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Abstract 
The main purpose of this paper is to introduce and discuss the concept of 

T-roughness in Lie subalgebra and generalized T-rough Lie subalgebras. We 

define a set-valued homomorphism on a Lie algebra and study some of their 

                    properties and useful applications. 
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1. Introduction 

   The notion of rough sets has been introduced by Z. Pawlak [11, 12], Z. Pawlak and A. Skowron [13] 

and T. Iwinski [8]. It soon invoked a natural question concerning a possible connection between rough 

sets and algebraic systems. The algebraic approach to rough sets have been studied by Z. Bonikowaski 

[2]. R. Biswas and S. Nanda [1] introduced the notion of rough subgroups. N. Kuroki [10] introduced the 

notion of rough ideals in a semigroup. B. Davvaz [4] introduced the notion of rough subring with respect 

to an ideal of a ring. O. Kazanci, B. Davvaz [9] discussed the structure on the rough prime (primary) 

ideals. In [15], W. Zhang, W. Wu considered some other results. B. Davvaz [3] introduced T- rough set 

and T- rough homomorphism in a group. In [14], S. Yamak, O. Kazanci, B. Davvaz introduced the 

generalized lower and upper approximation in a ring. S. B. Hosseini et al. [6, 7] introduced T-rough ideal 

in a semigroup and in a commutative ring. The rough set theory is an extension of set theory, in which a 

subset of a universe is described by a pair of ordinary sets called the lower and the upper approximations. 

The lower approximation of a given set is the union of all the equivalence classes which are subsets of the 

set, and the upper approximation is the union of all the equivalence classes which have a non-empty  
1
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intersection with the set. The rough sets are a suitable mathematical model of vague concepts, i.e., 

concepts without sharp boundaries. In this paper, a set-valued homomorphism on a Lie algebra and the 

concept T -rough Lie subalgebra are introduced and some interesting properties are proved.  Suppose that 

U  is a non-empty set. A partition or classification of U  is a family   of non-empty subsets of U  such 

that each element of U  is contained in exactly one element of  . It is vitally important to recall that an 

equivalence relation   on a set U  is a reflexive, symmetric and transitive binary relation on U . Each 

partition induces an equivalence relation on U . If   is an equivalence relation on U , then for every 

][, xUx  denotes the equivalence class of   determined by x . For any UX  , we write 
cX  to 

denote the complement of X  in U  that is the set XU \ . A pair ),( U  where U  and   is an 

equivalence relation on U  is called an approximation space. Let )(UP  be the set of all subsets of U  and 

for an approximation space ),( U  by a rough approximation in ),( U  we mean a mapping 

)()()(: UPUPUPApr   defined by for every ),(UPX   ))(),((=)( XAprXAprXApr  

 where  

 }.][|{=)(  ;  }][|{=)(  XxUxXAprXxUxXApr   

)(XApr  is called the lower rough approximation of X  in ( ,U ) whereas )(XApr  is called the upper 

rough approximation of X  in ),( U . 

Given an approximation space ),( U  a pair ),( BA  in )()( UPUP   is called a rough set in 

),( U  if ),( BA = ))(),(( XAprXApr  for some ).(UPX   

2  Set-valued Lie homomorphism and T -rough Lie subalgebra 

   In this section, we define the concept of a set-valued Lie homomorphism and give some important 

examples of a set-valued mapping. We also investigate some basic properties of the generalized lower and 

upper approximation operators in a Lie algebra. We generalize the rough Lie subalgebra called T -rough 

Lie subalgebra. We apply the notion of T -rough sets in a Lie algebra and extend some theorems which 

have been proved in [3, 4, 6, 7]. 

Throughout in this section and the next, the set of all non-empty subsets of Y  is denoted by ).(* YP   

Definition 2.1 [3]  Let X  and Y  be two non-empty sets and YB . Let )(: * YPXT   be a set-

valued mapping. The lower inverse and upper inverse of B  under T  are defined by  

 })(|{=)(  ;  })(|{=)(  BxTXxBUBxTXxBL TT , 

respectively.  

