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Abstract
In this paper, we simultaneously implement two kinds of orthogonal polynomials for solving a nonlinear age-structured

population model. This non-classic type of partial differential equation is typically defined in large domains that makes finding
an accurate solution by common techniques to be difficult. The presented method namely modified generalized Laguerre-
Chebyshev (MGLC), which is based on the modified generalized Laguerre functions and Chebyshev orthogonal polynomials
provides the spectral accuracy. The theoretical and experimental analysis of the scheme reliability verifies the validity of the
proposed method in large domains.
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1. Introduction

Individuals in a structured population are distinguished by age, size, maturity or some other individ-
ual physical characteristics. In modeling population dynamics, the main assumption is that the structure
of the population with respect to these individual physical characteristics at a given time, and possibly
some environmental inputs in time, completely determines the dynamics behavior of the population.
Mathematical models describing this evolution have attracted a considerable amount of interest among
researchers as a tool for modelling the interactions of different population communities in diverse fields
such as demography, epidemiology, ecology, cell kinetics, tumor growth, etc. [2].

In this paper, we study the following form of the nonlinear age-structured population model, which
is written as

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −[d1(x) + d2(x)U(t)]u(t, x), 0 6 t, 0 6 x < A, (1.1)
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u(0, x) = u0(x), 0 6 x < A, (1.2)

u(t, 0) =
∫A
a

[b1(s) − b2(s)U(t)]u(t, s)ds, 0 6 t, (1.3)

U(t) =

∫A
0
u(t, s)ds, 0 6 t, (1.4)

where t, x denote time and age, respectively, U(t) is the total population at time t, u(t, x) is the age-
specific density of individuals of age x at time t, which means that

∫a+4a
a u(t, s)ds counts the number

of individuals that have age between a and a+4a at time t, d1(x) is the natural death rate (without
considering the competition), d2(x)U(t) is the increase of death rate considering competition, b1(t) is
the natural fertility rate (without considering the competition), b2(x)U(t) is the decrease of fertility rate
considering the competition, a denotes the lowest bearable age, and A is the maximum age that an
individual of the population may reach. In fact, this is the particular form of the following general model
[17, 35]

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −µ(x, Iµ(t), t)u(t, x), 0 6 t, 0 6 x < A,

u(0, x) = u0(x), 0 6 x < A,

u(t, 0) =
∫A
a

β(s, Iβ(t), t)u(t, s)ds, 0 6 t,

when β and µ denote fertility and death rate, respectively, Iµ(t) =
∫A
a γµ(x)u(t, x)dx and Iβ(t) =∫A

a γβ(x)u(t, x)dx and γµ(x), γβ(x) are weight functions; γµ(x) = γβ(x) ≡ 1, µ(x, z, t) = d1(x) + d2(x)z
and β(x, z, t) = b1(x) − b2(x)z.

Since aspects of this age-structured population model such as nonlinearity and integral boundary
condition which cause difficulty and complexity in finding the solution, various alternative techniques
have been developed to obtain analytical and numerical solutions of this model in the literature. A spline
algorithm for solving the nonlinear age-structured population model is employed in [26]. Kim and Park
developed an upwind scheme for this model [31]. Abia et al. [2] applied the forward difference schemes
based on the Runge-Kutta method to this model. Cui and Chen [17] used the reproducing kernel method
for the nonlinear age-structured population model. Krzyzanowski et al. [33] obtained a piecewise regular
solution of nonlinear age-structured population model by using the discontinuous Galerkin method. Xi-
uying Li [35] provided an analytic algorithm for the nonlinear age-structured population model by using
the variational iteration method. Hosseini et al. [25] employed the variational iteration method coupled
with an auxiliary parameter to solve the nonlinear age-structured population model. In [45], a numerical
method for solving the nonlinear age-structured population models is presented, which is based on Bern-
stein polynomials approximation. A comparison study between homotopy analysis method and optimal
homotopy asymptotic method for the solution of nonlinear age-structured population models has been
presented by Ghoreishi et al. [21]. For more information on the mathematical modeling and solution of
this model, we refer the interested reader to [1, 3–5, 7, 8, 11, 18, 30, 32, 46] and references therein.

As mentioned in [5], two of the main objectives driving the need for numerical methods are, first,
the need to make projections about population growth for the future, usually for periods of 10-50 years.
Secondly, there is the theoretical interest in long-term simulations for the purpose of analyzing trends
under different scenarios. This is an important aspect of population models in theoretical biology.

Since the model is popular for long term individual physical characteristics at a given time (short or
long period of time), the validity and convergence of the method should be guaranteed for large intervals.
In this study, we propose the method based on implementation of Laguerre orthogonal polynomials,
which leads toward the spectral method in approximating function defined in large domain [15, 16, 40, 41].
This scheme has been hired several times to study some difficult systems in Mechanics, Physics, etc.
[10, 22, 24, 43, 44]. This method is privileged by an exponential rate of convergence. The other advantage
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of this method is simplicity in unifying the boundary condition and the equation under study. We remind
that, age-structured population model is associated with integral boundary condition which causes very
complicated computations. Actually, in some methods such as FEM, FDM, etc., dealing with boundary
conditions is a costly challenge but MGLC method is flexible with respect to boundary conditions.

The paper is organized in the following way. In Section 2, Laguerre and Chebyshev orthogonal poly-
nomials are briefly described. In Section 3, we approximate the solution via two different orthogonal
polynomials simultaneously applied in two different directions. This section explains the algorithm for
the reduction of the partial integro-differential equation to an algebraic system of equations due to gen-
eralized Laguerre functions and Chebyshev polynomials. In Section 4, some numerical examples are
demonstrated, which confirm the accuracy and applicability of the method and furthermore, error analy-
sis and reliability of the proposed method are discussed. The last section includes some other features of
the modified generalized Laguerre-Chebyshev (MGLC), conclusion and further ideas for future work.

