f[a,b]eT,(f[x,y]) forall aeT,(x) and beT,(y). Let f(a)eT,(f(x)) and
f(0) eT,(f(y)).Since f isa Lie homomorphism, therefore
fla,b]=[f(a), f ()] e{[u,vl|u eT,(f(x)),veT,(f(y)}
=T, (), (VI
Itimplies {[a,b]|a T, (x),beT,(y)}<T,[X, y]. Now we show
Tx yl={[a,b]|a T, (x),beT,(y)}.
We have T,[x,y]={uelL| fu) eT,(f[x, yD}
={uel|f)eT,(f(). f(Y)D}
={uelL]|f(u){lab]laeT,(f(x)),beT,(f(y)}
Now let f(u)=[a,b] then there exist a € T,(f (x)) and b eT,(f(y)). Since f isonto, then there
exist d,ce L suchthat f(c)=a and f(d)=b. Itisclearthat ceT,(X) and d €T,(y) and
f(u)=[f(c), f(d)]= f[c,d]. Since f isone toone, then
u=[c,d]e{lt;,t,]|t, €T, (X),t, eT,(V)}={[a,b]|aeT,(x),b e T,(y)}-
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Theorem 2.17 Let f :L — L be a Lie algebra isomorphism and let T, : L — P"(L) be a set-valued
Lie homomorphism. If forany xe L, T,(x) ={ueL| f(u) e T,(f(x))} and A is a subalgebra of L,
then

(i) (L (&)=L, (F(A);

(i) Uy (A)=U, (f(A).

Proof. (i) If ye f(LTl(A)) , then there exists X € LTl(A) such that y = f(x). Butif xe LTl(A), then

we have T,(x) < A. Now if weT,(f(x)),since f isonto, then there exists z € L such that w= f(z)
. So,

w=f(@2)eT,(f(x)=zeT,(X) A
=w=f(z)e f(A
=>T,(f(x) < (A
=Yye LTz(f (A)).
Therefore f (LTl (A) = Ly (T(A).
Conversely, if y e LTz(f(A)), then T,(y) < f(A). On the other hand, f is onto, then there is
X e L suchthat y = f(X). Hence, we have T, (f (X)) < f(A).

Let ueT,(X), then f(u) e f(A), therefore there exists a € A such that f (u) = f(a). But f isoneto

one, so U = a. Hence we have
ueA=T(X)c A=>xe LTl(A) =Vye f(LTl(A)).

so, Ly (f(A) < f(Ly (A).
@) If ye f(UTl(A)), then there exists XEUTl(A) such that y = f(x). But if XEUTl(A), then
T(X)NA=. Let aeT,(X)A. Therefore
f@eT,(fX))NTF(A=T,(f(X)Nf(A) =
= f(x) eUTz(f (A)
= yeUTz(f (A)).
It means that f(UTl(A))gUTZ(f (A)) . Conversely, if YGUTZ(f (A)), since f is onto, then there

exist xe L such that y = f(x), and T,(y) f(A) = . So, we have T,(f (X)) f(A)=J. Hence
there is zeT,(f (X)) f(A). It means that there exists a € A such that z= f(a) €T,(f(x)). Then
aeT,(X)MA=. It obtains that XGUTl(A). Then y=f(X)e f(UTl(A)). It follows that

U (F(A) < UG (A).

Definition 2.18 A congruence & on L is called complete if forany x,yeL and re F

() [xl, +Iy), =[x+ Vl,;
(i) r[x], =[rxl;
(iii) [[x, yII, ={[a,b]|a €[x],.b €[y],}-
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By using the above theorems and definition, we obtain the following:
Corollary 2.19 Let 6, be a complete congruence relation on Lie algebra L, and f :L, — L, be aLie

algebra isomorphismand & ={(x,y) e L xL, | f(x), f(y) €6,}, then 6, is a complete congruence
relationon L, that @ = Ac L,

() f (Apr, (A))= Apr, ((A);
(ii) f(Apr,, (A) = Apr,, (f(A)).

3 Generalized 1-rough Lie algebras

In this section, we define a T -rough Lie algebra with respect to a Lie subalgebra of a Lie algebra, is
called the generalized T -rough Lie algebra and study some of their appealing properties.