Definition 2.2  [3]  Let X  and Y  be two non-empty sets and )(* YPB . Let )(: * YPXT   be a set-

valued mapping. ))(),(( BUBL TT  is called a T - rough set with respect to .B   
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Proposition 2.3  [3,6,7] Let X  and Y  be two non-empty sets and ., YBA   Let )(: * YPXT   be a 

set-valued mapping, then the following holds:   

 (i)  );()(=)( BUAUBAU TTT    

 (ii) );()(=)( BLALBAL TTT    

(iii) );()(  )()(  BUAUandBLALimpliesBA TTTT    

(iv) ).()()(  )()()( BUAUBAUandBALBLAL TTTTTT     

Example 2.4  )(i  Let ),( U  be an approximation space and )(: * UPUT   be a set-valued mapping 

where ,][=)( xxT  then for any UB , )(=)( BAprBLT  and ).(=)( BAprBUT  So, rough sets are 

T -rough sets. In fact, T -rough sets are a generalization of rough sets.  

 )(ii  Let Z  be integer numbers set and )(: * ZZ PT   be a set-valued mapping where ZnnT =)(  for 

all .Zn  If Z2=A , then Z2=)(ALT  and . = )( ZAUT   

Definition 2.5  Let F  be a field. A Lie algebra over F  is an F -vector space L , together with a 

bilinear map, the Lie bracket 

 ],,[),(, yxyxLLL   

satisfying the following properties:   

 • 1)(;0=],[ LLxallforxx    

 • 2)(.,,0=]],[,[]],[,[]],[,[ LLzyxallforxzyyxzzyx    

The Lie bracket ],[ yx  is often referred to as the commutator of x  and y . 

Condition (L2) is known as the Jacobi identity.  

Definition 2.6  (i)  If L  is a Lie algebra. We defined a Lie subalgebra of L  to be a vector subspace 

LK   such that  

 KyxKyx  ,allfor],[ .  

 (ii) If A  and B  be two Lie subalgebras of L  then we define ],[ BA  as follows: 

},|],{[=],[ BbAabaspanBA  }.,,,|],[{=
1=

NnBbAaFba iiiiii

n

i

   

 (iii) A subspace I  of a Lie algebra L  is called an ideal if  

 .,allfor ],[ IyLxIyx   
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(iv) A Lie algebra L  is called commutative when 0=],[ yx  for all Lyx , . 

 

(v) If 1L  and 2L  are Lie algebras over F , then we say that a map 21: LL   is a Lie homomorphism if 

  is a linear map and  

 .,forall)](),([=]),([ 1Lyxyxyx   

Definition 2.7  Let L  and 
'L  be two Lie algebras over field F  and )(: * 'LPLT   be a set-valued 

mapping. T  is called a set-valued Lie homomorphism if   

• );()(=)( yTxTyxT    

• );(=)( xTxT    

• ].,[=)}(),(|],{[ yxTyTbxTaba    

 for all F  and ., Lyx    

It is clear that {0}=(0)T  and )(=)( xTxT   for all .Lx   

Example 2.8 )(i  Let L  is a Lie algebra and )(: *

I

L
PLT   be a set-valued mapping and 

}{=)( IxxT   for all Lx  which I  is an ideal of L . Then T  is a set-valued Lie homomorphism. 

Here, 
I

L
 is a Lie algebra over F  and its the Lie bracket defined by  

 .,allfor],[=],[ LyxIyxIyIx   

I

L
 is called the quotient algebra of L  by I . 

)(ii  Let 
'LLf :  be a Lie algebra homomorphism and )(: * 'LPLT   defined by )}({=)( xfxT , 

then T  is a set-valued Lie homomorphism.  

)(iii  Let )(: * 'LPLT   be a set-valued mapping such that {0}=)(xT , then T  is a set-valued Lie 

homomorphism.  

 The following corollaries are clear.  

