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Abstract
With the aid of computer programming, we obtain a result on stochastic comparison of the lifetime of two parallel systems

with two exponential components in terms of likelihood ratio ordering. This result reveals a more comprehensive picture on
stochastic ordering between parallel systems and thus provides a relatively satisfied answer to an open problem raised in [N.
Balakrishnan, P. Zhao, Probab. Engrg. Inform. Sci., 27 (2013), 403–443].
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1. Introduction

To enhance the reliability of a device, parallel systems are commonly used. Therefore, to compare the
lifetimes of parallel systems is fundamental in reliability theory, as well as in many other fields, such as,
statistical inference, operations research, and applied probability.

The lifetimes of parallel systems can be described by the largest statistics. The research on stochastic
comparison for the largest statistics has a long history. As so far, many interesting results have been
established. See, for instance, [2, 4–6, 10, 11]. One also may refer to the book [8, 9], and a nice survey
article of [1].

However, due to technical issue, the study in this field is far from comprehensive, even for the simplest
case where the parallel systems consist of two exponential components. The comparison of two parallel
systems with exponential components is basic and critical to the stochastic comparison of general k-out-
of-n systems. Also, it is related with some other problems, such as, redundancy allocation problems, see,
[7].

For i = 1, 2, let Xi be an exponential random variable with hazard rate λi, and Yi be an exponential
random variable with hazard rate µi. Let X2:2 = max{X1,X2} and Y2:2 = max{Y1, Y2}. Denote X2:2 as
T(λ1, λ2) and Y2:2 as T(µ1,µ2). In the sequel, we assume λ1 6 λ2 and µ1 6 µ2.
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To compare T(λ1, λ2) and T(µ1,µ2), Dykstra et al. (1997) showed that if (λ1, λ2)
m
� (µ1,µ2), T(λ1, λ2) >lr

T(µ1,µ2), here
m
� stands for majorization order. [11] revealed that when λ1 6 µ1 6 µ2 6 λ2 and λ1 +

λ2 6 µ1 + µ2, T(λ1, λ2) >lr T(µ1,µ2). [10] showed, when λ1 6 µ1 6 λ2 6 µ2 and λ1 + µ2 6 µ1 + λ2,
T(λ1, λ2) >lr T(µ1,µ2).

Let u = (µ1,µ2) − (λ1, λ2). The above results can be combined as, when u = (1,−1) + b(0, 1), with
0 6 b 6 2,

T(λ1, λ2) >lr T(µ1,µ2).

By extensive empirical check, [1] observed that to get the above results, the sufficient conditions are
somewhat stringent. They posted an open problem on whether there are sharper sufficient conditions for
the result (1).

With the aid of computer programming, we prove that b can be extended to 0 6 b 6 6. Such a result
provides a relatively satisfied answer to an open problem posed in [1].

2. Definitions and notations

Let X be a nonnegative continuous random variable with distribution function FX(t), survival function
SX(t) = 1 − FX(t), and density function fX(t). The hazard function and the reversed hazard function of
X are defined as λX = fX/SX and rX = fX/FX, respectively. For two nonnegative continuous random
variables X and Y, we say X is larger than Y in the usual stochastic order (denoted by X >st Y), if
SX(t) > SY(t); X is larger than Y in hazard rate order (denoted by X >hr Y), if λX(t) 6 λY(t); X is larger
than Y in reversed hazard rate order (denoted by X >rh Y), if rX(t) > rY(t); and X is larger than Y in
likelihood ratio order (denoted by X >lr Y), if the ratio fX(t)/fY(t) is increasing in t. It is well-known that
the likelihood ratio order implies several other orders, such as, the usual stochastic order, the hazard rate
order, and the reversed hazard rate order.

Given two vectors a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) with increasing elements, the vector a

is said to majorize the vector b (denoted as a
m
� b) if,

∑n
i=1 ai =

∑n
i=1 bi, and

∑k
i=1 ai 6

∑k
i=1 bi, for

k = 1, . . . ,n− 1. For two vectors a and b, if there is a positive constant k, such that, a = kb, we then say
these two vectors are equal, and simply denote by a = b.