Definition 3.1 Let A and B be two Lie subalgebras of L and T :L — P"(L) be a set-valued Lie
homomaorphism, then

Lr(B) ={xeL|(T(x)+A)=B}; U/ (B)={xeL|(T(X)+ A)NB =}

are called the generalized lower and upper approximations of B, respectively, with respect to the Lie
subalgebra A.

In the special case, if A=0, then L?(B) =L, (B) and U/(B) =U,(B). Furthermore, if 0 Ac B,
then L(B) < L, (B) and U/(B) cU, (B).

Definition 3.2 Let L be a Lie algebra. If A be a Lie subalgebraof L and &# S — F, then SA
denotes the setof {> " s3,|s, €S,a € AneN}.

Theorem 3.3 Let T :L — P"(L) be a set-valued Lie homomorphism, the following holds:
(i) If A and B are two Lie subalgebras of L such that Ac B, then L7 (B) is Lie subalgebra of L;
(i) If A isanideal of L and B is a Lie subalgebra of L , then U*(B) is Lie subalgebra of L.

Proof. (i) First, we show that L2(B) is a subspace. It is clear that 0 e L2 (B). Now suppose that X,y

be two elements of L*(B) and AeF. If xeL?(B), since A is a Lie subalgebra, hence 0 A then
T(X)<B, so AT(X)<B. On the other hand, Ac B. Therefore AT(X)+Ac B, and so
T(AX)+AcB. Also T(y)+AcB. Hence T(UAX)+T(y)+AcB. It deduces that

T(Ax+y)+AcB. Therefore Ax+yel?(B). Now we show that if X,yel?(B), then
[x,yle L2(B). Since T[x,y]={[a,b]|acT(x),beT(y)}, from aeT(x) and beT(y), we have
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ae B and b e B, therefore [a,b] € B .. It means that {[a,b]|aT(x),beT(y)}=B,so T[x,y]cB
. On the other hand, A< B which implies T[x, y]+ A< B. It follows [, y] € L2 (B) .

(i) First, we show that U.*(B) is a subspace. It is clear that 0 € U.*(B). Now suppose that X, y be two
elements of UA(B) and AeF. If xeUX(B)= (T(X)+A)NB= and since y<cU/(B), then

(T(y)+A) "B =, so there exist a,be L suchthat ae(T(X)+A)nB and be(T(y)+A)NB. It
implies that Aa eT (AX)+ AA < T(Ax)+ A. On the other hand, la€ AB — B, so AaeB. It deduces
that Aae(T(AX)+A)NB, since be(T(y)+A)NB, therefore la+be(T(Ax+y)+A)NB. It

shows that (T (AX+Y)+A)"B=J. It follows Ax+Yy eU(B).

Now we show that if x,yeUZ(B), then [x,y]eU/(B). Since xeU/(B), then
T(X)+A)NB=J, so there exists ue(T(X)+A)NB, and since yeU?(B), then
(T(y)+A)nB = so there exists ve (T (X)+A)NB. It implies that [u,v] € B. Let u =X, +a, such
that x, e T(X),a, € A and v =X, +a, such that X, € T(y),a, € A, we have
[uvI=[x +a, X, +a,]
=[x, X% 1+ D4, a1+ [y, X, ]+ &y, 8,] € B.
Since A is ideal of Lie algebra L, so [x,,a,],[a,,%,], [a,,a,] € A. Hence we have
{I, %]+ Al X% eT(X), %, €T(Y)}cB=T[x,y]+AcB
=T[X, y][+AnB=J
=[x, yleU2(B).
Notice: In the above theorem, the condition A< B is necessary, because 0 ¢ Lﬁ(B) )
The following example shows that in condition (ii) to A's being ideal is a necessity.
Example 3.4 Let L, =L, = gl(n, F) be the set of all nxn matrices over F and
T:gl(n,F) > P"(gl(n,F)) and for any x € gl(n, F) we define T(x) ={x}. Now if A=b(n,F) is
the upper triangular matrices and B ={0}, then A is not an ideal of gl(n, F) and U/(B) = A. for
UAB)={xeL|(T(X)+A) B =T}
={xeL|{x}+b(n,F)n{0}=T}=b(n,F)=A

Now we have T is a Lie algebra homomorphism

(i) T(A+B)={A+B}={A}+{B}=T(A)+T(B);
(ii) T(AA) ={AA}= HA}= AT (A);
(iii) T[A B]={[A BI}={[a,b]|acT(A),beT(B)}.

