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Abstract 
In this paper, The Levenberg-Marquardt method is used in order to solve the inverse heat 

conduction problem. One-dimensional formulation of heat conduction problem was used. The 

direct problem was solved with finite-volumes by using an implicit discretization in time. 

Simulated measurements are obtained from the solution of the direct Problem at the sensor 

location. Results obtained in this inverse problem will be justified based on the numerical 

experiments. The results show that the speed of convergence is considerably fast and The 

Levenberg-Marquardt method is an accurate and stable method to determine the strength of the 

heat source in the inverse heat conduction problems. 
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1. Introduction 
 

Levenberg-Marquardt Method for Parameter Estimation is an iterative method for solving 

nonlinear least squaresproblems of parameter estimation. The technique was first derived by 

Levenberg [1] in 1944, by modifying the ordinary least squares norm. Later, in 

1963, Marquardt [2] derived basically the same technique by using a different 

approach. Marquardt's intention was to obtain a method that would tend to the Gauss method 

in the neighborhood of the minimum of the ordinary least squares norm, and would tend to the 

steepest descent method in the neighborhood of the initial guess used for the iterative 

procedure [1-4]. The so called Levenberg-Marquardt Method [1-6] has been applied to the 
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solution of a variety of inverse problems involving the estimation of unknown parameters. The 

solution of inveres parameter estimation problems by Levenberg-Marquardt Method requires 

the computation of sensitivity matrix [7]. This Technique is quite efficient for solving linear 

and nonlinear parameter estimation problems. However, difficulties may arise in nonlinear 

estimation problems involving a large number of unknown parameters, because of the time 

spent in the computation of the sensitivity matrix. 

The Levenberg-Marquardt method described in [8] is an efficient optimization method for 

inverse problems of different sorts. The inverse heat conduction problem (IHCP) is concerned 

with the determination of the thermophysical properties of the medium, the initial or/and 

boundary temperature distribution for the given temperature field of the unsteady heat 

conduction [9,10]. inverse problem method uses the knowledge of the transient temperature 

field of the solid 

in conjunction with the heat conduction equation and Levenberg-Marquardt algorithm to 

determine the thermophysical properties more accurately [7]. Kuye and et al. determined the 

thermal conductivity and the specific heat capacity of neem seeds by least square method in 

conjunction with Levenberg-Marquardt algorithm [11]. Jose Pujo presented The solution of 

nonlinear inverse problems and the Levenberg-Marquardt method which will help the reader 

gain a better understanding of what happens when solving nonlinear problems 

[12]. Bondarenko and Ivaschenko define inverse problems as the restoration of the medium 

key parameters including the anomalous diffusion index that correlates with the fractional 

dimension of the medium and present the numerical solutions obtained by means of the 

Levenberg–Marquardt method [13]. 

In this paper, a general method is proposed to determine the strength of the heat source in 

heat conduction problems. The present inverse problem is solved by using the Levenberg-

Marquardt method of minimization of the least-Squares norm. The direct problem was solved 

with finite-volumesb [14,15] by using an implicit discretization in time. Simulated 

measurements are obtained from the solution of the direct Problem at the sensor location. We 

present the numerical solutions obtained by means of the Levenberg–Marquardt method and 

discuss the corresponding result. 

 

2. The Direct Problem 

 

Consider the linear transient heat conduction in a plate of unitary dimensionless 

thickness. The plate is initially at zero temperature and both boundaries at x=0 and  x=L are 

kept insulated. For times t > 0, a plane heat source of strength gp(t) per unit area, placed in the 

mid-plane x=0.5, releases its energy. 

The mathematical formulation of this heat conduction problem is given in dimensionless 

form by: 

   (   )

   
   ( ) (     )  

  (   )

  
                       

  (   )

  
                                                                             

 

 

 

(1) 
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  (   )

  
                                                                          

 (   )                                                                               
 

Where  ( ) is the Dirac delta function.In the Direct Problem associated with the physical 

problem described above, the time-varying strength gp(t) of the plane heat source is known. 

The objective of the direct problem is then to determine the transient temperature field T(x,t) in 

the plate. 

