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Abstract
In this paper, we define Ψ-boundedness on time scales and we present necessary and sufficient conditions for the existence

of at least one Ψ-bounded solution for the linear non-homogeneous matrix system x∆ = A(t)x+ f(t), where f(t) is a Ψ-bounded
matrix valued function on T assuming that f is a Lebesgue Ψ-delta integrable function on time scale T . Finally we give a result
in connection with the asymptotic behavior of the Ψ-bounded solutions of this system.
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1. Introduction

Matrix differential equations arise in a number of areas of applied mathematics such as control sys-
tems, dynamic programming, optimal filters, quantum mechanics and systems engineering. The analyt-
ical, numerical solutions and control aspects of matrix differential equations have been studied by many
authors. The aim of this paper is to give necessary and sufficient conditions that the non-homogeneous
linear matrix system

x∆ = A(t)x+ f(t), (1.1)

where x(t), f(t) are in Td and A is continuous d× d matrix valued function, has at least one Ψ-bounded
solution for every Lebesgue Ψ-delta integrable function f on the time scale T . Here Ψ- is a rd-continuous
matrix function, instead of a scalar function. The calculus of time scales was initiated by Stefan Hilger
[13] in order to create a theory that can unify discrete and continuous analysis. The study of dynamic
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equations on time scales, is an area of mathematics that has recently received a lot of attention and
sheds new light on the discrepancies between continuous differential equations and discrete difference
equations. It also prevents one from proving a result twice, once for differential equations and once for
difference equations.

The general idea, which is the main goal of Bohner and Peterson’s excellent introductory text [2], is to
prove a result for a dynamic equation where the domain of the unknown function is so called time scale.
If T= R, the general result obtained yields the same result concerning an ordinary differential equation. If
T = Z, the general result is the same result one would obtain concerning a difference equation. However,
since there are infinitely many other time scales that one may work besides the real and the integers, one
has a much more general result.

The present work unifies the results of existence of Ψ-bounded solutions of linear differential equations
[7] and linear difference equations [12, 16] and also generalizes to matrix differential systems on time
scales. In Section 2, we review most of the results and definitions on timescales and Ψ-boundedness. In
Section 3, first, we present a necessary and sufficient condition for the existence of at least one Ψ-bounded
solution for linear non-homogeneous matrix differential equation on time scales (1.1) for every Lebesgue
Ψ-delta integrable function f, on time scale T . Further, we obtain a result relating to the asymptotic
behavior of solutions of (1.1).

The problem of Ψ-boundedness of the solutions for systems of ordinary differential equations has
been studied in many papers, [1, 2, 4, 5, 7–10, 12]. In [7–9], the author proposes the novel concept of
Ψ-boundedness of solutions, Ψ being a continuous matrix-valued function, allows a better identification
of various types of asymptotic behavior of the solutions on R.

Similarly, we can consider solutions of (1.1), which are Ψ-bounded not only on T+ but on T . In this
case, the condition for the existence of at least one Ψ-bounded solution are rather complicated, as shown
in [10] and below. In [10], the authors gave a necessary and sufficient condition so that the system (1.1)
has at least one Ψ-bounded solution on T for every continuous and Ψ-bounded function f on T .

The norms used in this paper are taken from an excellent survey presented in [17].

2. preliminaries

The purpose of this section is to review some useful results, definitions and basic properties on time
scales and Ψ boundedness which are needful for later discussion.

Let T be a time scale, i.e., an arbitrary non-empty closed subset of real numbers. Throughout
this paper, the time scale T is assumed to be unbounded above and below. In this paper we intro-
duce some notations: T+ = (0,∞) ∩ T , ν = min{[0,∞) ∩ T }. For x = (x1, x2, x3, . . . , xd)T ∈ Td, let
‖x‖ = max{|x1|, |x2|, |x3|, . . . , |xd|} be the norm of x. For a d × d real matrix A = (aij), we define the
norm

|A| = sup
‖x‖61

‖Ax‖.

Definition 2.1. A matrix P is said to be a projection if P2 = P. If P is the projection, then I-P is also
a Projection. Two such projections, whose sum is I and hence whose product is zero are said to be
supplementary.

Result 2.2. If A is differentiable at t ∈ Tk, then A(σ(t)) = A(t) + µ(t)A∆(t) [3].

For basic calculus on time scales and theorems on time scales mentioned in this section we refer to
[2, 3].