3. Main result and proof

Theorem 3.1. Let u = (1,−1) + b(0, 1), 0 6 b 6 6, then, when (µ1,µ2) − (λ1, λ2) = u,

T(λ1, λ2) >lr T(µ1,µ2).

Proof. The density function of X = T(λ1, λ2) is

fλ(t) = λ1e
−λ1t + λ2e

−λ2t − (λ1 + λ2)e
−(λ1+λ2)t,

and that of Y is
gµ(t) = µ1e

−µ1t + µ2e
−µ2t − (µ1 + µ2)e

−(µ1+µ2)t.

The condition fλ(t)/gµ(t) is increasing in t > 0 is equivalent to

f ′λ(t)gµ(t) − fλ(t)g
′
µ(t) > 0,

which is equivalent to
f ′λ(t)

fλ(t)
−
g ′µ(t)

gλ(t)
> 0.
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We have,

f ′λ(t)

fλ(t)
= −

λ2
1e

−λ1t + λ2
2e

−λ2t − (λ1 + λ2)
2e−(λ1+λ2)t

λ1e−λ1t + λ2e−λ2t − (λ1 + λ2)e−(λ1+λ2)t
= −

λ2
1e
λ2t + λ2

2e
λ1t − (λ1 + λ2)

2

λ1eλ2t + λ2eλ1t − (λ1 + λ2)
.

Consider function

Φ(x1, x2) =
x2

1e
x2 + x2

2e
x1 − (x1 + x2)

2

x1ex2 + x2ex1 − (x1 + x2)
, 0 < x1 6 x2.

It is clear that, if Φ(x1, x2) is increasing in the direction u, then, T(λ1, λ2) >lr T(µ1,µ2). Therefore, we just
need to show Φ(x1, x2) is increasing in u. The result of [3] indicated Φ(x1, x2) is increasing in (1,−1), so,
we only need to check the direction (1, 5).

Let b(x) = (ex − 1)/x, then,

Φ(x1, x2) =
x2b(x1) + x1b(x2) − 2

b(x1) + b(x2)
.

For two numbers A and B, if their signs are the same, we denote them as A
sgn
= B. By some simple

calculus, we obtain

5(1,5)Φ =
∂Φ

∂x1
+ 5

∂Φ

∂x2
sgn
=
[
x2b
′(x1) + b(x2) + 5b(x1) + 5x1b

′(x2)
]
×
[
b(x1) + b(x2)

]
−
[
x2b(x1) + x1b(x2) − 2

][
b ′(x1) + 5b ′(x2)

]
= (x2 − x1)b

′(x1)b(x2) + 6b(x1)b(x2) + b
2(x2)

+ 5b2(x1) − 5(x2 − x1)b(x1)b
′(x2) + 2[b ′(x1) + 5b ′(x2)]

> 6b(x1)b(x2) + b
2(x2) − 5(x2 − x1)b(x1)b

′(x2).

Consider the function I(x,y) = 6b(x1)b(x2) + b
2(y) − 5(y− x)b(x)b ′(y) with 0 < x 6 y. We have

I(x,y) = 6b(x)b(y) + b2(y) − 5(y− x)b(x)b ′(y)
sgn
= 6b(x)y(ey − 1) + (ey − 1)2 − 5(y− x)b(x)

[
(y− 1)ey + 1

]
= e2y + ey

[
6b(x)y− 5b(x)(y− x)(y− 1) − 2

]
+ 1 − 6b(x)y− 5b(x)(y− x).