 
Figure1: Geometry and coordinates for a plane heat source gp(t). 

 

3. The Inverse Problem 
 

For the Inverse Problem considered of interest here, the time-varying strength  gp(t)  of the 

plane heat source is regarded as unknown. The additional information obtained from transient 

temperature measurements taken at alocation  x=xmeas  at times  ti, i = 1,2, . . .,I,is then used 

for the estimation of gp(t). 

For the solution of the present inverse problem, we consider the unknown energy generation 

function gp(t)to be parameterized in the following general linear form: 

  ( )  ∑    ( )

 

   

 

 

(2) 
 

Here, P, are unknown parameters and  Cj(t) are known trial functions (e.g., polynomials, B-

Splines, etc). In addition, the total number of parameters, N, is specified. The problem given 

by equations (1) with gp(t)unknown, but parameterized as given by equation (2), is an inverse 

heat conduction problem in which the coefficients P, are to be estimated. 

The solution of this inverse heat conduction problem for the estimation of the N unknown 

parameters pj,  j= 1, ...,N is based on the minimization of the ordinary least squares norm 

given by: 

   ∑      ( )  
 

   

 

 

(3) 

where S is the sum of squares error or objective function,p
T
 = [p1,p2, ..pI] is the vector of 

unknown parameters, Ti(P)=T(P, ti) and Yi = Y(ti) are the estimated temperature and 

measured temperatureat at time ti.The estimated temperatures Ti(P) are obtained from the 
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solution of the direct problem at the measurement location, xmeas by using the current estimate 

for the unknown parameters Pj, j = 1, ..., N. 

 

4. The Iterative Procedure 
 

To minimize the least squares norm given by equations (3), we need to equate to zero the 

derivatives of S(P) with respect to each of the unknown parameters [p1,p2, ..pI], Such 

necessary condition for the minimization of S(P) can be represented in matrix notation by 

equating the gradient of  S(P) with respect to the vector of parameters  P to zero, that is, 

  ( )   [ 
   ( )

  
]     ( )    

 

(4) 

Where 

   ( )

  
 

[
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(5) 

The Sensitivity or Jacobian matrix, J(P), is defined as the transpose of equation (5), that the 

sensitivity matrix is written as: 

 ( )  [
   ( )

  
]
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(6)     

Where N is total number of unknown parameters and I is total number of 

measurements. The elements of the sensitivity matrix are called the Sensitiviry 

Coefficients. The sensitivity coefficient J,is thus defined as the first derivative of the 

estimated temperature at time t, with respect to the unknown parameter Pj, that is, 

    
   

   
 

(7) 

By using the definition of the sensitivity matrix given by equation (6), equation (4) 

becomes: 

    ( )    ( )    (8) 

The solution of equation (8) for nonlinear estimation problems then requires an iterative 

procedure, which is obtained by linearizing the vector of estimated temperatures, T(P), with a 
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Taylor series expansion around the current solution at iteration k. Such a linearization is given 

by: 

 ( )   (  )    (    ) (9) 

where T(p
k
) and J

k 
are the estimated temperatures and the sensitivity matrix evaluated at 

iteration k, respectively. Equation (9) is substituted into equation (8) and the resulting 

expression is rearranged to yield the following iterative procedure to obtain the vector of 

unknown parameters P [4]: 

         (  )      (  )
 
    (  )   (10) 

Such method is actually an approximation for the Newton (or Newton-Raphson) method [3]. 

We note that equation (10), require the matrix J
T
J to be nonsingular, or 

        (11) 

where |.| is the determinant. 