Definition 2.3. A mapping f : T −→ X, where X is a Banach space, is called rd-continuous if

(i) it is continuous at each right-dense t ∈ T ;
(ii) at each left dense point the left side limit f(t) exists.
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Remark 2.4. If condition (ii) is replaced by f being continuous at each left-dense point, then f is said to be
continuous function on T .

Result 2.5. If f is ∆-differentiable, then f is continuous. Also if t is right scattered and f is continuous at t,
then

f∆(t) =
f(σ(t)) − f(t)

µ(t)
.

Definition 2.6. A function F : Tk −→ R is called an anti-derivative of f : Tk −→ R provided F∆(t) = f(t)
holds for all t ∈ Tk. We then define the integral by∫t

a

f(s)∆s = F(t) − F(s).

Theorem 2.7. Assume f : T −→ R is a function and let t ∈ Tk. Then we have the following:

(i) if f is differentiable at t, then is continuous at t;
(ii) if f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t)) − f(t)

µ(t)
;

(iii) if t is right-dense, then f is differentiable at t if the limit

limt−→s
f(t) − f(s)

t− s

exists as a finite number, in this case

f∆(t) = limt−→s
f(t) − f(s)

t− s
;

(iv) if f is differentiable at t, then
f(σ(t)) = f(t) + µ(t)f∆(t).

Definition 2.8. A function f : T −→ R is called regulated provided its right-sided limits exists (finite) at
all right-dense points in T and its left-sided limits exist (finite) at all left dense points in T .

Definition 2.9. A function f : T −→ R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set rd-continuous functions
f : T −→ R will be denoted by

Crd = Crd(T) = Crd(T ,R).

The set of functions f : T −→ R that are differentiable and whose derivative is rd continuous is denoted
by

C1
rd = C1

rd(T) = C
1
rd(T ,R).

Result 2.10. Assume f : T −→ R.

(i) If f is continuous, then f is rd-continuous.
(ii) If f is rd- continuous, then f is regulated.

(iii) If the jump operator σ is rd- continuous, then so is fσ.
(iv) Assume f is continuous. If g : T −→ R is regulated or rd-continuous, then fog has that property too.

Theorem 2.11 (Existence of pre-antiderivatives). Let f be regulated. Then there exists a function F which is
pre-differentiable with region of differentiation D such that F∆(t) = f(t) holds for all t ∈ D.
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Definition 2.12. Assume f : T −→ R is a regulated function. Any function F as in theorem (above) is called
a pre-anti derivative of f. We define the indefinite integral of a regulated function f by∫

f(τ)∆t = F(t) +C,

where C is an arbitrary constant and f is a pre-anti derivative of f. We define the Cauchy integral by∫s
r

∆(t) = F(s) − F(r)

for all r, s ∈ T .
A function F : T −→ R is called an anti derivative of f : T −→ R provided

F∆(t) = f(t)

holds for all t ∈ Tk.

Definition 2.13. If a ∈ T , sup T =∞ and f is rd-continuous on [a,∞) then we define the improper integral
by ∫∞

a

f(t)∆t = lim
b−→∞

∫b
a

f(t)∆t

provided this limit exists, and we say that the improper integral converges in this case. If this limit does
not exist, then we say that the improper integral diverges.

Theorem 2.14. Let f be a function which is ∆-integrable from a to b, for t ∈ [a,b], define F(t) =
∫t
a f(τ)∆τ.

Then F is continuous on [a,b]. If t0 ∈ [a,b) and if f is continuous at t0 provided t0 is right-dense, then F is
∆-differentiable at t0 and F∆(t0) = f(t0).

Theorem 2.15. Any set of d-linearly independent solutions y1,y2, . . . ,yd of

y∆ = A(t)y (2.1)

is called a fundamental set of solutions and the matrix with y1,y2, . . . ,yd as its columns is called a fundamental
matrix for the equation (2.1) and is denoted by Φ. The fundamental matrix Φ is non-singular.

Theorem 2.16. LetA ∈ R be an d×dmatrix-valued function on T and suppose that f : T −→ Rd is rd-continuous.
Let t0 ∈ T and y0 ∈ Rd. Then the initial value problem

y∆(t) = A(t)y(t) + f(t),y(t0) = y0

has a unique solution y : T −→ Rd. Moreover, this solution is given by

y(t) = ΦA(t, t0)y0 +

∫t
t0

ΦA(t,σ(τ))f(τ)∆τ,

where ΦA(t, t0) is a fundamental matrix.