Corollary 2.9  Let )(: * 'LPLT   be a set-valued Lie homomorphism and LLf '' :  be a Lie 

homomorphism, then Tof  is a set-valued Lie homomorphism from 
''L  to )(* 'LP  such that 

))((=)( 1 BUfBU TTof


 and ))((=)( 1 BLfBL TTof


 for all ).(* 'LPB   

Corollary 2.10  Let )(: * 'LPLT   be a set-valued Lie homomorphism and 
''' LLf :  be a Lie 

homomorphism, then fT  is a set-valued Lie homomorphism from L  to )(* ''LP  defined by 

))((=)( mTfmTf  such that ))((=)( 1 AfLAL T
f

T


 and ))((=)( 1 AfUAU T

f
T


 for all )(* ''LPA  

and .Lm   
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Lemma 2.11  Let W  be an ideal 
'L  and )(: * 'LPLT   be a set-valued Lie homomorphism, then 

)(WLT  and )(WUT  are ideals of L .  

 Proof. It is clear that ),(0 WLT  therefore )(WLT . Now we show that )(WLT  is a subspace. Let 

)(, WLyx T  and F , so WxT )(  and WyT )( . Therefore WxT )( , hence 

.)()( WyTxT   Since T  is a Lie homomorphism, so WyTxT  )()( . It yields that 

.)( WyxT   It shows that )(WLyx T . Now to show that )(WLT  is an ideal, we need to check 

that )(],[ WLyx T  for all )(WLx T  and Ly , or WyxT ]),([ . In fact we show that 

WyTbxTaba  )}(),(|],{[ . Let )}(),(|],{[],[ yTbxTabavu   since WxTu  )( , and 

W  is an ideal, then Wvu ],[ . 

A little change to above proving, we can obtain the next result.  

Lemma 2.12  Let )(: * 'LPLT   be a set-valued Lie homomorphism, then {0}}=)(|{= xTLxkerT   

is an ideal of L .  

Corollary 2.13  Let )(: * 'LPLT   be a set-valued Lie homomorphism. If A  and B  be two non-empty 

sets of 
'L , then ]),([)](),([ BAUBUAU TTT   and ]),([)](),([ BALBLAL TTT  .  

 The following example shows that in general, the converse of above relations do not hold:  

Example 2.14  Let L  be a commutative Lie algebra and BLA ==  and )(: * LPLT   defined by 

{0}=)(xT , then we have 

)(i  LxTLxLLLLBAL TTT ={0}})(|{={0}=],[=],[  . On the other hand, 

LLxTLxLLT =})(|{=)(  , hence 0.=],[=)](),([ LLLLLL TT   

 

 )(ii  LLxTLxLUT =})(|{=)(  , hence 0=],[=)](),([ LLLULU TT . On the other hand, 

.=}{0})(|{={0}=],[ LxTLxULLU TT   

  

Corollary 2.15 Let )(: * 'LPLT   be a set-valued Lie homomorphism. If A  is a Lie subalgebra of 
'L , 

then )(AUT  and )(ALT  are Lie subalgebras of L .  

 Proof. The proof is straightforward.  

Theorem 2.16  Let 
'LLf :  be an isomorphism and )(: *

2

'' LPLT   be a set-valued Lie 

homomorphism. If ))}(()(|{=)( 21 xfTufLuxT   for all Lx , then 1T  is a set-valued Lie 

homomorphism from L  to )(* LP .  

 Proof. First, we show that 1T  is a well-defined mapping. Suppose 21 = xx , we have  

  ))(()()( 121111 xfTyfxTy  ).())((= 21122 xTyxfT   
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 Then )(=)( 2111 xTxT . Now we show that )()(=)( 2111211 xTxTxxT  . 

Suppose )( 211 xxTy  , then  

 ))(())((=))()((=))(()( 2212212212 xfTxfTxfxfTxxfTyf  .  