Equation (11) gives the so called identifiability Condition, that is, if the determinant of J
T
J 

is zero, or even very small, the parameters Pj, for j = 1, ..., N, cannot be determined by using 

the iterative procedure of equation (10). Problems satisfying |J
T
J|=0 are denoted ill-

conditioned. Inverse heat transfer problems are generally very ill-conditioned, especially near 

the initial guess used for the unknown parameters, creating difficulties in the application of 

equation (10). The Levenberg-Marquardt Method [7] alleviates such difficulties by utilizing an 

iterative procedure in the form: 

         (  )           (  )
 
    (  )   (12) 

Where    is a positive scalar named dampingparameter, and    is a diagonal matrix. The 

purposeof the matrix term     , included in equation (12), is to damp oscillations and 

instabilities due to the ill-conditioned character of the problem, by making its components 

large as compared to those of  J
T
J  if necessary. The damping parameter is made larg in the 

beginning of the iterations, since the problem is generally ill-conditioned in the region around 

the initial guess used for the iterative procedure, which can be quite far from the exact 

parameters. With such an approach the matrix  J
T
J is not required to be non-singular in the 

beginning of iterations and the Levenberg-Marquardt method tends to the Steepest Descent 

method, that is, a very small step is taken in the negative gradient direction. The parameter    

is then gradually reduced as the iteration procedure advances to the solution of the parameter 

estimation problem, and then the Levenberg-Marquardt method tends to the Gauss method 

given by equation (10) [4]. 

The following criterion were suggested by Dennis and Schnabel [5] to stop the iterative 

procedure of the Levenberg-Marquardt Method given by equation (12): 

‖       ‖    (13) 

Where is user prescribed tolerances and ||.|| is the vector Euclidean norm, i.e., ‖ ‖  

(   )  ⁄ , where the superscript T denotes transpose. 

 

5. Computational Algorithm 
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Different versions of the Levenberg-Marquardt method can be found in the 

literature, depending on the choice of the diagonal matrix    and on the form chosen for the 

variation of tte damping parameter    [1-6]. We illustrate here a procedure with the matrix 

  taken as:   

        (  )     (14) 

Suppose that temperature measurements Y=(Y1,Y2,...,YI) are given at times ti, i=1,..., I.
Also, suppose an initial guess P

0
 is available for the vector of unknown parameters P. Choose  

a value for   , say,          and set k=0 [6]. Then 

Step 1. Solve the direct heat transfer problem given by equations (1) with the available 

estimate P
k 

in order to obtain the temperature vector  T(P
K
)= (T1 , ... , TI). 

Step 2. Compute S(P
k
) fiom equation (3). 

Step 3. Compute the sensitivitymatrix J
k 

defined by equation (6) and thenthe 

matrix   given by equation (14), by using the current values of  P
k
.  

Step 4. Solve the following linear system of algebraic equations, obtained from the iterative 

procedure of the Levenberg-Marquardt Method, equation (12): 

 (  )             (  )
 
    (  )  (15) 

in order to compute              . 

Step 5. Compute the new estimate P
k+1 

as 

              

Step 6. Solve the direct problem (1) with the new estimate P
k+1 

in order to find T(P
k+1

).

Then compute S(P
k+1

), as defined by equation (3). 

Step 7. 1f  S(P
k+1

)>S(P
k
),replace    by      and return to step 4. 

Step 8. 1f  S(P
k+1

)<S(P
k
),accept the new estimate P

k+1 
and replace    by      . 

Step 9. Check the stopping criterion given by equations (13). Stop the iterative procedure if 

any of them is satisfied. otherwise, replace k by k+ 1 and return to step 3. 

 

6. Results and Discussion 
 

In this section, we present the results obtained with this technique as applied to the solution 

of our test-problem, involving the estimation of the strength of the heat source. Two different 

source functions over temporal domain; namely, a sinusoidal function and a triangular function 

are adopted to illustrate the numerical modeling. The exact temperature and the source strength 

used in the following examples are selected so that these functions can satisfy equation (1). 

The accuracy is assessed by the comparison between the estimated and preset source strength. 
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The time evolution in all cases is from 0 to tf=1.4. The heat sources are applied at x = 

0.5. During the time interval 0 < t <1.4, we consider available for the inverse analysis 100 

transient measurements of a single sensor located at xmeas=1. 

Levenberg-Marquardt method is applied to the estimation of the undetermined heat source. 

Simulated measurements are obtained from the solution of the Direct Problem at the sensor 

location. The application of the proposed approach is demonstrated by the following examples 

in this present. The strength of the heat source is presented as the time-varying function. 