Also we introduce some definitions, results, and notations of Ψ boundedness.
Let Rd be the Euclidean d-space. For x = (x1, x2, x3, . . . , xd)T ∈ Rd, let ‖x‖ = max{|x1|, |x2|, |x3|, . . . , |xd|}

be the norm of x. For a d× d real matrix A = (aij), we define the norm |A| = sup‖x‖61 ‖Ax‖.
Let Ψi : T → (0,∞), i = 1, 2, . . .d, be continuous functions and

Ψ = diag[Ψ1,Ψ2, . . .Ψd].
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Definition 2.17. A function ϕ : T → Rd×d is said to be Ψ-bounded on T if the matrix function Ψϕ is
bounded on T (i.e., there exists L2 > 0 such that |Ψ(t)ϕ(t)| 6 L2 for all t ∈ T ).

Definition 2.18. A function ϕ : T → Rd×d is said to be Lebesgue Ψ-integrable on T if ϕ is ∆ measurable
and Ψϕ is Lebesgue integrable on T .

By a solution of (1.1), we mean an absolutely continuous function satisfying (1.1) for almost all t ∈ T .
Let the vector space Rd be represented as a direct sum of three subspaces X−, X0, X+ such that a

solution y(t) of (2.1) is Ψ-bounded on T if and only if y(0) ∈ X0 and Ψ-bounded on T+ = [0,∞) if and
only if y(0) ∈ X− ⊕ X0. Also, let P−,P0, and P+ denote the corresponding projections of Rd onto X−, X0,
and X+, respectively.

In the next section we establish our main results. It may be noted that, by a fundamental sequence in
a Banach space, X, we mean a sequence in X whose span Y is dense in X. In other words, every element
in X can be approximated by an element in the span. That is, given x ∈ X, we can find a y ∈ Y such that
‖x− y‖ is small. This concept is used in our main results.

3. Main result

Theorem 3.1. If A is a continuous d× d real matrix on T , then (1.1) has at least one Ψ-bounded solution on T for
every Lebesgue Ψ-delta integrable function f : T → Td on T if and only if there exists a positive constant K such
that

|Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)| 6 K for t > 0, σ(s) 6 0,

|Ψ(t)Φ(t)(P0 + P−)Φ
−1(σ(s))Ψ−1(s)| 6 K for t > 0, σ(s) > 0,σ(s) < t,

|Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)| 6 K for t > 0,σ(s) > 0, σ(s) > t,

|Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)| 6 K for t 6 0, σ(s) < t,

|Ψ(t)Φ(t)(P0 + P+)Φ
−1(σ(s))Ψ−1(s)| 6 K for t 6 0, σ(s) > t, σ(s) < 0,

|Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)| 6 K for t 6 0, σ(s) > t, σ(s) > 0.

(3.1)

Proof. For ”only if” part, suppose that the system (1.1) has at least one Ψ-bounded solution on T for every
Lebesgue Ψ-∆ integrable function f: T → Td on T . We shall define by

i) CΨ: the Banach space of all Ψ-bounded and continuous functions x : T → Td with the norm ‖x‖CΨ =
supt∈T ‖Ψ(t)x(t)‖;

ii) B: the Banach space of all Lebesgue Ψ-∆ integrable functions x : T → Td with the norm ‖x‖B =∫+∞
−∞ ‖Ψ(t)x(t)‖∆t;

iii) D: the set of all functions x : T → Td which are absolutely continuous on all intervals J ⊂ T ,
Ψ-bounded on T , x(0) ∈ X ⊕X+ and x∆ −Ax ∈ B.

Obviously, D is a vector space and x→ ‖x‖D = ‖x‖CΨ + ‖x∆ −Ax‖B is a norm on D.