Lemma 3.5 Let L be a Lie algebraand A, B be non-empty Lie subalgebras of L such that Ac B and
let S be asubspaceof L. If T:L— P (L) be a set-valued Lie homomorphism, then
(i) L7 (S)c L7 (S);
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(i) UF(S)c U7 (S).
Proof. The proof is straightforward.

The following corollary follows by Lemma 3.5.
Corollary 3.6 Let A B be Lie subalgebras of L and S be a non-empty subset of L. If

T:L— P"(L) be aset-valued Lie homomorphism, then
(i) LF(S)NLI(S)c L™ (S);
(i) UL™8(S) cUL(S) UL (S).

Theorem 3.7 Suppose S be a non-empty subset of F and B be Lie subalgebraof L and A bea
subspace of L. If T:L — P"(L) be a set-valued Lie homomorphism, then

(i) If Ac B, then SL”(B) < L*(SB);
(i) SUA(B)cU/(SB).

Proof. (i) Let X be any element of SL?(B), then x =X[_sb, for some s, €S,b, € L'(B) and neN.
Now, we have T(b)+AcB, and so sT(b)+AcsBcSB, forall i=1,2,...,n. Then we have
T(sb)+AcSB which implies sb eL?(SB). Therefore x=2X" sh eL?(SB) and so
SL (B) < L7 (SB).

(i) Let x be any element of SU/(B), then x =X s, for some s, €S,b, eU/(B) and neN.
Now, we have (T(b)+A)NB=Q for all i =1,2,...,n. So there exists &, (T (b)+ A)B. Hence
ssaeB and sa esT()+A=T(sb)+A So Z.saeSB and X sa eT(ELsh)+A
Therefore X s.a, € (T(X)+A) N SB. Thus (T(X)+ A)SB = & which implies x €U/ (SB), and so
SUS(B) cUZ(SB).

Theorem 3.8 Suppose that A,B and C be Lie subalgebras of L. If T :L — P (L) be a set-valued Lie
homomorphism, then

(i) Lt (C)+ L7 (C)=Lr(C);
(i) U(C)+U7 (C)=U{(C).

Proof. (i) Since Ac A+B and B — A+ B, then by Lemma 3.5,

LA*8(C) = LAC) < LAC) + LE (C).
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Now, let x e L2(C)+L2(C), then x=y+2z forsome y e L2(C) and z € L®(C). Hence
T(y)+AcC and T(z)+B < C, then T(y+2)+A+B < C which implies x € L£*®(C). Therefore
we obtain L2(C)+ L% (C) = LA*®(C).

(ii) Since Ac A+B and B< A+B, by Lemma 3.5, U*(C) cU/*®(C) and UZ(C) cU/*®(C)
and so U/ (C)+UF(C) cU/B(C). Also UAB(C) cUL(C) cUL(C)+UE(C).

And the equality in relation (ii) is true when A+B is an ideal. Now we have
UAB(C)cUA(C)+UZ(C). Let xeUM®(C), then (T(X)+A+B)NC =D, so there exists
ueT(x)+ A+BnNC, therefore we have u=x +a+b such that x €T(x),aec AbeB, so

u—-b=x+aeT(x)+A. Since A+B is an ideal, then U*®(C) is a Lie subalgebra, so A+BcC.
On the other hand, Ac A+BcC and Bc A+BcC.Hence AcC and BcC. So
(T(X)+A)NC=T=xeUAC)cUA(C)+U7(C).

Proposition 3.9 Let L be a Lie algebraand A is a Lie subalgebra of L and B is non-empty subset of
L, then

(i) LAB%) = UAB));
(i) UAB®) = (L(B))"

Proof. (i) We have
xell(B)=oT(X)+AcB < (T(X)+A)NB=g
< xgUA(B) < xe (UL (B)).

(ii) By substitution B for B in (i) we get UA(B®) = (L2(B))°.

4 Conclusion

In this work, the lower T -rough and upper T -rough Lie subalgebras are formulated in the context of Lie
algebra theory. We introduced the notion of the set-valued Lie homomorphism and generalized T -rough
Lie subalgebra in a Lie algebra which is an extended notion of Lie homomorphism and Lie subalgebra of
a Lie algebra. We hope that this extended research may provide a powerful tool in approximate reasoning.
We strongly believe that T -rough Lie algebra offered here will turn out to be more useful in the theory
and applications of the rough sets.
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