 Hence there exist ))((( 12 xfTa  and ))((( 22 xfTb  such that bayf =)( . Since f  is onto, then 

there exist Lcd ,  such that bdfacf =)(,=)( . On the other hand, we have ))(()( 12 xfTcf  , then 

)( 11 xTc  and also ))(()( 22 xfTdf  . Therefore )( 21 xTd  and 

)(=)()(==)( dcfdfcfbayf  . Since f  is one to one, it implies dcy = . So 

)()( 2111 xTxTy  . It follows )()()( 2111211 xTxTxxT  . 

Conversely, assume that )()( 2111 xTxTy  , then there are )(),( 2111 xTbxTa   such that 

bay = . Hence  

 )).((=))(())(()(=)()(=)( 2122212 xxfTxfTxfTbafbfafyf   

 ).( 211 xxTy   

 So )()()( 2112111 xxTxTxT  . Also we show that )(=)( 11 xTxT  . Suppose )(1 xTu  . So 

))((=))(()( 22 xfTxfTuf  . Then there exists ))((2 xfTz  such that zuf =)( . Since f  is 

onto, then there is 1Lm  such that )(= mfz . Therefore we have )(=)(=)( mfmfuf   and since 

f  is one to one, it implies that mu = . So ))(()(= 2 xfTmfz  . It shows that )(1 xTm . Therefore 

)(1 xTm   . Then )(1 xTu  . Now for proving )()( 11 xTxT   , let )(1 xTu  . By definition, there 

exists )(1 xTz  such that zu = . So )(=)( zfuf  . Since ))(()( 2 xfTzf   and 

))((=))(()( 22 xfTxfTuf  , hence )())(()( 12 xTuxfTuf   .  

Now we show that 1T  preserves the Lie bracket, that means 

)}.(),(|],{[=],[ 111 yTbxTabayxT   

 First, we show that ]),[(],[ 2 yxfTbaf   for all )(1 xTa  and ).(1 yTb  Let ))(()( 2 xfTaf   and 

))(()( 2 yfTbf  . Since f  is a Lie homomorphism, therefore  

 ))}(()),((|],{[)](),([=],[ 22 yfTvxfTuvubfafbaf   

              )].(),([= 2 yfxfT  

It implies ],[)}(),(|],{[ 111 yxTyTbxTaba  . Now we show 

)}(),(|],{[],[ 111 yTbxTabayxT  . 

 We have ])},[()(|{=],[ 21 yxfTufLuyxT   

 )])}(),(([)(|{= 2 yfxfTufLu   

 ))}.(()),((|],{[|)(|{= 22 yfTbxfTabaufLu   

 Now let ],[=)( bauf  then there exist ))((2 xfTa  and ))((2 yfTb . Since f  is onto, then there 

exist Lcd ,  such that acf =)(  and bdf =)( . It is clear that )(1 xTc  and )(1 yTd  and 

],[=)](),([=)( dcfdfcfuf . Since f  is one to one, then 

)}(),(|],{[)}(),(|],{[],[= 11121121 yTbxTabayTtxTtttdcu  . 
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Theorem 2.17  Let 
'LLf :  be a Lie algebra isomorphism and let )(: *

2

'' LPLT   be a set-valued 

Lie homomorphism. If for any Lx , ))}(()(|{=)( 21 xfTufLuxT   and A  is a subalgebra of 
'L , 

then 

)(i  ))((=))((
21

AfLALf TT ; 

)(ii  ))((=))((
21

AfUAUf TT .  

Proof. )(i  If ))((
1

ALfy T , then there exists )(
1

ALx T  such that )(= xfy . But if )(
1

ALx T , then 

we have AxT )(1 . Now if ))((2 xfTw , since f  is onto, then there exists Lz  such that )(= zfw

. So,  

 AxTzxfTzfw  )())(()(= 12  

 )()(= Afzfw   

 )())((2 AfxfT   

 )).((
2

AfLy T  

 Therefore ))(())((
2

1

AfLALf T
T

 . 

Conversely, if ))((
2

AfLy T , then )()(2 AfyT  . On the other hand, f  is onto, then there is 

Lx  such that )(= xfy . Hence, we have )())((2 AfxfT  . 