Let y = x+ t, then,

I(x,y) = e2x+2t + ex+t
[
6b(x)(x+ t) − 2 − 5b(x)t(x+ t− 1)

]
+ 1 − 6b(x)(x+ t) − 5b(x)t

sgn
= e2t + et[α2(x)t

2 +α1(x)t+α0(x)] +β1(x)t+β0(x)
∆
= I(t),

where α2(x) = −5b(x)/ex, α1(x) = [11b(x) − 5xb(x)]/ex, α0 = [6xb(x) − 2]/ex, β1(x) = −11b(x)/e2x, and
β0(x) = [1 − 6xb(x)]/e2x. We have

I ′(t) = 2e2t + et
[
α2t

2 + (2α2 +α1)t+ (α1 +α0)
]
+β1,

I ′′(t) = 4e2t + et
[
α2t

2 + (4α2 +α1)t+ (2α2 + 2α1 +α0)
]

sgn
= 4et +α2t

2 + (4α2 +α1)t+ (2α2 + 2α1 +α0)

> (α2 + 2)t2 + (4α2 +α1 + 4)t+ (2α2 + 2α1 +α0 + 4) ∆= J(t).

By Lemma .1 (in Appendix), we know, J(0) = 2α2 + 2α1 +α0 + 4 > 0, and J(1) = 7α2 + 3α1 +α0 + 10 >
0. When α2 + 2 6 0, it is clear that J(t) > 0 for 0 6 t 6 1. When α2 + 2 > 0, we also have J(t) > 0 for
0 6 t 6 1. If not, then the equation J(t) = 0 has two solutions t1, t2 in 0 6 t 6 1. So

0 < −
4α2 +α1 + 4

2(α2 + 2)
< 1,
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that is, 6α2 + α1 > 0. But, as we show in Lemma .1, it is impossible. Therefore, we obtain that, for
0 6 t 6 1, J(t) > 0, and hence, I ′′(t) > 0 for 0 6 t 6 1.

Replace t by t+ 1 in I ′′(t). We have

I ′′(1 + t)
sgn
= 4e1+t +α2(1 + t)2 + (4α2 +α1)(1 + t) + (2α2 + 2α1 +α0)

sgn
= et +α ′2t

2 +α ′1t+α
′
0

> 1 + t+
t2

2
+
t3

6
+α ′2t

2 +α ′1t+α
′
0

sgn
= t3 + (3 + 6α ′2)t

2 + 6(1 +α ′1)t+ 6(1 +α ′0)
∆
= K(t),

where α ′2 = α2/(4e), α ′1 = (6α2 +α1)/(4e), α ′0 = (7α2 + 3α1 +α0)/(4e).
By Lemma .2 (in Appendix), 3 + 6α ′2 > 0, 1 + α ′0 > 0, and for x > 3, 1 + α ′1 > 0. Thus, for x > 3,

K(t) > 0.
By Lemma .1, in x > 0, both of the functions I2(x) = 3+ 6α ′2(x) and I1(x) = 6[1+α ′1(x)] are increasing,

while the function I0(x) = 6[1 +α ′0(x)] is decreasing. Hence, for 2.5 6 x 6 3,

K(t) = t3 + I2(x)t
2 + I1(x)t+ I0(x) > t

3 + I2(2.5)t2 + I1(2.5)t+ I0(3) > t3 + 1.9t2 − 0.4t+ 0.9 ∆= θ1(t).

For 0 6 x 6 2.5, 1 + α ′1 < 0. Let a = −(1 + α ′0)/(1 + α ′1). Then, when 0 6 t 6 a, K(t) > 0. By Lemma
.2, 0 6 x 6 2.5, a > 0.7. Thus, for 0 6 t 6 0.7, K(t) > 0.

Replace t by t+ 0.7, we have

K(t+ 0.7) = (t+ 0.7)3 + (3 + 6α ′2)(t+ 0.7)2 + 6(1 +α ′1)(t+ 0.7) + 6(1 +α ′0)

> t3 + (5.1 + 6α ′2)t
2 +
[
1.4(3 + 6α ′2) + 6(1 +α ′1) + 1.47

]
t+ 0.49(3 + 6α ′2) + 0.343.