2. Mathematical preliminaries and notations

In this section, we briefly review the Chebyshev polynomials, generalized Laguerre polynomials,
modified generalized Laguerre functions and Gauss-Legendre integration rule. For more details see
[6, 15, 16, 28, 29, 34, 36–38, 41].

2.1. Chebyshev polynomials
Chebyshev polynomials are the well known family of orthogonal polynomials that have many appli-

cations [15, 16]. The Chebyshev polynomial of degree n on [−1, 1] is defined by the formula

Tn(t) = cos(n arccos(t)).

Clearly, |Tn(t)| 6 1 for t ∈ [−1, 1], T0(t) = 1, T1(t) = t and, using elementary trigonometric identities, is
satisfied the following recurrence formula

Tn+1(t) = 2tTn(t) − Tn−1(t), n = 1, 2, . . . .

This is an orthogonal system with the weight function w(t) = 1√
1−t2 and orthogonality property∫ 1

−1

Tn(t)Tm(t)√
1 − t2

dt =
π

2
cnδn,m,

where c0 = 2, cn = 1, n > 1 and δn,m is the Kronecker delta function.
A function f(t) ∈ L2

w(−1, 1), may be expressed in terms of Chebyshev polynomials as

f(t) =

∞∑
j=0

fjTj(t),

where the coefficients fj are given by

fj =
2
πcj
〈f(t), Tj(t)〉w, j = 0, 1, 2, . . . .

Here, 〈 . , .〉w is the inner product of L2
w(−1, 1).

Theorem 2.1 ([16]). Let f(t) ∈ Hkw(−1, 1) and fN(t) =
∑N
j=0 fjTj(t) be the best approximation polynomial of

f(t) in L2
w-norm, then

‖f(t) − fN(t)‖L2
w[−1,1] 6 C0N

−k‖f(t)‖Hkw(−1,1),

where C0 is a positive constant, which depends on selected norm and independent with f(t) and N.
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For practical use of Chebyshev polynomials on [0, T ], it is necessary to shift the defining domain by
the following variable substitution

t = 2
(x
T

)
− 1.

Denoting the shifted Chebyshev polynomials Tn
(
2
(
x
T

)
− 1
)

by T∗n(x), then these polynomials can be
obtained by using the following recurrence formula

T∗n+1(x) =
(

4
(x
T

)
− 2
)
T∗n(x) − T

∗
n−1(x), n = 1, 2, . . . ,

where T∗0 (x) = 1 and T∗1 (x) = 2
(
x
T

)
− 1. The orthogonality condition is written as∫T
0
T∗n(x)T

∗
m(x)w∗(x)dx =

π

2
cnδn,m,

where w∗(x) = 1√
Tx−x2 .

Corollary 2.2. Let f
(
T
2 (x+ 1)

)
∈ Hkw(−1, 1), T > 0 and f∗N(x) =

∑N
j=0 f

∗
j T
∗
j (x) be the best approximation

polynomial of f(x) in L2
w∗-norm, then

‖f(x) − f∗N(x)‖L2
w∗ [0,T ] 6 C0N

−k
∥∥∥f(T

2
(x+ 1)

)∥∥∥
Hkw(−1,1)

,

where C0 is a positive constant, which depends on selected norm and is independent of f
(
T
2 (x+ 1)

)
and N.

Proof. By using change of the variable t = 2
(
x
T

)
− 1, we obtain

‖f(x) − f∗N(x)‖2
L2
w∗ [0,T ] =

∫T
0
|f(x) − f∗N(x)|

2w∗(x)dx

=

∫ 1

−1

∣∣∣f(T
2
(t+ 1)

)
− f∗N

(
T

2
(t+ 1)

) ∣∣∣2w(t)dt
=
∥∥∥f(T

2
(t+ 1)

)
− f∗N

(
T

2
(t+ 1)

)∥∥∥2

L2
w[−1,1]

.

So, from Theorem 2.1, we have

‖f(x) − f∗N(x)‖L2
w∗ [0,T ] 6 C0N

−k
∥∥∥f(T

2
(x+ 1)

)∥∥∥
Hkw(−1,1)

.

2.2. Modified generalized Laguerre functions
Here, we introduce the orthogonal system of modified generalized Laguerre functions, which are

derived from generalized Laguerre polynomials [9, 20, 39, 41]. We remind that in spite of orthogonality
of Laguerre polynomials on [0,∞), these basis functions practically are not efficient. Some modifications
and adjustments are necessary to enhance the competence of these approximation tools and overcome the
difficulty of heavy computations.

2.2.1. Generalized Laguerre polynomials
The well-known generalized Laguerre polynomials (GLPs), denoted by Lαn(x), are orthogonal on the

half line [0,+∞) with respect to the weight function wα(x) = xαe−x, where α > −1 [41]. The orthogonal-
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ity relation is written as ∫+∞
0

Lαn(x)L
α
m(x)wα(x)dx =

Γ(n+α+ 1)
n!

δn,m. (2.1)

Lαn(x) is the nth eigenfunction of the Sturm-Liouville problem

x
d2

dx2L
α
n(x) + (α+ 1 − x)

d

dx
Lαn(x) + λnL

α
n(x) = 0, n = 0, 1, . . . ,

with the corresponding eigenvalue λn = n and the normalizing condition Lαn(0) =
(
n+α
α

)
. The analytic

form of the generalized Laguerre polynomials Lαn(x) of degree n is given by

Lαn(x) =

n∑
k=0

(−1)k

k!

(
n+α

n− k

)
xk.

The generalized Laguerre polynomials are defined with the following recurrence formula

nLαn(x) = (2n− 1 +α− x)Lαn−1(x) − (n+α− 1)Lαn−2(x), n = 1, 2, . . . , (2.2)

where

Lα0 (x) = 1, Lα1 (x) = 1 +α− x. (2.3)

Theorem 2.3 ([42]). Let α > −1, c and ω are fixed positive constants, and cn−1 6 x 6 ω. Then

Lαn(x) = π
− 1

2 e
x
2 x−

α
2 −

1
4n

α
2 −

1
4

[
cos
(

2(nx)
1
2 −

απ

2
−
π

4

)
+ (nx)−

1
2O(1)

]
.