Let )(1 xTu , then )()( Afuf  , therefore there exists Aa  such that ).(=)( afuf  But f  is one to 

one, so au = . Hence we have  

 )).(()()(
11

1 ALfyALxAxTAu TT   

So, ))(())((
12

ALfAfL TT  . 

)(ii  If ))((
1

AUfy T , then there exists )(
1

AUx T  such that )(= xfy . But if )(
1

AUx T , then 

 AxT )(1 . Let AxTa  )(1 . Therefore  

  )())(()())(()( 22 AfxfTAfxfTaf  

 ))(()(
2

AfUxf T  

 )).((
2

AfUy T  

 It means that ))(())((
21

AfUAUf TT  . Conversely, if ))((
2

AfUy T , since f  is onto, then there 

exist Lx  such that )(= xfy , and  )()(2 AfyT . So, we have  )())((2 AfxfT . Hence 

there is )())((2 AfxfTz  . It means that there exists Aa  such that ))(()(= 2 xfTafz  . Then 

 AxTa )(1 . It obtains that )(
1

AUx T . Then ))(()(=
1

AUfxfy T . It follows that 

))((())((
12

AUfAfU TT  .  

Definition 2.18  A congruence   on L  is called complete if for any Lyx ,  and Fr    

 (i)  ][=][][ yxyx  ;  

(ii)  ][=][ rxxr ;  

 (iii) }][,][|],{[=]],[[  ybxabayx  .  
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By using the above theorems and definition, we obtain the following:  

Corollary 2.19  Let 2  be a complete congruence relation on Lie algebra 2L  and 21: LLf   be a Lie 

algebra isomorphism and })(),(|),{(= 2111   yfxfLLyx , then 1  is a complete congruence 

relation on 1L  that 1LA   

 (i) ))((=))((
21

AfAprAAprf


;  

 (ii) ))((=))((
21

AfAprAAprf  .  

  

3  Generalized T -rough Lie algebras 

In this section, we define a T -rough Lie algebra with respect to a Lie subalgebra of a Lie algebra, is 

called the generalized T -rough Lie algebra and study some of their appealing properties.  

Definition 3.1 Let A  and B  be two Lie subalgebras of 
'L  and )(: * 'LPLT   be a set-valued Lie 

homomorphism, then  

 }))((|{=)(  ;  }))((|{=)(  BAxTLxBUBAxTLxBL A

T

A

T  

are called the generalized lower and upper approximations of ,B  respectively, with respect to the Lie 

subalgebra .A   

In the special case, if 0=A , then )(=)( BLBL T

A

T  and )(=)( BUBU T

A

T . Furthermore, if BA0 , 

then )()( BLBL T

A

T   and )()( BUBU T

A

T  .  

Definition 3.2  Let L  be a Lie algebra. If A  be a Lie subalgebra of L  and FS  , then SA  

denotes the set of }.,,|{
1=

N nAaSsas iiii

n

i
  

Theorem 3.3  Let )(: * 'LPLT   be a set-valued Lie homomorphism, the following holds:  

)(i    If A  and B  are two Lie subalgebras of 
'L  such that BA , then )(BLA

T  is Lie subalgebra of ;L   

)(ii  If A  is an ideal of 
'L  and B  is a Lie subalgebra of 

'L , then )(BU A

T  is Lie subalgebra of .L   

 

 Proof. )(i  First, we show that )(BLA

T  is a subspace. It is clear that )(0 BLA

T . Now suppose that yx,  

be two elements of )(BLA

T  and .F  If )(BLx A

T , since A  is a Lie subalgebra, hence A0  then 

BxT )( , so .)( BxT   On the other hand, .BA  Therefore BAxT )( , and so 

.)( BAxT   Also BAyT )( . Hence .)()( BAyTxT   It deduces that 

BAyxT  )( . Therefore )(BLyx A

T . Now we show that if )(, BLyx A

T , then 

)(],[ BLyx A

T . Since )}(),(|],{[=],[ yTbxTabayxT  , from )(xTa  and )(yTb , we have 
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Ba  and Bb , therefore Bba ],[ . It means that ByTbxTaba  )}(),(|],{[ , so ByxT ],[

. On the other hand, BA  which implies BAyxT ],[ . It follows )(],[ BLyx A

T .  