By Lemma .2, for x > 1, 1.4(3 + 6α ′2) + 6(1 +α ′1) + 1.47 > 0. Hence, for 1 6 x 6 2.5, K(t) > 0.
For 0.5 6 x 6 1

K(t) = t3 + I2(x)t
2 + I1(x)t+ I0(x) > t

3 + I2(0.5)t2 + I1(0.5)t+ I0(1.0) > t3 + 0.82t2 − 3.4t+ 1.75 ∆= θ2(t).

For 0.25 6 x 6 0.5

K(t) = t3 + I2(x)t
2 + I1(x)t+ I0(x) > t

3 + I2(0.25)t2 + I1(0.25)t+ I0(0.5) > t3 + 0.55t2 − 3.9t+ 2.5 ∆= θ3(t).

For 0.1 6 x 6 0.25

K(t) = t3 + I2(x)t
2 + I1(x)t+ I0(x) > t

3 + I2(0.1)t2 + I1(0.1)t+ I0(0.25) > t3 + 0.37t2 − 4.3t+ 3 ∆= θ4(t).

For 0 6 x 6 0.1

K(t) = t3 + I2(x)t
2 + I1(x)t+ I0(x) > t

3 + I2(0+)t2 + I1(0+)t+ I0(0.1) > t3 + 0.24t2 − 4.5t+ 3.47 ∆= θ5(t).

By Lemma .3 (in Appendix), for i = 1, . . . , 5, θi(t) > 0. Thus, we show K(t) > 0, and hence, I ′′(t) > 0.
From Lemma .1, we know, I ′(0) = 2 + α1 + α0 + β1 > 0, and I(0) = 1 + α0 ++β0 > 0. Therefore, we

arrive at the conclusion of I(t) > 0. The theorem is thus proved.

4. Discussion

Comparing the lifetime of two parallel systems with exponential components is the basic and simplest
case in stochastic comparison of two general k-out-of-n systems. However, even for this simplest situa-
tion, the investigation is not so comprehensive. [1] gave some examples showing T(2.05, 8) >lr T(4, 11),



E. Emanouilidis, J. Wang, J. Math. Computer Sci., 19 (2019), 251–257 255

T(2, 4.5) >lr T(4, 6), but T(2, 4.5) 6>lr T(2.05, 8). We have, u1 = (4, 11) − (2.05, 8) = (1.95, 3) = (1, 1.54),
u2 = (4, 6) − (2, 4.5) = (1, 0.75), and u3 = (2.05, 8) − (2, 4.5) = (1, 70). By Theorem 3.1, in u1, u2, the
likelihood ratio order exists. These examples coincide with Theorem 3.1.

While in direction u3 = (1, 70), their example shows that there is no likelihood ratio order in that
direction. It brings an interesting question, that is, which is the smallest number δ, such that, in the
direction (1, δ), there is no likelihood ratio order?

From our computer simulations, we find δ can be 12. Thus, we can conclude that, in the direction
u = (1, δ), when −1 6 δ 6 5, there is likelihood ratio order; while for δ > 12, there is no likelihood ratio
order. For the cases when 5 6 b 6 12, the conclusion is not so clear. All these need further investigations.

For technical simplicity, in this paper, we just focus on the case of exponential components. We believe
that the idea and the method can be applied to other components, such as Weibull components.

Appendix A

Lemma .1. Let b(x) = (ex − 1)/x, α2(x) = −5b(x)/ex, α1(x) = [11b(x) − 5xb(x)]/ex, α0(x) = [6xb(x) −
2]/ex, β1(x) = −11b(x)/e2x, and β0(x) = [1 − 6xb(x)]/e2x. Then, for x > 0, we have

I1(x) = 2α2(x) + 2α1(x) +α0(x) + 4 > 0,
I2(x) = 7α2(x) + 3α1(x) +α0(x) + 10 > 0,
I3(x) = 6α2(x) +α1(x) < 0,
I4(x) = 2 +α1(x) +α0(x) +β1(x) > 0,
I5(x) = 1 +α0(x) +β0(x) > 0.