Step 1. (D, ‖ · ‖D) is a Banach space. Let (xn)n∈N be a fundamental sequence of elements of D. Then, it is
a fundamental sequence in CΨ. Therefore, there exists a continuous and Ψ-bounded function x : T → Td

such that limn→∞ Ψ(t)xn(t) = Ψ(t)x(t), uniformly on T . From the inequality

‖xn(t) − x(t)‖ 6 ‖Ψ−1(t)Ψ(t)xn(t) −Ψ
−1(t)Ψ(t)x(t)‖, t ∈ T ,

6 |Ψ−1(t)|‖Ψ(t)xn(t) −Ψ(t)x(t)‖, t ∈ T ,

it follows that limn→∞ xn(t) = x(t), uniformly on every compact subset of T . Thus, x(0) ∈ X− ⊕X+.
On the other hand, the sequence (fn)n∈N, where fn(t) = x∆n(t)−A(t)xn(t), is a fundamental sequence

in the Banach space B. Thus, there exists f ∈ B such that

lim
n→∞

∫+∞
−∞ ‖Ψ(t)(fn(t) − f(t))‖∆t = 0.
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For a fixed, but arbitrary, t ∈ T , we have

x(t) − x(0) = lim
n→∞

(
xn(t) − xn(0)

)
= lim
n→∞

∫t
0
x∆n(s)∆s

= lim
n→∞

∫t
0
[x∆n(s) −A(s)xn(s) +A(s)xn(s)]∆s

= lim
n→∞

∫t
0
[Ψ−1(s)Ψ(s)[x∆n(s) −A(s)xn(s)] +A(s)xn(s)]∆s

= lim
n→∞

∫t
0
[Ψ−1(s)Ψ(s)fn(s) +A(s)xn(s)]∆s

= lim
n→∞

∫t
0
[Ψ−1(s)Ψ(s)(fn(s) − f(s) + f(s) +A(s)xn(s))]∆s

=

∫t
0

(
f(s) +A(s)x(s)

)
∆s.

It follows that x∆ −Ax = f ∈ B and x is absolutely continuous on all intervals J ⊂ T . Thus, x ∈ D.
Now, from

lim
n→∞Ψ(t)xn(t) = Ψ(t)x(t), uniformly on T

and

lim
n→∞

∫+∞
−∞ ‖Ψ(t)[(x∆n(t) −A(t)xn(t)) − (x∆(t) −A(t)x(t))]‖∆t = 0,

it follows that

lim
n→∞Ψ(t)‖xn − x‖D = sup

t∈T
‖Ψ(t)(xn − x)‖+ ‖(xn − x)∆ −A(t)(xn − x)‖B

= sup
t∈T
‖Ψ(t)(xn − x)‖+

∫+∞
0
‖Ψ(t)[‖(xn)∆ −A(t)(xn) − (x∆ −A(t)x)]‖∆t = 0.

Hence
lim
n→∞ xn(t) = x(t).

Thus, (D, ‖ · ‖D) is a Banach space.

Step 2. There exists a positive constant K such that, for every f ∈ B and for corresponding solution x ∈ D
of (2.1), we have

sup
t∈T
‖Ψ(t)x(t)‖ 6 K

∫+∞
−∞ ‖Ψ(t)f(t)‖∆t. (3.2)

For this, define the mapping T : D→ B, Tx = x∆ −Ax. This mapping is clearly linear and bounded, with
‖T‖ 6 1.

Let Tx = 0. Then, x∆ = Ax, x ∈ D. This shows that x is a Ψ-bounded solution on T of (2.1). Then,
x(0) ∈ X0 ∩

(
X− ⊕X+

)
= {0}. Thus, x = 0, such that the mapping T is ”one-to-one”.

Let f ∈ B and let x be the Ψ-bounded solution on T of the system (1.1). Let z be the solution of the
Cauchy problem

z∆(t) = A(t)z+ f(t), z(0) = (P− + P+)x(0).

Then u(t) = x(t) − z(t) is a solution of (2.1) with u(0) = x(0) − (P− + P+)x(0) = P0x(0). From the
Definition of X0, it follows that z(t) is Ψ-bounded on T . Thus, z is Ψ-bounded on T . Therefore, z belongs
to D and Θz = f. Consequently, the mapping Θ is ”onto”.
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From a fundamental result of Banach space: ”If Θ is a bounded one-to-one linear operator of one
Banach space onto another, then the inverse operator Θ−1 is also bounded” (this is a consequence of the
open mapping theorem in Banach spaces which can be found in Simmons [18]), we have ‖Θ−1f‖D 6
‖Θ−1‖‖f‖B, for all f ∈ B.

For a given f ∈ B, let x = Θ−1f be the corresponding solution x ∈ D of (1.1). We have

‖x‖D = ‖x‖CΨ + ‖x∆ − Ax‖B = ‖x‖CΨ + ‖f‖B 6 ‖Θ−1‖‖f‖B

or
‖x‖CΨ 6

(
‖Θ−1‖− 1

)
‖f‖B = K‖f‖B.