)(ii  First, we show that )(BU A

T  is a subspace. It is clear that ).(0 BU A

T  Now suppose that yx,  be two 

elements of )(BU A

T  and F . If  BAxTBUx A

T ))(()(  and since ),(BUy A

T  then 

 BAyT ))(( , so there exist 
'Lba ,  such that BAxTa  ))((  and BAyTb  ))(( . It 

implies that AxTAxTa  )()(  . On the other hand, BBa  , so Ba . It deduces 

that BAxTa  ))((  , since ,))(( BAyTb   therefore BAyxTba  ))((  . It 

shows that  BAyxT ))((  . It follows )(BUyx A

T . 

Now we show that if )(, BUyx A

T , then )(],[ BUyx A

T . Since )(BUx A

T , then 

 BAxT ))(( , so there exists BAxTu  ))(( , and since )(BUy A

T , then 

 BAyT ))((  so there exists BAxTv  ))(( . It implies that Bvu ],[ . Let 11= axu   such 

that AaxTx  11 ),(  and 22= axv   such that AayTx  22 ),( , we have  

 ],[=],[ 2211 axaxvu   

           .],[],[],[],[= 21212121 Baaxaaxxx   

 Since A  is ideal of Lie algebra 
'L , so Aaaxaax ],[],,[],,[ 212121 . Hence we have  

 BAyxTByTxxTxAxx  ],[)}(),(|],{[ 2121  

                                                                      BAyxT ],[  

                                                                     ).(],[ BUyx A

T  

 Notice: In the above theorem, the condition BA  is necessary, because )(0 BLA

T . 

The following example shows that in condition )(ii  to 
,A s being ideal is a necessity.  

Example 3.4 Let ),(== 21 FnglLL  be the set of all nn  matrices over F  and 

)),((),(: * FnglPFnglT   and for any ),( Fnglx  we define }{=)( xxT . Now if ),(= FnbA  is 

the upper triangular matrices and {0}=B , then A  is not an ideal of ),( Fngl  and ABU A

T =)( . for  

 }))((|{=)(  BAxTLxBU A

T  

              .=),(=}{0}),(}{|{= AFnbFnbxLx   

 Now we have T  is a Lie algebra homomorphism   

(i)  )()(=}{}{=}{=)( BTATBABABAT  ;  

(ii) )(=}{=}{=)( ATAAAT  ;  

(iii) )}(),(|],{[=]},{[=],[ BTbATabaBABAT  .  

  

Lemma 3.5  Let L  be a Lie algebra and BA,  be non-empty Lie subalgebras of 
'L  such that BA  and 

let S  be a subspace of .'L  If )(: * 'LPLT   be a set-valued Lie homomorphism, then  

)(i  );()( SLSL A

T

B

T   
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)(ii  ).()( SUSU B

T

A

T   

  

Proof. The proof is straightforward. 

 

The following corollary follows by Lemma 3.5.  

Corollary 3.6  Let BA,  be Lie subalgebras of 
'L  and S  be a non-empty subset of .'L  If 

)(: * 'LPLT   be a set-valued Lie homomorphism, then  

)(i  );()()( SLSLSL BA

T

B

T

A

T

  

)(ii  ).()()( SUSUSU B

T

A

T

BA

T 
  

Theorem 3.7  Suppose S  be a non-empty subset of F  and B  be Lie subalgebra of 
'L  and A  be a 

subspace of .'L  If )(: * 'LPLT   be a set-valued Lie homomorphism, then 

)(i  If BA , then );()( SBLBSL A

T

A

T   

)(ii  ).()( SBUBSU A

T

A

T    

 