Proof. The proofs for these inequalities are quite similar. So, we just check a few. We have

I1(x) = 2α2(x) + 2α1(x) +α0(x) + 4
sgn
= −10b(x) + 2

[
11b(x) − 5xb(x)

]
+ 6xb(x) − 2 + 4ex

= 12b(x) + 2 > 0,
I4(x) = 2 +α1(x) +α0(x) +β1(x)

sgn
= 2e2x + 11exb(x) + xexb(x) − 2ex − 11b(x)

sgn
= 2xe2x + 11ex(ex − 1) + xex(ex − 1) − 2xex − 11(ex − 1)

= 2xex(ex − 1) + 11(ex − 1)2 + xex(ex − 1) > 0.

Lemma .2. From the functions mentioned in Lemma .1, define α ′2(x)=α2(x)/(4e), α ′1(x) = [6α2(x)+α1(x)]/(4e),
α ′0(x) = [7α2(x) + 3α1(x) +α0(x)]/(4e). Let

J1(x) = 3 + 6α ′2(x),
J2(x) = 1 +α ′0(x),
J3(x) = 1 +α ′1(x),
J4(x) = 1.4[3 + 6α ′2(x)] + 6[1 +α ′1(x)] + 1.47,
J5(x) = −[1 +α ′0(x)]/[1 +α ′1(x)].

Then, J1(x) and J3(x) are increasing in x > 0, while the function J2(x) is decreasing. For x > 0, J1(x) > 0,
J2(x) > 0, and when x > 3, J3(x) > 0. J4(x) increasing, and for x > 1, J4(x) > 0. For 0 6 x 6 2.5, J5(x) > 0.7.
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Proof. Because of similarity, we just check the statement about J5(x). Since J3(x) = 1 +α ′1(x) is increasing,
then, for 0 6 x 6 2.5, J3(x) 6 J3(2.5) < 0. Thus, 0 6 x 6 2.5,

J5(x) = −[1 +α ′0(x)]/[1 +α ′1(x)] − 0.7
sgn
= −

4e+ 7α2 + 3α1 +α0

4e+ 6α2 +α1
− 0.7

sgn
=
[
4e+ 7α2 + 3α1 +α0

]
+ 0.7

[
4e+ 6α2 +α1

]
= 11.2α2(x) + 3.7α1(x) +α0(x) + 6.8e
sgn
= −11.2× 5b(x) + 3.7

[
11b(x) − 5xb(x)

]
+ 6xb(x) − 2 + 6.8ex+1

> −15.3b(x) − 12.5xb(x) + 18.4ex − 2
sgn
= 5.9xex − 15.3(ex − 1) + 10.5x

sgn
= 5.9ex − 15.3b(x) + 10.5
∆
= J(x).

We have

J(x) = 5.9
∞∑
k=0

xk

k!
− 15.3

∞∑
k=0

xk

(k+ 1)!
+ 10.5

=

∞∑
k=1

xk

(k+ 1)!
[(k+ 1)× 5.9 − 15.3] + 1.1

> 1.1 − 1.75x+ 0.4x2 + 0.3x3

∆
= J(x).

We have, J ′(x) = 0.9x2 + 0.8x− 1.75. Clearly, J ′(0) < 0 and J ′(1) < 0. Thus, J ′(x) < 0 in 0 < x < 1. Thus,
J(x) > J(1) > 0. Now, replace x by x+ 1, we have

J(x+ 1) = 0.3x3 + 1.3x2 − 0.45x+ 0.05 > 1.3x2 − 0.45x+ 0.05 > 0.