Theorem 2.3 shows that the GLPs have a rapid growth as x approaches to infinity and as n increases.
Also, we have the following uniform upper bounds for GLPs [19]:

|Lαn(x)| 6


Γ(n+α+1)
n!Γ(α+1) e

x
2 , α > 0,[

2 −
Γ(n+α+1)
n!Γ(α+1)

]
e
x
2 , −1 < α < 0.

2.2.2. Generalized and modified generalized Laguerre functions
In many problems in unbounded domains, the exact solutions decay algebraically or exponentially

at infinity. So, the generalized Laguerre polynomials are not very useful yet in practice for finding the
approximate solutions of these problems. Therefore, we consider the generalized Laguerre functions
(GLFs) defined by [41]

GLαn(x) = e
− x

2 Lαn(x), n = 0, 1, 2, . . . . (2.4)

By (2.1), the GLFs are orthogonal with respect to the weight function w̃α(x) = xα, i.e.,∫+∞
0

GLαn(x)GL
α
m(x)w̃α(x)dx =

Γ(n+α+ 1)
n!

δn,m.

The modified generalized Laguerre functions (MGLFs), denoted by MLα,L
n (x), are defined as follows [39]:

MLα,L
n (x) = GLαn

(x
L

)
, n = 0, 1, 2, . . . , (2.5)

where the parameter L is a positive scaling factor that is called mapping parameter.

Remark 2.4. Boyd in [12, 15] offered guidelines for optimizing the map parameter L for rational Chebyshev
functions, which is useful for the proposed method in this paper, too. For the map parameter L we have
the following results [12, 15, 23].
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• In general, there is no way to avoid a small amount of trial and error in choosing L when solving
problems on an unbounded domain.

• The optimum value of L varies with the number of collocation points.

• Few experimentations are usually sufficient to determine a suitable value of L because near the
optimum value of L, the accuracy is insensitive to the precise value of L.

• The parameter L is a scaling/stretching factor, which can be used for the fine tuning of the spacing
of collocation points.

MLα,L
n (x) is the nth eigenfunction of the singular Sturm-Liouville problem

Lx−αe
x

2L
d

dx

[
xα+1e−

x
2L
d

dx
MLα,L

n (x)

]
+nMLα,L

n (x) = 0, n = 0, 1, 2, . . . ,

and by equations (2.2), (2.4) and (2.5), it satisfies in the following recurrence relation

nMLα,L
n (x) =

(
2n− 1 +α−

x

L

)
MLα,L

n−1(x) − (n+α− 1)MLα,L
n−2(x), n = 1, 2, . . . ,

where

MLα,L
0 (x) = e−

x
2L , MLα,L

1 (x) =
(

1 +α−
x

L

)
e−

x
2L .

This formula allows a stable evaluation of the MGLFs. Indeed, in contrast to the GLPs (see Theorem 2.3),
the MGLFs are well-behaved with the decay property

|MLα,L
n (x)|→ 0, as x→ +∞.

Letwα,L(x) =
(
x
L

)α denotes a non-negative, integrable, real-valued function over the interval I = [0,+∞).
We define

L2
wα,L

(I) = {f : I −→ R| f is measurable and ‖f‖wα,L <∞},

where

‖f‖wα,L =

(∫+∞
0

|f(x)|2wα,L(x)dx

) 1
2

,

is the norm induced by the scalar product

〈f,g〉wα,L =

∫+∞
0

f(x)g(x)wα,L(x)dx.

Thus, {MLα,L
n (x)}+∞n=0 is an orthogonal system in L2

wα,L
(I), i.e.,∫+∞

0
MLα,L

n (x)MLα,L
m (x)wα,L(x)dx =

LΓ(n+α+ 1)
n!

δn,m.

A function f(x) ∈ L2
wα,L

(I) can be approximated by modified generalized Laguerre functions as

f(x) =

∞∑
j=0

fjML
α,L
j (x),

where the coefficients fj are given by

fj =
j!〈f(x),MLα,L

j (x)〉wα,L

LΓ(j+α+ 1)
, j = 0, 1, 2, . . . .

3. Description of the method

In this section, to solve problem (1.1) on [0, T ]× [0,A] with respect to the initial conditions given by
equations (1.2) and (1.3), we first approximate u(t, x) by the M+ 1 shifted Chebyshev polynomials and



Z. Avazzadeh, M. Heydari, S. Yarahmadian, J. Math. Computer Sci., 19 (2019), 268–287 274

N+ 1 modified generalized Laguerre functions as

u(t, x) ' uM,N(t, x) =
M∑
i=0

N∑
j=0

uijT
∗
i (t)ML

α,L
j (x). (3.1)

Also, to construct the mesh for the covering of the domain, we consider the following two distributions
of nodes

Case I:
{
ti =

iT
M , i = 0, 1, . . . ,M,

xj =
jA
N , j = 0, 1, . . . ,N,

Case II:

{
ti =

T
2

(
cos
(
(M−i)π
M

)
+ 1
)

, i = 0, 1, . . . ,M,
xj = zeros ofL0

N+1(x), j = 0, 1, . . . ,N.

The distribution of 169 nodal points with the domain [0, 1]× [0, 100] (T = 1, A = 100, α = 0) is depicted
in Figure 1. According to Legendre-Gauss quadrature rule, by substituting (3.1) in (1.4), U(t) can be
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Figure 1: Distribution of nodes in cases I and II for M = N = 12.

evaluated as follows

U(t) ' UM(t) =

∫A
0
uM,N(t, s)ds '

A

2

p∑
j=0

wjuM,N

(
t,
A

2
ξj +

A

2

)
, (3.2)

where distinct nodes {ξj}
p
j=0 are the zeros of Legendre polynomial Lp+1(t) and {wj}

p
j=0 are corresponding

weights and given in [16] as follows

wj =
2

(1 − ξ2
j)[L

′
p+1(ξj)]

2 , j = 0, 1, . . . ,p.