This inequality is equivalent to (3.1). Thus, the end of the proof.

Step 3. Let Θ1 < 0 < Θ2 be a fixed points but arbitrarily, and let f : T → Td a function in B which vanishes
on (−∞,Θ1]∪ [Θ2,+∞). It is easy to see that the function x : T → Td defined by

x(t) =


−
∫0
Θ1
Φ(t)P0Φ

−1(σ(s))f(s)∆s−
∫Θ2
Θ1
Φ(t)P+Φ

−1(σ(s))f(s)∆s, t < Θ1,∫t
Θ1
Φ(t)P−Φ

−1(σ(s))f(s)∆s+
∫t

0 Φ(t)P0Φ
−1(σ(s))f(s)∆s−

∫Θ2
t Φ(t)P+Φ

−1(σ(s))f(s)∆s, Θ1 6 t 6 Θ2,∫Θ2
Θ1
Φ(t)P−Φ

−1(σ(s))f(s)∆s+
∫Θ2

0 Φ(t)P0Φ
−1(σ(s))f(s)∆s, t > Θ2,

is the solution in D of the system (1.1). Now, we put

G(t, s) =



Φ(t)P−Φ
−1(σ(s)), σ(s) 6 0 < t,

Φ(t)(P0 + P−)Φ
−1(σ(s)), 0 < σ(s) < t,

−Φ(t)P+Φ
−1(σ(s)), 0 < t 6 σ(s),

Φ(t)P−Φ
−1(σ(s)), σ(s) < t 6 0,

−Φ(t)(P0 + P+)Φ
−1(σ(s)), t 6 σ(s) < 0,

−Φ(t)P+Φ
−1(σ(s)), t 6 0 6 σ(s) .

This function is continuous on T 2 except on the line t = σ(s), where it has a jump discontinuity. Then, we
have x(t) =

∫Θ2
Θ1
G(t,σ(s))f(s)∆s, t ∈ T .

• For t < Θ1, we have∫Θ2

Θ1

G(t,σ(s))f(s)∆s = −

∫ 0

Θ1

Φ(t)(P0 + P+)Φ
−1(σ(s))f(s)∆s−

∫Θ2

0
Φ(t)P+Φ

−1(σ(s))f(s)∆s

= −

∫ 0

Θ1

Φ(t)P0Φ
−1(σ(s))f(s)∆s−

∫Θ2

Θ1

Φ(t)P+Φ
−1(σ(s))f(s)∆s = x(t).

• For t ∈ [Θ1, 0), we have∫Θ2

Θ1

G(t,σ(s))f(s)∆s =
∫t
Θ1

Φ(t)P−Φ
−1(σ(s))f(s)∆s−

∫ 0

t

Φ(t)(P0 + P+)Φ
−1(σ(s))f(s)∆s

−

∫Θ2

0
Φ(t)P+Φ

−1(σ(s))f(s)∆s

=

∫t
Θ1

Φ(t)P−Φ
−1(σ(s))f(s)∆s+

∫t
0
Φ(t)P0Φ

−1(σ(s))f(s)∆s

−

∫T2

t

Φ(t)P+Φ
−1(σ(s))f(s)∆s = x(t).
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• For t ∈ (0,Θ2], we have∫Θ2

Θ1

G(t,σ(s))f(s)∆s =
∫ 0

Θ1

Φ(t)P−Φ
−1(σ(s))f(s)∆s+

∫t
0
Φ(t)(P0 + P−)Φ

−1(σ(s))f(s)∆s

−

∫Θ2

t

Φ(t)P+Φ
−1(σ(s))f(s)∆s

=

∫t
Θ1

Φ(t)P−Φ
−1(σ(s))f(s)∆s+

∫t
0
Φ(t)P0Φ

−1(σ(s))f(s)∆s

−

∫Θ2

t

Φ(t)P+Φ
−1(σ(s))f(s)∆s = x(t).

• For t > Θ2, we have∫Θ2

Θ1

G(t,σ(s))f(s)∆s =
∫ 0

Θ1

Φ(t)P−Φ
−1(σ(s))f(s)∆s+

∫Θ2

0
Φ(t)(P0 + P−)Φ

−1(σ(s))f(s)∆s

=

∫Θ2

Θ1

Φ(t)P−Φ
−1(σ(s))f(s)∆s+

∫Θ2

0
Φ(t)P0Φ

−1(σ(s))f(s)∆s

= x(t).