 Proof. )(i  Let x  be any element of ),(BSLA

T  then ii

n

i bsx 1==   for some )(, BLbSs A

Tii   and .Nn  

Now, we have BAbT i )( , and so ,)( SBBsAbTs iii   for all .1,2,...,= ni  Then we have 

SBAbsT ii )(  which implies ).(SBLbs A

Tii   Therefore )(= 1= SBLbsx A

Tii

n

i   and so 

).()( SBLBSL A

T

A

T    

)(ii  Let x  be any element of ),(BSU A

T  then ii

n

i bsx 1==   for some )(, BUbSs A

Tii   and .Nn  

Now, we have  BAbT i ))((  for all .1,2,...,= ni  So there exists .))(( BAbTa ii   Hence 

Bas ii   and .)(=)( AbsTAbTsas iiiiii   So SBas ii

n

i  1=  and .)( 1=1= AbsTas ii

n

iii

n

i   

Therefore .))((1= SBAxTas ii

n

i   Thus  SBAxT ))((  which implies )(SBUx A

T , and so 

).()( SBUBSU A

T

A

T    

Theorem 3.8  Suppose that BA,  and C  be Lie subalgebras of .'L  If )(: * 'LPLT   be a set-valued Lie 

homomorphism, then  

)(i  );(=)()( CLCLCL BA

T

B

T

A

T

  

)(ii  ).(=)()( CUCUCU BA

T

B

T

A

T

  

  

Proof. )(i  Since BAA   and BAB  , then by Lemma 3.5, 

).()()()( CLCLCLCL B

T

A

T

A

T

BA

T 
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 Now, let )()( CLCLx B

T

A

T  , then zyx =  for some )(CLy A

T  and ).(CLz B

T  Hence 

CAyT )(  and CBzT )( , then CBAzyT  )(  which implies ).(CLx BA

T

  Therefore 

we obtain ).(=)()( CLCLCL BA

T

B

T

A

T

   

)(ii  Since BAA   and BAB  , by Lemma 3.5,  )()( CUCU BA

T

A

T

  and )()( CUCU BA

T

B

T

  

and so ).()()( CUCUCU BA

T

B

T

A

T

  Also )()()()( CUCUCUCU B

T

A

T

A

T

BA

T 
. 

And the equality in relation )(ii  is true when BA  is an ideal. Now we have 

)()()( CUCUCU B

T

A

T

BA

T 
. Let )(CUx BA

T

 , then  CBAxT ))(( , so there exists 

CBAxTu  )( , therefore we have baxu 1=  such that BbAaxTx  ,),(1 , so 

AxTaxbu  )(= 1 . Since BA  is an ideal, then )(CU BA

T


 is a Lie subalgebra, so CBA  . 

On the other hand, CBAA   and CBAB  . Hence CA  and CB . So  

 ).()()())(( CUCUCUxCAxT B

T

A

T

A

T   

Proposition 3.9  Let L  be a Lie algebra and A  is a Lie subalgebra of 
'L  and B  is non-empty subset of 

,'L  then 

)(i  ;))((=)( cA

T

cA

T BUBL  

)(ii  .))((=)( cA

T

cA

T BLBU  

  

Proof. )(i  We have  

  =))(()()( BAxTBAxTBLx ccA

T  

 .))(()( cA

T

A

T BUxBUx   

 )(ii  By substitution 
cB  for B  in )(i  we get .))((=)( cA

T

cA

T BLBU  

 

4  Conclusion 

 In this work, the lower T -rough and upper T -rough Lie subalgebras are formulated in the context of Lie 

algebra theory. We introduced the notion of the set-valued Lie homomorphism and generalized T -rough 

Lie subalgebra in a Lie algebra which is an extended notion of Lie homomorphism and Lie subalgebra of 

a Lie algebra. We hope that this extended research may provide a powerful tool in approximate reasoning. 

We strongly believe that T -rough Lie algebra offered here will turn out to be more useful in the theory 

and applications of the rough sets. 
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