By substituting equations (3.1) and (3.2) in equation (1.1), we obtain the following residual function

RES(t, x) =
∂uM,N(t, x)

∂t
+
∂uM,N(t, x)

∂x
+ [d1(x) + d2(x)UM(t)]uM,N(t, x). (3.3)

By collocating equation (3.3) in MN points (ti, xj), i = 0, 1, . . . ,M− 1, j = 0, 1, . . . ,N− 1, we obtain

RES(ti, xj) = 0, i = 0, 1, . . . ,M− 1 j = 0, 1, . . . ,N− 1. (3.4)

Replacing equations (3.1) and (3.2) into the initial conditions (1.2) and (1.3) we get

uM,N(0, x) = u0(x), (3.5)

uM,N(t, 0) =
∫A
a

[b1(s) − b2(s)UM(t)]uM,N(t, s)ds. (3.6)

By using Legendre-Gauss quadrature rule, we can approximate the integral in the right hand of (3.6) as
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follows:

uM,N(t, 0) =
A−a

2

p∑
j=0

wj

[
b1

(
A−a

2
(
ξj+ 1

))
−b2

(
A−a

2
(
ξj+ 1

))
UM(t)

]
uM,N

(
t,
A−a

2
(
ξj+ 1

))
. (3.7)

Collocating equations (3.5) and (3.7) in N+ 1 points xj, j = 0, 1, . . . ,N and M points ti, i = 1, 2, . . . ,M,
respectively, we have

uM,N(0, xj) − u0(xj) = 0, j = 0, 1, . . . ,N, (3.8)

uM,N(tj, 0) −
A− a

2

p∑
j=0

wj

[
b1

(
A− a

2
(
ξj + 1

))

− b2

(
A− a

2
(
ξj + 1

))
UM(tj)

]
uM,N

(
tj,
A− a

2
(
ξj + 1

))
= 0, i = 1, 2, . . . ,M.

(3.9)

Equation (3.4) together with equations (3.8) and (3.9) give a (M + 1) × (N + 1) system of nonlinear
equations, which can be solved for uij’s, using Newton’s iterative method. So the unknown function
uM,N(t, x) can be calculated.

4. Numerical results

In this section some numerical examples are illustrated to demonstrate the efficiency and applicability
of the proposed method. All computations are run using Maple 17 and MATLAB R2015a softwares on
a Core(TM) i7 PC Laptop with 2.10 GHz of CPU and 6 GB of RAM. In all examples, we set parameters
α = 0, p = 40, and A = 100. Also, all the examples are solved with two distributions of nodes I and II
in domain of the problem. For estimating the error of the numerical solution we use the error function
eM,N(t, x) defined by

eM,N(t, x) = u(t, x) − uM,N(t, x).

Here, we have calculated the computational orders of the MGLC method with the following formula

C-order =
log
(‖eM2,N(t,x)‖∞
‖eM1,N(t,x)‖∞

)
log
(
M1
M2

) ,

where ‖eM1,N(t, x)‖∞ and ‖eM2,N(t, x)‖∞ are maximum absolute errors corresponding to grids with mesh
size M1 and M2, respectively, for fixed value of N. This index obviously shows the exponential rate of
convergence. Precisely, a larger number of basis function intensively impacts on decreasing absolute error
values. In all examples, we used the following methods for finding a suitable map parameter L [12–15].

First method: We solve the problem and look at the spectral coefficients, plotted as absolute values on a
log-linear plot, for several different values of L. Obviously, if the magnitudes of the coefficients are
rapidly decreasing, the spectral series is accurate [12, 15].

Second method: We depict the maximum absolute residual error versus L for a fixed values of M and N.
This curve has a ”V-shape” for reasons explained in more detail in [12, 13, 15].

Example 4.1. Consider the following nonlinear age-structured population model [17, 32, 35, 45]

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −U(t)u(t, x), 0 6 t, 0 6 x < A,

u(0, x) =
e−x

2
, 0 6 x < A,
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u(t, 0) = U(t), 0 6 t,

U(t) =

∫A
0
u(t, s)ds, 0 6 t,

which A = +∞ and has the exact solution

u(t, x) =
e−x

e−t + 1
, x > 0, t > 0.

Table 1 shows the maximum absolute values of errors and computational orders for T = 1, N = 2,
L = 0.5 and different values of M, using the method proposed in Section 3. From table, we can see that as
the number of nodes increases, the accuracy improves. Also, the distribution of nodes in case II creates
more accurate results. However, the accuracy of the distribution of nodes in case I is acceptable. In Table
2, we compare the absolute errors obtained for Example 4.1 using the MGLC method with N = 2,M =
5,L = 0.5 and the operational matrices method based on Bernstein polynomials presented in [45]. The
comparison of the absolute error between HAM and OHAM with four terms and the MGLC method with
N = 2,M = 12,L = 0.5 are given in Table 3 for various values of (t, x) ∈ [0, 1]× [0, 50]. Figure 3 shows the
logarithmic of absolute values uij as computed for case II with T = 1, N = 3, M = 12 and several scaling
factor L. We observe that the optimum value of parameter L is about L = 0.5. Figure 2, shows the absolute
error function |eM,N(t, x)| obtained by the propose method with T = 5([0, 5]× [0, 100]), N = 2, L = 0.5
and M = 10. According to Figure 2, we find that the presented method provides accurate results in large
domain even for small N. Also, Figure 12 (a) shows the graphs of maximum absolute residual errors in
approximating u(t, x) for case II with T = 1, N = 2 and various values of L. We can see the optimum
value of parameter L is about L = 0.5, similar to Figure 3.

Table 1: Errors and computational orders obtained for Example 4.1 with T = 1, N = 2, and L = 0.5.