Detailed descriptions for the examples are shown as follows: 

Example 1: 

  ( )       (  )     (  )                     (16) 

Example 2: 

  ( )  {
    

 

 
                        

    
 

 
                        

 

 

(17) 

The solution of the direct problem (1) at the measurement location xmeas=1, by using the 

heat source given by equations (16) and (17), provide the exact (errorless) 

measurements Yex(ti), i = 1, . . . , I. Measurements containing random errors are simulated by 

adding an error term to Yex(ti) in the form: 

 (  )     (  )     (18) 

where Y(ti)is simulated measurements containing random errors, Yex(ti) is exact (errorless) 

simulated measurements,  is standard deviation of the measurement errors,  is random 

variable with normal distribution, zero mean and unitary standard deviation. For the 99% 

confidence levelwe have -2.576 < < 2.576 [16]. 

The direct problem Was solved with finite-volumes [14,15] by using an implicit 

discretization in time. The spatial domain 0< x <1 was discretized with 100 volumes, while 

25 time-steps were used to advance the solutions from t =0 to tf= 1.4. The sensitivity 

coefficients, were evaluated with finite-differences by utilizing the forward approximation of 

equation (19) with       . 

    
  (                   )    (               )

   
 

(19) 

  

The initial guesses for the unknown functions were taken as zero. Two different levels of 

measurement errors considered for the analysis included     (errorless) and   
         where Tmax  is the maximum measured temperature. The estimated results without 

the measurement errors are shown in Figure (2(a)) and (3(a)). All examples have excellent 

approximations when measurement errors are free.  As the random errore           , the 

results are shown in figure (2(b))and (3(b)). This figures reveal that the proposed method is 

robust and stable when the measurement error is included in the estimation. 
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(a)     

 
(b)             

Figure 2: The (a) Estimation of the sinusoidal strength of the heat source with     and 

(b) Estimation of the sinusoidal strength of the heat source with           . 
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(a)     

 
(b)             

Figure 3: The (a) Estimation of the triangular strength of the heat source with     

and (b) Estimation of the triangular strength of the heat source with            

 

To investigate the deviation of the estimated results from the exact solution, the RMS errors 

for the estimated solutions are defined as follows: 

     √
 

 
∑     (  )     (  ) 

 

 

   

 

 

 

(18)     
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Where gest(ti) is the estimated source term function at time ti, gest(ti) is the exact source term 

function (used to generate the simulated measurements) at time tI and I is the number of 

measurements. 

Table1 present the RMS errors and number of iterations for Levenberg-Marquardt 

technique. 

 

Table 1: Results obtained to approximate the Heat Source function 

 

Function 

eRMS Number of Itration 

                              

sinusoidal function 0.0065 0.0179 4 6 

triangular function 0.004 0.0201 4 8 

 

Table1 shows that the exact values are recovered with this technique, when errorless 

measurements (   ) were used. In such cases, we had the small number of iterations and for 

cases involving measurement errors (          ), the small RMS error was also obtained. 

The foregoing analysis reveals that Levenberg-Marquardt technique, provided an accurate 

estimation.  Furthermore, the number of iterations shows that the speed of convergence is fast. 

7. Conclusion 

In this paper we presented the solution of an inverse problem for one-dimentional heat 

conduction problem. The direct problem was solved with finite-volumes by using an implicit 

discretization in time. As well, the inverse solution at each time step is solved by Levenberg-

Marquardt method of minimization of the least-Squares norm. Two examples have been used 

to show the usage of the proposed method. The results show that the exact solution can be 

found through the proposed method without measurement errors. The use of simulated 

temprature measurements containing random error shows that accurate estimates can be 

obtained for the unknown functions with the present approach. Finally, The results obtained 

illustrate that the Levenberg–Marquardt method is applicable and efficient for the solution of 

the inverse heat conduction problem. Moreover, the proposed method is also applicable to the 

other kinds of inverse problems such as boundary estimation in the one- or multi-dimensional 

heat transfer problems. 
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