Now, the inequality (3.1) becomes

sup
t∈T
‖Ψ(t)

∫Θ2

Θ1

G(t,σ(s))f(s)∆s‖ 6 K
∫Θ2

Θ1

‖Ψ(t)f(t)‖∆t.

For a fixed points σ(s) ∈ T , δ > 0 and ξ ∈ Td, but arbitrarily, let f the function defined by

f(t) =

{
Ψ−1(t)ξ, for σ(s) 6 t 6 σ(s) + δ,
0, elsewhere.

Clearly, f ∈ B, ‖f‖B = δ‖ξ‖. The above inequality becomes

‖
∫s+δ
s

Ψ(t)G(t,σ(u))Ψ−1(u)ξ∆u‖ 6 Kδ‖ξ‖ for all t ∈ T .

Dividing by δ and letting δ→ 0, we obtain for any t 6= s,

‖Ψ(t)G(t,σ(s))Ψ−1(s)ξ‖ 6 K‖ξ‖ for all t ∈ T , ξ ∈ Td.

Hence, |Ψ(t)G(t,σ(s))Ψ−1(s)| 6 K, which is equivalent to (3.1). By continuity, (3.1) remains valid also in
the excepted case t = σ(s).

Now, we prove the ”if” part. Suppose that the fundamental matrix Y of (2.1) satisfies the condition
(3.1) for some K > 0. Let f : T → Td be a Lebesgue Ψ-delta integrable function on T . We consider the
function u : T → Td defined by

u(t) =

∫t
−∞Φ(t)P−Φ

−1(σ(s))f(s)∆s+

∫t
0
Φ(t)P0Φ

−1(σ(s))f(s)∆s−

∫∞
t

Φ(t)P+Φ
−1(σ(s))f(s)∆s. (3.3)

Step 4. The function u is well-defined on T . Indeed, for v < t 6 0, we have∫t
v

‖Φ(t)P−Φ
−1(σ(s))f(s)‖∆s =

∫t
v

‖Ψ−1(t)Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)‖∆s
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6 |Ψ−1(t)|

∫t
v

|Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

6 K|Ψ−1(t)|

∫t
v

‖Ψ(s)f(s)‖∆s,

which shows that the integral
∫t
−∞Φ(t)P−Φ

−1(σ(s))f(s)∆s is absolutely convergent. For t > 0, we have
the same result.

Similarly, the integral
∫∞
t Φ(t)P+Φ

−1(σ(s))f(s)∆s is absolutely convergent. Thus, the function u is
well-defined and is an absolutely continuous function on all intervals J ⊂ T .

Step 5. The function u is a solution of (1.1). Indeed, for almost all t ∈ T , we have

u∆(t) =

∫t
−∞Φ∆(t)P−Φ−1(σ(s))f(s)∆s+ [Φ(σ(t))P−Φ

−1(t)f(t) − 0]

+

∫t
0
Φ∆(t)P0Φ

−1(σ(s))f(s)∆s+ [0 −Φ(σ(t))(t)P0Φ
−1(t)f(t)]

−

∫∞
t

Φ∆(t)P+Φ
−1(σ(s))f(s)∆s− [0 −Φ(σ(t))(t)P+Φ

−1(t)f(t)

=

∫t
−∞A(t)Φ(t)P−Φ

−1(σ(s))f(s)∆s+ Y(σ(t))(t)P−Φ
−1(t)f(t)

+

∫t
0
A(t)Φ(σ(t))P0Φ

−1(σ(s))f(s)∆s+Φ(σ(t))P0Φ
−1(t)f(t)

−

∫∞
t

A(t)Φ(t)P+Φ
−1(σ(s))f(s)∆s+Φ(σ(t))P+Φ

−1(t)f(t)

= A(t)u(t) +Φ(σ(t))(P− + P0 + P+)Φ
−1(t)f(t) = A(t)u(t) + f(t).

This shows that the function u is a solution of (1.1).

Step 6. The solution u is Ψ-bounded on T . Indeed, for t < 0, we have

Ψ(t)u(t) =

∫t
−∞ Ψ(t)Φ(t)P−Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

+

∫t
0
Ψ(t)Φ(t)P0Φ

−1(s)Ψ−1(σ(s))Ψ(s)f(s)∆s

−

∫∞
t

Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

=

∫t
−∞ Ψ(t)Φ(t)P−Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

−

∫ 0

t

Ψ(t)Φ(t)(P0 + P+)Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

−

∫∞
0
Ψ(t)Φ(t)P+Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s .