M Case I Case II
‖eM,N‖∞ C-order ‖eM,N‖∞ C-order

4 4.2086× 10−5 ——– 1.2166× 10−5 ——–
6 3.1568× 10−7 12.0669 3.5128× 10−8 14.4215
8 1.6330× 10−10 26.3029 6.0148× 10−11 22.1423
10 5.6723× 10−11 4.7387 1.0794× 10−12 18.0171
12 1.5204× 10−12 19.8506 1.2636× 10−14 24.3943
14 2.8998× 10−14 25.6859 1.0584× 10−16 31.0240

Table 2: Absolute error obtained for Example 4.1 on [0, 1]× [0, 20] and [0, 1]× [0, 100] when L = 0.5.

(t, x) Yousefi et al. [45] MGLC (Case I) (t, x) Yousefi et al. [45] MGLC (Case I)
(m = 5,n = 10) (N = 2,M = 5) (m = 5,n = 10) (N = 2,M = 5)

(0, 0) 1.71× 10−3 0.00 (0, 0) 1.49× 10−1 0.00
(0.1, 2) 3.74× 10−3 3.06× 10−8 (0.1, 10) 4.70× 10−3 1.02× 10−11

(0.2, 4) 6.74× 10−4 6.67× 10−9 (0.2, 20) 1.98× 10−3 7.44× 10−16

(0.3, 6) 4.58× 10−4 6.84× 10−10 (0.3, 30) 5.08× 10−3 2.55× 10−20

(0.4, 8) 2.08× 10−4 6.60× 10−11 (0.4, 40) 6.28× 10−3 8.24× 10−25

(0.5, 10) 8.91× 10−5 1.21× 10−11 (0.5, 50) 3.56× 10−3 5.14× 10−29

(0.6, 12) 1.08× 10−4 2.13× 10−12 (0.6, 60) 1.08× 10−3 3.06× 10−33

(0.7, 14) 2.10× 10−4 1.43× 10−13 (0.7, 70) 4.19× 10−3 7.07× 10−42

(0.8, 16) 2.20× 10−4 1.22× 10−14 (0.8, 80) 4.90× 10−3 1.75× 10−46

(0.9, 18) 2.45× 10−4 1.55× 10−14 (0.9, 90) 5.33× 10−3 8.50× 10−46

(1, 20) 7.73× 10−4 1.60× 10−14 (1, 100) 1.63× 10−2 2.90× 10−49
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Table 3: Comparison between absolute errors of HAM, OHAM and the MGLC method for Example 4.1 with N = 2,M = 12, and
L = 0.5 on [0, 1]× [0, 50].

x t = 0.1 t = 1
HAM [21] OHAM [21] MGLC (Case II) HAM [21] OHAM [21] MGLC (Case II)

0 2.08× 10−8 7.54× 10−5 8.02× 10−17 1.89× 10−3 3.30× 10−6 1.26× 10−14

5 1.40× 10−10 5.08× 10−5 5.41× 10−19 1.27× 10−5 2.22× 10−6 8.51× 10−17

10 9.45× 10−13 3.42× 10−9 3.64× 10−21 8.59× 10−8 1.50× 10−10 5.74× 10−19

20 4.29× 10−17 1.55× 10−13 1.65× 10−25 3.90× 10−12 6.80× 10−15 2.60× 10−23

30 1.95× 10−21 7.05× 10−18 7.51× 10−30 1.77× 10−16 3.09× 10−19 1.18× 10−27

40 8.84× 10−26 3.20× 10−22 3.41× 10−34 8.04× 10−21 1.40× 10−23 5.37× 10−32

50 4.01× 10−30 1.45× 10−26 1.55× 10−38 3.65× 10−25 6.36× 10−28 2.44× 10−36
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Figure 2: Absolute error functions |eM,N(t, x)|, for Case I (a) and Case II (b), where M = 10, N = 2, T = 5, and L = 0.5. See
Example 4.1.
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Figure 3: The logarithmic of absolute values of uij versus i and j with T = 1, N = 3, M = 12 and L = 0.3, 0.5, 0.7 for Case II,
Example 4.1.

Example 4.2. Consider the following nonlinear age-structured population model [32, 35, 45]

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −(1 +U(t))u(t, x), 0 6 t, 0 6 x < A,

u(0, x) =
e−x

2
, 0 6 x < A,
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u(t, 0) = U(t), 0 6 t,

U(t) =

∫A
0
u(t, s)ds, 0 6 t,

which A = +∞ and has the exact solution

u(t, x) =
e−x

2 + t
, x > 0, t > 0.

Numerical results are presented in Table 4 for T = 1, N = 2, L = 0.5 and different values of M. In

Table 4: Errors and computational orders obtained for Example 4.2 with T = 1, N = 2 and L = 0.5.

M Case I Case II
‖eM,N‖∞ C-order ‖eM,N‖∞ C-order

4 1.7703× 10−4 ——– 5.1488× 10−5 ——–
6 4.0011× 10−6 9.3467 4.5664× 10−7 11.6538
8 9.1175× 10−9 21.1488 4.3599× 10−9 16.1687
10 2.0763× 10−9 6.6307 4.2796× 10−11 20.7210
12 4.7168× 10−11 20.7580 4.2573× 10−13 25.2872
14 1.0687× 10−12 24.5686 4.2671× 10−15 29.8596

Table 5 we compare the absolute errors obtained using the MGLC method with N = 2,M = 8,L = 0.5 and
the method presented in [45].

Table 5: Absolute error obtained for Example 4.2 on [0, 1]× [0, 20] and [0, 1]× [0, 100] when L = 0.5.