Lemma .3. Let

θ1(t) = t
3 + 1.9t2 − 0.4t+ 0.9,

θ2(t) = t
3 + 0.82t2 − 3.4t+ 1.75,

θ3(t) = t
3 + 0.55t2 − 3.9t+ 2.5,

θ4(t) = t
3 + 0.37t2 − 4.3t+ 3,

θ5(t) = t
3 + 0.24t2 − 4.5t+ 3.47.

Then, for t > 0, θi(t) > 0, for i = 1, . . . , 5.

Proof. We just show θ5(t) > 0. Others can be proved in the same way. Clearly, for 0 6 t 6 3.47/4.5,
θ5(t) > 0. So, when 0 6 t 6 0.7, θ5(t) > 0. Replace t by t+ 0.7, we have

θ5(t+ 0.7) = (t+ 0.7)3 + 0.24(t+ 0.7)2 − 4.5(t+ 0.7) + 3.47

= t3 + 2.34t2 − 2.694t+ 0.7806

> 2.34t2 − 2.694t+ 0.7806 > 0.



E. Emanouilidis, J. Wang, J. Math. Computer Sci., 19 (2019), 251–257 257

Acknowledgment

The authors are grateful to the anonymous referees for their careful proof-reading. Their valuable
comments have led to an improved version of this article.

References

[1] N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: a review with an emphasis
of some recent developments, Probab. Engrg. Inform. Sci., 27 (2013), 403–443. 1, 4

[2] P. J. Boland, E. El-Neweihi, F. Proschan, Applications of hazard rate ordering in reliability and order statistics, J. Appl.
Probab., 31 (1994), 180–192. 1

[3] R. Dykstra, S. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, J.
Statist. Plann. Inference, 65 (1997), 203–211. 3

[4] B. Khaledi, S. C. Kochar, Stochastic orderings among order statistics and sample spacings, in: Uncertainty and optimal-
ity, 2002 (2002), 167–203. 1

[5] S. Kochar, J. Rojo, Some new results on stochastic comparisons of spacings from heterogeneous exponential distributions, J.
Multivariate Anal., 59 (1996), 272–281.

[6] S. Kochar, M. C. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probab.
Engrg. Inform. Sci., 21 (2007), 597–609. 1

[7] H. Laniado, R. E. Lillo, Allocation policies of redundancies in two-parallelseries and two-seriesparallel systems, IEEE
Trans. Reliab., 63 (2014), 223–229. 1

[8] A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, John Wiley & Sons, Chichester, (2002). 1
[9] M. Shaked, J. G. Shanthikumar, Stochastic Orders, Springer, New York, (2007). 1

[10] R. F. Yan, G. F. Da, P. Zhao, Further Results for Parallel Systems with Two Heterogeneous Exponential Components,
Statistics, 47 (2013), 1128–1140. 1

[11] P. Zhao, N. Balakrishnan, Some characterization results for parallel systems with two heterogeneous exponential compo-
nents, Statistics, 45 (2011), 593–604. 1

https://doi.org/10.1017/S0269964813000156
https://doi.org/10.1017/S0269964813000156
https://doi.org/10.2307/3215245
https://doi.org/10.2307/3215245
https://doi.org/10.1016/S0378-3758(97)00058-X
https://doi.org/10.1016/S0378-3758(97)00058-X
https://doi.org/10.1142/9789812777010_0004
https://doi.org/10.1142/9789812777010_0004
https://doi.org/10.1006/jmva.1996.0065
https://doi.org/10.1006/jmva.1996.0065
https://doi.org/10.1017/S0269964807000344
https://doi.org/10.1017/S0269964807000344
https://doi.org/10.1109/TR.2014.2299692
https://doi.org/10.1109/TR.2014.2299692
https://pdfs.semanticscholar.org/04c0/07bf00f957f1987e4c351df35f522cce2f1b.pdf
https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1080/02331888.2012.704632
https://doi.org/10.1080/02331888.2012.704632
https://doi.org/10.1080/02331888.2010.485276
https://doi.org/10.1080/02331888.2010.485276

	Introduction 
	Definitions and notations
	Main result and proof
	Discussion