Then
‖Ψ(t)u(t)‖ 6 K ·

∫∞
−∞ ‖Ψ(s)f(s)‖∆s.

For t > 0, we have

Ψ(t)u(t) =

∫t
−∞ Ψ(t)Φ(t)P−Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s
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+

∫t
0
Ψ(t)Φ(t)P0Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s−

∫∞
t

Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

=

∫ 0

−∞ Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

+

∫t
0
Ψ(t)Φ(t)(P0 + P−)Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

−

∫∞
t

Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s .

Then
‖Ψ(t)u(t)‖ 6 K ·

∫∞
−∞ ‖Ψ(s)f(s)‖∆s.

Hence
sup
t∈T
‖Ψ(t)u(t)‖ 6 K ·

∫∞
−∞ ‖Ψ(s)f(s)‖∆s,

which shows that the solution u is Ψ-bounded on T . The proof is now complete.

In a particular case, we have the following result.

Theorem 3.2. If the homogeneous equation (2.1) has no nontrivial Ψ-bounded solution on T , then the (1.1) has a
unique Ψ-bounded solution on T for every Lebesgue Ψ-delta integrable function f : T → Td on T if and only if there
exists a positive constant K such that

|Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)| 6 Kσ(s) for −∞ < σ(s) < t < +∞,

|Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)| 6 Kt 6 σ(s) for −∞ < t 6 σ(s) < +∞.

(3.4)

In this case, P0 = 0 and the proof is as above.

Next, we prove a theorem in which we will see that the asymptotic behavior of solutions to (1.1) is
determined completely by the asymptotic behavior of the fundamental matrix Y.

Theorem 3.3. Suppose that:

(1) the fundamental matrix Φ(t) of (3.4) satisfies:
(a) condition (3.1) is satisfied for some K > 0;
(b) the following conditions are satisfied:

(i) limt→±∞ |Ψ(t)Φ(t)P0| = 0;
(ii) limt→−∞ |Ψ(t)Φ(t)P+| = 0;

(iii) limt→+∞ |Ψ(t)Φ(t)P−| = 0;
(2) the function f : T → Td is Lebesgue Ψ-delta integrable on T .

Then, every Ψ-bounded solution x of (1.1) is such that

lim
t→±∞ ‖Ψ(t)x(t)‖ = 0.

Proof. By Theorem 3.1, for every Lebesgue Ψ-integrable function f : T → Td, the equation (1.1) has at least
one Ψ-bounded solution on T .

Let x be a Ψ-bounded solution on T of (1.1). Let u be defined by (3.3). The function u is a Ψ-bounded
solution on T of (1.1).

Now, let the function y(t) = x(t) −u(t) −Φ(t)P0(x(0) −u(0)), t ∈ T . Obviously, y is a solution on T of
(2.1). Because Ψ(t)Φ(t)P0 is bounded on T , y is Ψ-bounded on T . Thus, y(0) ∈ X0. On the other hand,

y(0) = x(0) − u(0) − Y(0)P0(x(0) − u(0)) = (P− + P+)(x(0) − u(0)) ∈ X− ⊕X+.
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Therefore, y(0) ∈ X0 ∩ (X− ⊕X+) = {0} and then, y = 0. It follows that

x(t) = Φ(t)P0(x(0) − u(0)) + u(t), t ∈ T .

Now, we prove that limt→±∞ ‖Ψ(t)u(t)‖ = 0. For t > 0, we write again

Ψ(t)u(t) =

∫ 0

−∞ Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

+

∫t
0
Ψ(t)Φ(t)(P0 + P−)Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

−

∫∞
t

Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s.

Let ε > 0. From the hypotheses: there exists t0 < 0 such that∫t0

−∞ ‖Ψ(s)f(s)‖∆s <
ε

5K
;

there exists t1 > 0 such that, for all t > t1,

|Ψ(t)Φ(t)P−| <
ε

5
(1 +

∫ 0

t0

‖Φ−1(s)f(s)‖∆s)−1;

there exists t2 > t1 such that, for all t > t2,∫∞
t

‖Ψ(s)f(s)‖∆s < ε

5K
;

there exists t3 > t2 such that, for all t > t3,

|Ψ(t)Φ(t)(P0 + P−)| <
ε

5
(1 +

∫t2

0
‖Φ−1(σ(s))f(s)‖∆s)−1.