(t, x) Yousefi et al. [45] MGLC (Case I) (t, x) Yousefi et al. [45] MGLC (Case I)
(m = 5,n = 10) (N = 2,M = 5) (m = 5,n = 10) (N = 2,M = 5)

(0, 0) 1.71× 10−3 0.00 (0, 0) 1.49× 10−1 0.00
(0.1, 2) 2.86× 10−3 2.28× 10−10 (0.1, 10) 4.70× 10−3 1.77× 10−13

(0.2, 4) 1.07× 10−3 7.06× 10−12 (0.2, 20) 1.98× 10−3 6.39× 10−18

(0.3, 6) 1.12× 10−4 4.49× 10−13 (0.3, 30) 5.08× 10−3 2.59× 10−22

(0.4, 8) 2.69× 10−4 3.03× 10−13 (0.4, 40) 6.28× 10−3 1.16× 10−26

(0.5, 10) 7.90× 10−5 8.15× 10−14 (0.5, 50) 3.56× 10−3 4.40× 10−31

(0.6, 12) 1.07× 10−4 2.27× 10−14 (0.6, 60) 1.08× 10−3 2.10× 10−35

(0.7, 14) 2.10× 10−4 4.41× 10−15 (0.7, 70) 4.19× 10−3 7.39× 10−40

(0.8, 16) 2.20× 10−4 8.86× 10−16 (0.8, 80) 4.90× 10−3 3.77× 10−44

(0.9, 18) 2.45× 10−4 1.75× 10−16 (0.9, 90) 5.33× 10−3 2.64× 10−48

(1, 20) 7.73× 10−4 1.66× 10−16 (1, 100) 1.63× 10−2 3.39× 10−51

The comparison of the absolute error between HAM and OHAM with four terms and the MGLC
method with N = 4,M = 12,L = 0.5 are given in Table 6 for various values of (t, x) ∈ [0, 1]× [0, 50].

Table 6: Comparison between absolute errors of HAM, OHAM and the MGLC method for Example 4.2 with N = 4,M = 12 and
L = 0.5 on [0, 1]× [0, 50].

x t = 0.1 t = 1
HAM [21] OHAM [21] MGLC (Case II) HAM [21] OHAM [21] MGLC (Case II)

0 2.98× 10−6 1.18× 10−4 5.92× 10−15 2.08× 10−2 1.03× 10−6 4.26× 10−13

5 2.01× 10−8 7.97× 10−7 3.99× 10−17 1.40× 10−4 6.94× 10−9 2.87× 10−15

10 1.35× 10−10 5.37× 10−9 2.69× 10−19 9.46× 10−7 4.68× 10−11 1.93× 10−17

20 6.13× 10−15 2.44× 10−13 1.22× 10−23 4.29× 10−11 2.12× 10−15 8.78× 10−22

30 2.79× 10−19 1.11× 10−17 5.54× 10−28 1.95× 10−15 9.64× 10−20 3.98× 10−26

40 1.26× 10−23 5.03× 10−22 2.52× 10−32 8.85× 10−20 4.38× 10−24 1.81× 10−30

50 5.74× 10−28 2.28× 10−26 1.15× 10−36 4.02× 10−24 1.99× 10−28 8.21× 10−35
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The absolute error function |eM,N(t, x)| with T = 10([0, 10]× [0, 100]), N = 2, L = 0.5 and M = 16
is shown in Figure 4. From Table 4 and Figure 4, we can see that the MGLC method provides accurate
results.
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Figure 4: The absolute error function |eM,N(t, x)|, for Case I (a) and Case II (b) where M = 16, N = 2, T = 10, and L = 0.5. See
Example 4.2.

Figures 5 and 12 (b) show the logarithmic of absolute values uij as computed for case II with T =
1, N = 4, M = 12 and the maximum absolute residual errors for case II with T = 1, N = 2 and various
values of L, respectively. In this example, we observe that the optimum value of parameter L is about
L = 0.5.
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Figure 5: The logarithmic of absolute values of uij versus i and j with T = 1, N = 4, M = 12, and L = 0.3, 0.5, 0.7 for Case II,
Example 4.2.

Example 4.3. Consider the following nonlinear age-structured population model [5]

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −(2 +
4
e
U(t))u(t, x), 0 6 t, 0 6 x < A,

u(0, x) =
e1−2x

4
, 0 6 x < A,

u(t, 0) = 2U(t), 0 6 t,

U(t) =

∫A
0
u(t, s)ds, 0 6 t,

which A = +∞ and has the exact solution
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u(t, x) =
e1−2x

4 + 2t
, x > 0, t > 0.

We approximate u(t, x) on [0, 1]× [0, 100] and present the the maximum absolute values of errors and
computational orders for N = 3, L = 0.25 and different values of M in Table 7.

Table 7: Errors and computational orders obtained for Example 4.3 with T = 1, N = 3 and L = 0.25.

M Case I Case II
‖eM,N‖∞ C-order ‖eM,N‖∞ C-order

4 2.4061× 10−4 ——– 6.9979× 10−5 ——–
6 5.4381× 10−6 9.3467 6.2064× 10−7 11.6538
8 1.2391× 10−7 13.1452 5.9256× 10−9 16.1687
10 2.8219× 10−9 16.9494 5.8055× 10−11 20.7295
12 6.4021× 10−11 20.7653 6.6820× 10−13 24.4873
14 1.3679× 10−12 24.9492 1.2458× 10−13 10.8961

In Table 8, we compare the absolute errors obtained using the MGLC method with N = 3,M = 8,L =
0.25, and the method of [45].

Table 8: Absolute error obtained for Example 4.3 on [0, 1]× [0, 20] and [0, 1]× [0, 100] when L = 0.25.