Then, for t > t3, we have

‖Ψ(t)u(t)‖ 6
∫t0

−∞ |Ψ(t)Φ(t)P−Φ
−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

+

∫ 0

t0

|Ψ(t)Φ(t)P−|‖Φ−1(σ(s))f(s)‖∆s+
∫t2

0
|Ψ(t)Φ(t)(P0

+ P−)|‖Φ−1(σ(s))f(s)‖∆s+
∫t
t2

|Ψ(t)Φ(t)(P0 + P−)Φ
−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

+

∫∞
t

|Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

< K

∫t0

−∞ ‖Ψ(s)f(s)‖∆s+
ε

5(1 +
∫0
t0
‖Φ−1(σ(s))f(s)‖∆s)

∫ 0

t0

‖Φ−1(σ(s))f(s)‖∆s

+
ε

5(1 +
∫t2

0 ‖Φ−1(σ(s))f(s)‖∆s)

∫t2

0
‖Φ−1(σ(s))f(s)‖∆s

+K

∫t
t2

‖Ψ(s)f(s)‖∆s+K
∫∞
t

‖Ψ(s)f(s)‖∆s

< K
ε

5K
+
ε

5
+
ε

5
+K(

∫t
t2

‖Ψ(s)f(s)‖∆s+
∫∞
t

‖Ψ(s)f(s)‖∆s) < 3ε
5

+K
ε

5K
< ε.
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This shows that limt→+∞ ‖Ψ(t)u(t)‖ = 0.
For t < 0, we write again

Ψ(t)u(t) =

∫t
−∞ Ψ(t)Φ(t)P−Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

−

∫ 0

t

Ψ(t)Φ(t)(P0 + P+)Φ
−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s

−

∫∞
0
Ψ(t)Φ(t)P+Φ

−1(σ(s))Ψ−1(s)Ψ(s)f(s)∆s.

Let ε > 0. From the hypotheses, we have: there exists t0 > 0 such that∫+∞
t0
‖Ψ(s)f(s)‖∆s < ε

5K
;

there exists t4 < 0 such that, for all t < t4,

|Ψ(t)Φ(t)P+| <
ε

5
(1 +

∫t0

0
‖Φ−1(σ(s))f(s)‖∆s)−1;

there exists t5 < t4 such that, for all t 6 t5,∫t
−∞ ‖Ψ(s)f(s)‖∆s <

ε

5K
;

there exists t6 < t5 such that, for all t 6 t6,

|Ψ(t)Φ(t)(P0 + P+)| <
ε

5
(1 +

∫ 0

t5

‖Φ−1(σ(s))f(s)‖∆s)−1.

Then, for t 6 t6, we have

‖Ψ(t)u(t)‖ 6
∫t
−∞ |Ψ(t)Φ(t)P−Φ

−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

+

∫t5

t

|Ψ(t)Φ(t)(P0 + P+)Φ
−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

+

∫ 0

t5

|Ψ(t)Φ(t)(P0 + P+)|‖Φ−1(σ(s))f(s)‖∆s+
∫t0

0
|Ψ(t)Φ(t)P+|‖Φ−1(σ(s))f(s)‖∆s

+

∫+∞
t0

|Ψ(t)Φ(t)P+Φ
−1(σ(s))Ψ−1(s)|‖Ψ(s)f(s)‖∆s

< K

∫t
−∞ ‖Ψ(s)f(s)‖∆s+K

∫t5

t

‖Ψ(s)f(s)‖∆s

+
ε

5(1 +
∫0
t5
‖Φ−1(σ(s))f(s)‖∆s)

∫ 0

t5

‖Φ−1(σ(s))f(s)‖∆s

+
ε

5(1 +
∫t0

0 ‖Φ−1(σ(s))f(s)‖∆s)

∫t0

0
‖Φ−1(σ(s))f(s)‖∆s+K

∫+∞
t0
‖Ψ(s)f(s)‖∆s

< K(

∫t
−∞ ‖Ψ(s)f(s)‖∆s+

∫t5

t

‖Ψ(s)f(s)‖∆s) + ε
5
+
ε

5
+K

ε

5K
< K

ε

5K
+

3ε
5
< ε.

This shows that limt→−∞ ‖Ψ(t)u(t)‖ = 0.
Now, it is easy to see that limt→±∞ ‖Ψ(t)x(t)‖ = 0. The proof is now complete.
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