(t, x) Yousefi et al. [45] MGLC (Case I) (t, x) Yousefi et al. [45] MGLC (Case I)
(m = 5,n = 10) (N = 3,M = 8) (m = 5,n = 10) (N = 3,M = 8)

(0, 0) 3.43× 10−2 0.00 (0, 0) 3.71× 10−1 0.00
(0.1, 2) 3.96× 10−3 9.72× 10−11 (0.1, 10) 2.28× 10−3 1.09× 10−17

(0.2, 4) 2.39× 10−3 1.41× 10−12 (0.2, 20) 1.07× 10−3 1.79× 10−26

(0.3, 6) 3.23× 10−3 2.31× 10−14 (0.3, 30) 5.74× 10−3 3.30× 10−35

(0.4, 8) 3.28× 10−3 4.17× 10−16 (0.4, 40) 7.83× 10−3 6.70× 10−44

(0.5, 10) 1.52× 10−3 6.39× 10−18 (0.5, 50) 4.76× 10−3 1.15× 10−52

(0.6, 12) 9.22× 10−4 1.23× 10−19 (0.6, 60) 1.06× 10−3 2.50× 10−61

(0.7, 14) 2.40× 10−3 1.75× 10−21 (0.7, 70) 5.12× 10−3 3.99× 10−70

(0.8, 16) 2.65× 10−3 3.59× 10−23 (0.8, 80) 6.14× 10−3 9.23× 10−79

(0.9, 18) 2.90× 10−3 1.01× 10−24 (0.9, 90) 6.68× 10−3 2.93× 10−87

(1, 20) 8.97× 10−3 5.26× 10−25 (1, 100) 2.04× 10−2 1.71× 10−94

The absolute error function |eM,N(t, x)| with T = 10([0, 10]× [0, 100]), N = 3, L = 0.25 and M = 14 is
shown in Figure 6. This figure shows that the proposed method produces very good results on the large
domain.
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Figure 6: Absolute error function |eM,N(t, x)|, for Case I (a) and Case II (b) where M = 14, N = 3, T = 10 and L = 0.25. See
Example 4.3.
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Figures 7 and 12 (c) show the logarithmic of absolute values uij as computed for case II with T =
1, N = 4, M = 12 and the maximum absolute residual errors for case II with T = 1, N = 3 and various
values of L, respectively. In this example, the optimum value of parameter L is about L = 0.25.
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Figure 7: The logarithmic of absolute values of uij versus i and j with T = 1, N = 4, M = 12 and L = 0.2, 0.25, 0.3 for Case II,
Example 4.3.

Example 4.4. Consider the following nonlinear age-structured population model [5]

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −

(
1

1 − x
+U(t)

)
u(t, x), 0 6 t, 0 6 x < A,

u(0, x) = 4(1 − x)e−λx, 0 6 x < A,
u(t, 0) = 4U(t), 0 6 t,

U(t) =

∫A
0
u(t, s)ds, 0 6 t,

which λ = 2 and A = +∞ and has the exact solution

u(t, x) = 4(1 − x)e−λx
λ

1 + (1 − λ)e−λt
, x > 0, t > 0.

We approximate u(t, x) on [0, 1]× [0, 100] and present the the maximum absolute values of errors and
computational orders for N = 2, L = 0.25 and different values of M in Table 9. In Table 10,

Table 9: Errors and computational orders obtained for Example 4.4 with T = 1, N = 2 and L = 0.25.

M Case I Case II
‖eM,N‖∞ C-order ‖eM,N‖∞ C-order

2 1.4546× 10−1 ——– 1.4546× 10−1 ——–
4 2.3579× 10−3 5.9470 7.3356× 10−4 7.6315
6 5.0873× 10−4 3.7823 5.5347× 10−5 6.3736
8 3.5997× 10−5 9.2063 1.6008× 10−6 12.3161
10 1.6901× 10−6 13.7071 3.2348× 10−8 17.4852
12 4.8767× 10−8 19.4464 3.7724× 10−10 24.4152

we compare the absolute errors obtained using the MGLC method with N = 2,M = 5,L = 0.25 and
the method of [45].
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Table 10: Absolute error obtained for Example 4.4 on [0, 1]× [0, 20] and [0, 1]× [0, 100] when L = 0.25.

(t, x) Yousefi et al. [45] MGLC (Case I) (t, x) Yousefi et al. [45] MGLC (Case I)
(m = 5,n = 8) (N = 2,M = 5)

(0, 0) 1.06 0.00 (0, 0) 3.21 0.00
(0.1, 2) 1.79× 10−1 2.42× 10−6 (0.1, 10) 8.93× 10−2 2.46× 10−12

(0.2, 4) 1.00× 10−1 2.08× 10−7 (0.2, 20) 5.47× 10−2 1.67× 10−20

(0.3, 6) 7.05× 10−4 4.66× 10−9 (0.3, 30) 1.03× 10−2 3.85× 10−29

(0.4, 8) 7.06× 10−2 8.18× 10−11 (0.4, 40) 3.06× 10−2 7.31× 10−38

(0.5, 10) 4.08× 10−2 2.47× 10−12 (0.5, 50) 2.29× 10−2 2.43× 10−46

(0.6, 12) 3.72× 10−2 6.75× 10−14 (0.6, 60) 1.48× 10−2 7.36× 10−55

(0.7, 14) 5.63× 10−2 6.54× 10−16 (0.7, 70) 2.75× 10−2 7.94× 10−64

(0.8, 16) 1.40× 10−2 9.41× 10−18 (0.8, 80) 8.61× 10−3 1.27× 10−72

(0.9, 18) 2.01× 10−2 1.66× 10−18 (0.9, 90) 8.17× 10−3 2.51× 10−80

(1, 20) 1.78× 10−1 2.43× 10−19 (1, 100) 8.45× 10−2 4.12× 10−88

The absolute error function |eM,N(t, x)| with T = 2([0, 2]× [0, 100]), N = 2, L = 0.25 M = 14 is shown
in Figure 8.

0

20

40

60

80

100

0

0.5

1

1.5

2

0

2

4

6

8

x 10
−6

 

xt

 

|e
M

,N
(t

,x
)|

0

1

2

3

4

5

6

7

x 10
−6

0

20

40

60

80

100

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

x 10
−8

 

xt

 

|e
M

,N
(t

,x
)|

1

2

3

4

5

6

7

8

9

10

11

x 10
−9

Figure 8: Absolute error function |eM,N(t, x)|, for Case I (a) and Case II (b) where M = 14, N = 2, T = 2 and L = 0.25. See
Example 4.4.

Figures 9 and 12 (d) show the logarithmic of absolute values uij as computed for case II with T =
1, N = 5, M = 6 and the maximum absolute residual errors for case II with T = 1, N = 2 and various
values of L, respectively. In this example, the optimum value of parameter L is about L = 0.25.
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Figure 9: The logarithmic of absolute values of uij versus i and j with T = 1, N = 5, M = 6 and L = 0.2, 0.25, 0.3 for Case II,
Example 4.4.
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Example 4.5. Consider the following nonlinear age-structured population model [27]

∂u(t, x)
∂t

+
∂u(t, x)
∂x

= −µ(x)u(t, x), 0 6 t, 0 6 x < A,

u(0, x) = (1 − x)λe−x, 0 6 x < A,

u(t, 0) =
∫A

0
β(s)u(t, s)ds, 0 6 t,

which µ(x) = λ
1−x and A = +∞ and has the exact solution

u(t, x) = (1 − x)λet−x, x > 0, t > 0.

We approximate u(t, x) on [0, 1]× [0, 100] and present the the maximum absolute values of errors and
computational orders for N = 3, λ = 3, L = 0.5 and different values of M in Table 11.

Table 11: Errors and computational orders obtained for Example 4.5 with T = 1, N = 3, λ = 3, and L = 0.5.

M Case I Case II
‖eM,N‖∞ C-order ‖eM,N‖∞ C-order

4 4.3154× 10−4 ——– 1.3511× 10−4 ——–
6 1.5607× 10−6 13.8661 1.8090× 10−7 16.3168
8 3.1803× 10−9 21.5374 1.5115× 10−10 24.6363
10 4.1664× 10−12 29.7462 8.4168× 10−14 33.5802
12 3.8064× 10−15 38.3834 3.3302× 10−17 42.9733
14 2.5638× 10−18 47.3754 9.8269× 10−21 52.7292

In Table 12, we compare the absolute errors obtained using the MGLC method with N = 4,M = 8,L =
0.5, λ = 3, and the method of [45].

Table 12: Absolute error obtained for Example 4.5 for λ = 3 on [0, 1]× [0, 20] and [0, 1]× [0, 100] when L = 0.5.

(t, x) Yousefi et al. [45] MGLC (Case I) (t, x) Yousefi et al. [45] MGLC (Case I)
(m = 5,n = 10) (N = 4,M = 8) (m = 5,n = 10) (N = 4,M = 8)

(0, 0) 2.90× 10−1 0.00 (0, 0) 5.59× 10−1 0.00
(0.1, 2) 2.31× 10−2 1.38× 10−11 (0.1, 10) 2.44× 10−2 3.61× 10−12

(0.2, 4) 1.26× 10−1 5.35× 10−11 (0.2, 20) 1.16× 10−1 1.53× 10−15

(0.3, 6) 8.40× 10−2 3.63× 10−11 (0.3, 30) 9.19× 10−2 2.67× 10−19

(0.4, 8) 8.30× 10−2 1.56× 10−11 (0.4, 40) 2.47× 10−2 3.41× 10−23

(0.5, 10) 7.26× 10−3 4.70× 10−12 (0.5, 50) 2.96× 10−1 3.22× 10−27

(0.6, 12) 1.46× 10−3 1.36× 10−12 (0.6, 60) 5.32× 10−1 2.99× 10−31

(0.7, 14) 1.17× 10−2 3.14× 10−13 (0.7, 70) 1.97× 10−1 2.25× 10−35

(0.8, 16) 1.92× 10−2 7.65× 10−14 (0.8, 80) 8.81× 10−1 1.79× 10−39

(0.9, 18) 2.10× 10−2 2.05× 10−14 (0.9, 90) 1.35 1.58× 10−43

(1, 20) 6.46× 10−2 4.50× 10−14 (1, 100) 3.46 1.15× 10−46

The absolute error function |eM,N(t, x)| with T = 5([0, 5]× [0, 100]), N = 4, λ = 3, L = 0.5 and M = 20
is shown in Figure 10. Figure 11 depicts the logarithmic of absolute values uij as computed for case II
with T = 1, λ = 3, N = 8, M = 16 and several scaling factor L. We observe that the optimum value of
parameter L is about L = 0.5.

5. Conclusion

In this study, we investigated the verification of approximation method for solving the age-structured
population model in different magnitude of domain by using MGLC method.

As a disadvantage of the Laguerre method, we can mention to the non-applicability. However, the La-
guerre polynomials are orthogonal on [0,∞), the collocation method based on these functions practically
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is not efficient. In fact, programming clearly shows that the theoretical results are not achievable. This
paper focuses on some modifications which can highly improve the rate of accuracy to the exponential
level. In fact, the spectral accuracy is considered as a very important advantage in numerical approxima-
tion methods due to decreasing the cost of computations considerably. Note that finite element method
(FEM) and finite different method (FDM) are not as fast as MGLC method. The other advantage of
this method is simplicity in unifying the boundary condition and the equation under study. We remind
that, age-structured population model is associated with an integral boundary condition which causes
very complicated computations. Actually, in some methods such as FEM, FDM, and etc. dealing with
boundary conditions is a costly challenge but MGLC method is flexible respect with boundary conditions.

Theoretical analysis and experimental results show the validity, accuracy, and computational efficiency
of the MGLC method. The numerical experiment for different A and T shows the validity of the method
even in extended areas. As such the method is reliable in the larger scale problems if we choose the right
kind of orthogonal polynomials for the approximation. Furthermore, according to the the results of this
research if population model is proposed for long-term simulation, we can change the structure of ap-
proximated solution based on Laguerre-Laguerre spectral collocation method, which means two direction
may be approximated by the modified generalized Laguerre functions. We emphasize the modification
of generalized Laguerre functions provides not only the optimum rate convergence but the method also
considers the size of area and behavior of the solution as x approaches infinity.
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Figure 10: Absolute error function |eM,N(t, x)|, for Case I (a) and Case II (b), where M = 20, N = 4, T = 5, λ = 3, and L = 0.5.
See Example 4.5.
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